AVE you ever tackled a digi-
tal design project with vim
and vigor—only to find yourself en-
tangled in a morass of logic ones and
zeros and a '"this goes up, and that
goes down' nightmare? If you have,
don't despair. There is a much neater,
much simpler method than the brute
force approach. This article provides
a coherent approach to digital de-
sign. The method is not a substitute
for intuition and practical seat-of-
the-pants experimentation, but a tool
for getting the end results quickly.
Before getting down to actual
techniques, it might be wise to do a
little reviewing. The truth tables for
the AND, OR, and NOT (or COMPLE-
MENT, or INVERTER) functions are
shown in Fig. 1. The function a AND b
is written ab; a OR b is writtena + b;
and NOT a is written 3. Note that + as
defined here is different from ordi-
nary addition, and merely symbolizes

a b|ab o b |atb a 3
olo]o olofo o1
o|1]|o o1 t|o
1{o|o 1{o]1
EERE Flor g
AND OR COMPLEMENT
FUNCTION FUNCTION FUNCTION
AND GATE 6R GATE INVERTER
Fig. 1

the function defined by the truth table
of Fig. 1. A truth table is simply an
array, one side of which contains all
possible combinations of the input
variables and the other side of which
contains the corresponding values of
a logic function—or output. Figure 1
also shows the digital logic gate sym-
bols for the three functions.

Any logic function can be con-
structed from these three basic types
of functions or gates. It is often con-
venient, though, when working with a
particular type of logic family (TTL,
DTL, etc.) to use two other types of
function, the NAND and the NOR. The
NAND function of a and b is written
ab, and the NOR function,a + b. Their
truth tables and logic symbols are il-
lustrated in Fig. 2. All of these func-
tions except the NOT, or INVERTER,
can be extended in an obvious way to
include more than two inputs. With
these functions at hand, it becomes
possible to construct any logic func-
tion desired.

In manipulating the basic functions
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to form more complex ones, it is ex-
pedient to have available two impor-
tant, yet simple, rules of basic logic
theory known as DeMorgan’s Laws.
Figure 3 contains truth tables for the
logic functions ab, @ + b, a + b, and
ab. Comparing them yields the for-
mulas of DeMorgan's Laws:

1)ab =a +b

2)a+b=ab
These formulas are useful in imple-
menting digital functions using only
NAND or only NOR gates.

Why Map Techniques? A truth
table is one way of specifying a logic
function—the Karnaugh map (pro-
nounced Kar-no) is another. To get an
idea of what such a map is, and why it
is a convenient tool, let's look at a
practical digital design probiem.
Suppose we are faced with design-
ing the digital black box of Fig. 4,
which has three inputs a, b and ¢, and
a single output f(a,b,c). The black box
is to provide a logic one output under

the following input conditions:
a b | ab a b |aTb
ojof1 oo
ot |1 ol1]o0
1ol i|o|lo Fig.2
1{1]o Il1]o
NAND NOR
FUNCTION FUNCTION
N eI b
b ® b a
NAND GATE NOR GATE

a=b=c=1,a=c=1and b=0,a=0and
b=c=1, ora=b=0and c=1. How can
we manufacture the digital logic in-
side the box from this specification?

One possible answer is to be
methodical. A person unfamiliar with
map techniques—but very method-
ical—might reason in the following
way.

“The output function f(a,b,c) is
logic one whenever a=b=c=1. An
AND gate puts out a one whenever all
inputs are logic one, so let's use an
AND. But the AND output is zero for
all other input combinations, and
f(a,b,c) is a one for several other input
conditions.

“Well, the AND gate did pretty well
for the first input combination, so why
not try it for the second? Let's take
the complement of b by passing it
through an INVERTER and run it into
an AND gate with a and ¢. This AND
will put out a one when a=¢=1 and
b=0, as desired. This seems to be
working well, so let's do the same
with each of the other two combina-
tions.”

With all the AND gates and INVER-
TERs arranged as above, our method-
ical experimenter will then observe
that, since f(a,b,c) is to be a logic one
whenever the input variables form the
first combination, or the second, or
the third, or the fourth, all he has to
do is OR the outputs of the four ANDs
to generate f(a,b,c). The resulting
logic is shown in Fig. 5.

Now this logic design works. It will
do the digital job, but it is inefficient.
It requires four AND gates, one OR,
and two INVERTERs. This is costly,
and it would cause quite a few layout
probiems because of the numerous
interconnections. In addition, the de-
sign procedure outlined above is slow
and, for more complicated circuits,
error prone. What can be done to
streamline the procedure?

a b |ob a b |a+b
o0 |1 0|01
o 1 o1 |
11071 [
| 110 I (S )
ob=3+b
a o+b a b |ab
0101 oOj0 I
o1l |oO o| |0
I {O0§{0O t{O0]|O
| 110 t 1|0
FI93 a+b=ab
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The answer is the Karnaugh map.
This is just a rectangle divided up into
a number of squares, each square
corresponding to a given input com-
bination. The Karnaugh map of our
function f(a,b,c) is shown in Fig. 6.
The right half of the map corresponds
to a=1, the left half to a=0 (@=1), the
middle half to b=1, and so on. The
basic idea is that there is one square
for each input combination. If we
write into that square the value of the
output function for that particular
input combination, we will have com-
pletely specified the function. The
ones and zeros in Fig. 6 are the values
which f(a,b,c) assumes for the as-
sociated input variable combinations.

Now recalling our methodical de-
sign procedure, it is easy to see that
each square which has a onein it cor-
responds to the AND function of
those input variables, and f(a,b,c) can
be generated as the OR function of all
of the ANDs.

A key factor arises here. It isn’t
necessary to include all of these AND
functions, and the Karnaugh map
tells us how to eliminate some of the
terms. For example, looking at Fig. 6,
we see that f(a,b,c) is a one for four
adjacent boxes forming the bottom
half of the map. (We will consider
squares on opposite edges to be ad-
jacent.) It is also easy to see the fol-
lowing: The only variable which does
-not change as we go from one square
with a one to another with a one is c.
It remains at one. What this means is
thatf(a,b,c) cannotdepend ona and b
because, regardless of their values,
f(a,b,c)isaoneaslongasc=1. There-
fore we can forget about a and b, and

SN0
{lo]ofolo| «oFF
-~ b O—tp— O f(a,b,c)
~ | | 1 | O I
T 7 B
Fig. 6 Fig. 7
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implement our black box as shown in
Fig. 7. We have grouped together the
four adjacent squares to eliminate a
and b. Notice that we have simplified
things a great deal, since we now
need no gates at all.

Using a Karnaugh Map. Maps
of one, two, three, and four vari-
ables are shown in Fig. 8. Maps of one
variable are rarely used, and maps
with more than four variables are sel-
dom needed—even if such a problem
were to chance along, the Karnaugh
map would not be the tool to use. Its
value depends on the pattern recog-
nition capability of the user, and it
becomes hard to recognize pattern
groupings in maps of more than four
variables.

Using the three-variable map as an
example, note that there is one box
for abc, one for abc, another for abc,
and so on, with abc corresponding to
the input combination a=1, b=1,
c=1; abc to a=1, b=0, c=1; and abc
to a=0, b=1, ¢=0; etc. Each box,
then, corresponds to a single row in
the truth table. The map is arranged
in such a way that half of it corres-
ponds to the uncomplemented form
of a given variable and the other half
to its complemented form; and the
variables are interleaved so that every
input combination corresponds to
exactly one square, and conversely.
Usually only the uncomplemented
form of each variable is written—it
being clear that the other half of the
map corresponds to the com-
plemented form.

Now, a logic function is displayed
by placing ones and zeros in the
boxes on the map. If a given input
combination produces an output, or
function value, of one, a one is placed
in the corresponding square on the
map. If the output is zero, a zero is
placed in the square. As an example,
look at the logic function in Fig. 9. On
the Karnaugh map, the box given by
abc has a 1init. This means thatfisa
logical one when the input variables
have the value a=1, b=1, and c=1.
The box given by abc has a 0 in it.
This means that f=0 when a=1, b=1,
and ¢c=0. These entries, as well as all
the others, can be verified by looking
at the truth table.

The logic function in Fig. 9 is not at
all simple looking. The question is,
how can the function be reduced to
its simplest form? Variables can be
eliminated from the function by use of
the following definition and rules:

Definition: Two boxes are adjacent if
the corresponding variables differ in
only one place, for exampie if one box
corresponds to ab¢ and the other to
abc. Notice that boxes on opposite
edges of the map are adjacent under
this definition.

Rule 1: If two boxes containing ones
are adjacent, the single variable which
differs between the two (uncom-
plemented for one, complemented for
the other) can be eliminated and the two
boxes combined. These two boxes cor-
respond to the AND function of all the
variables except the one eliminated.

Rule 2: If four boxes containing ones
are adjacent in such a way that each
box is adjacent to at least two others,
these boxes can be combined and the
two variables eliminated—those two
which appear in both complemented
and uncomplemented form somewhere
within the group. The group of four cor-
responds to the AND function of all the
variables except for the two which have
been eliminated.

Rule 3: The same procedure holds for
eight, sixteen, and so on, adjacent
boxes. Each box in a grouping must be
adjacent to three, four, etc., others
within that group.

Rule 4: The various AND functions
produced by the above groupings are
“ORed"” together to yield the simplest
function.

It should be noted that a given box
can be included in more than one
grouping if that will simplify the over-
alt  function, but each grouping
should contain at least one box which
doesn’t belong to an existing group-
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keep from violating the condition that
R=S=1 must never occur. Figure 13
also shows how DeMorgan's Law is
used to get the function into a form
requiring only NOR gates for its con-
struction. By assuming all three pos-
sible combinations of input variables
(remembering the R=S=1 is disal-
lowed from ever occurring) and com-
puting outputs, the truth table can
easily be verified. It is also easy to
show in this way that the output
labeled Q is, indeed, the compiement
of the output labeled Q for all input
conditions except the disallowed
R=S=1.

The Clocked R-S Master-Slave
Flip-Flop. It is often desirable to
have available an R-S flip-flop which
changes state only on, for example,
the trailing edge (or 1-0 transition) of
a clock signal. It is possible to use the
Karnaugh map to derive the form of
such a flip-flop, but the end result, al-
though economical in number of
gates and number of inputs per gate,
would not shed much light on the in-
ternal workings.

This type of sequential machine is
depicted in Fig. 14. When the clock
goes high, the R and S inputs are
passed through the input gates and
stored in the master. When the clock
goes low, the input gates are dis-
abled, and the information is coupled
through the transfer gates into the
slave flip-flop. The function of the
preset and clear inputs is evident. Try
assuming a set of input values for R
and S, and trace the information flow,
letting the clock change as described

SEPTEMBER 1975

above, to convince yourself that the
unit performs the R-S function.

The J-K Flip-Flop. Let's return to
our newly developed map technique
now and develop the (clocked) J-K
flip-flop as a last example. For con-
venience, since output changes are
allowed only on clock transitions,
let's denote the unstable state g by Q,
and the stable state Q by Q... This is
reasonable, because Q, is the stable
state just prior to the n* 1-0 clock
transition, and is the unstable state
just afterward, with the flip-flop set-
tling down into the stable state Q,.,
before the next clock transition oc-
curs.

The incomplete and complete truth

tables are shown in Fig. 15, along

with the Karnaugh map and the re-
sulting simplified function. The J
serves as the S and K as the R,
respectively, of an R-S flip-flop. The
only difference is that the J=K=1
output is now defined (Q.).

Let's use the clocked R-S flip-flop
to build the J-K from our derived
equation. For this purpose, let S=JQ,
and R=KQ, be the inputs to the
clocked R-S. According to the R-S
equation,

Quii = S + RQ, = JQu + (KQ.)Qn
Now, applying DeMorgan’'s law to

KQ. weget o
Qn+1 = JQn + (K + Qn)on = JQn + KOn

_ + QuQn
ButQ.Q, =0 alwals, sO_
Qnsr =JQn + KQy
which is the J-K flip-flop equation.
Notice that the R-S constraint is satis-
fied, since _ _

RS = (JOn)(KQn) = JK(Qnon) =0
Fig. 16 shows the construction of the
J-K from the R-S using two AND
gates. Again, test the operation by as-
suming a set of conditions for J and K
and tracing the logic flow. A glance
back at the incomplete truth table will
reveal that if J=K=1 (J and K inputs
tied to a logic one) the J-K forms a
toggle flip-flop.

The preceding examples have been
intended to accomplish two things. In
the first place, knowledge of the logi-
cal operation of the various types of
flip-flops is essential in order to use
them intelligently in an original de-
sign. As a second objective, they have
provided an effective demonstration
of the economy of thought which re-
sults when the Karnaugh may is used
in a digital design effort. @®
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Signal-driven
exclusive-OR gate
detects state changes

An exclusive-OR gate can detect a change in state of a logic signal more
conveniently than can a one-shot, says N. Ghani of the Computer Labora-
tory at Newcastle University, Newcastle-upon-Tyne, England. A one-shot
can directly sense state changes in only one direction, so additional
circuitry is needed to handle both positive and negative changes. But a
quad 7486 exclusive-Or gate, driven by the signal and its delayed version,
can sense both types of changes, Ghani says.

Three of the gates can be used as inverters producing a delay. The fourth
is in the exclusive-OR mode, taking in the signal and its delayed
counterpart. Whenever the input changes state —whether it is positive- or
negative-going —the 7486 will produce a narrow negative pulse with a
width equal to the delay. If no inverters are used in producing the delay,
then a positive pulse will be generated.



Graphic symbols clarified

A number of readers were apparently confused by the gates
section of two-state logic devices in the **Graphic Symbols
for Electronics Diagrams,” April 3, 1975. To clear up this
confusion, the gates section has been modified and repro-
duced here. It can be clipped out and placed over the origi-
nal section for an instant revision. To summarize, the revi-
sion includes changes in the labels for the inverting-type
gates, and the symbols showing polarity indicators (small
right triangles) or negation indicators (small open circles)
have been separated.

One source of confusion, as a number of readers pointed
out, is that either polarity indicators or negation indicators,
but not both, should be used on a drawing. The polarity
triangle inverts only voltage level and does not invert logic
state. The negation circle, on the other hand, inverts only
logic state, not voltage level. When the polarity triangle is
placed on a line, that line is associated with a logic 1 when
the voltage is low.

If a logic drawing makes use of the polarity indicators,
there is no need for a statement as to whether the design is
based on positive' logic or negative logic. However, when
negation circles are used, the drawing must state whether
the design is employing positive or negative logic.

One other symbol should be modified. The labels for the
input terminals to the upper R-S flip-flop are transposed. The
letter S should designate the top input line, and the letter R
the bottom input line.

Again, as indicated in the introductory comments to the
original symbols guide, it is a compilation of those symbols
most often needed by today’s designer. It is not meant to be
a complete listing of all possible symbols and their appli-
cations. For such thorough documentation, the standards
published by the Institute of Electrical and Electronic Engi-
neers should be consulted. They are: **Graphic Symbols for
Electrical and Electronics Diagrams’’ [IEEE No. 315,
1971]/[ANSI Y32.2, 1970] and “‘Graphic Symbolis for Logic
Diagrams (Two-State Devices),”" [IEEE Std. 91, 1973]/-
[ANSI Y32.14, 1973].
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Engineer’s notebook

DIPs verify strobe
within time window

by Robert A. Dougherty
RAD Technical Consulting, Dunedin, Fla.

It is often necessary, in testing digital equipment, to as-
certain that the equipment under test can deliver a
pulse (strobe) during’ a particular time interval (win-
dow). The circuit shown here can verify the presence of
a strobe pulse coming from equipment under test dur-
ing a window pulse from the test set; if the strobe does
not appear, an error signal goes high. This circuit oper-
ates with no external clock, and uses only two dual-in-
line-packaged integrated circuits.

As shown in the diagram, one of the ICs is a dual
edge-triggered J-K flip-flop; the other is a quad NOR
gate. Assume that both J-Ks are initially in the reset con-
dition—that is, Q1 and Q. are both low. In this case the
falling leading edge of a window complement pulse, W

sets Q1 high. Also, the low condition of W enables gate
Gi. Thgrefore if a strobe complement pulse, S, appears
while W is low, G; goes high and resets J- K1 through
Ga.

The output from inverter Gj is the window pulse, W.
Its falling trailing edge clocks the condition of Q
(which is also J3) to Qs, which is the error latch. There-
fore, if Qy is low, the error latch stays low. If Q, is high,
the error latch goes high and remains high until cleared
by the error reset or the master reset.

The master reset initializes both J-Ks. The error reset
clears the error latch through G,.

The timing diagram illustrates the operation of the
circuit. Note that the error latch stays low if a strobe is
totally within the window, or if it overlaps the begin-
ning and/or end of the window. But if a strobe does not
coincide with any portion of the window, the latch goes
high; it can ring a bell, light a light, or otherwise indi-
cate that the equipment under test has failed to deliver
a pulse when one was required. O

Engineer's Notebook is a regular feature in Electronics. We invile readers to submit original
design shortcuts, calculation aids, measurement and test techniques, and other ideas tor
saving engineering time or cost. We’ll pay $50 for each item published.
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Checking the windows. Indicating whether digital equipment can deliver a pulse at the proper time, this circuit signals an error if a strobe
pulse does not coincide with a window pulse generated by the test station. Note that 74H103 J-K flip-flops are clocked by falling edge of
pulse. Gates in the 7402 quad NOR are drawn to indicate their function; by DeMorgan's Theorem, a negative NAND is equivaient to a NOR.
Timing diagram shows that error latch goes high on falling edge of window pulse (W) unless strobe pulse has occurred some time during W.

102

Electronics/February 5, 1976



Circuit adds BCD numbers
faster with less hardware

by Dharma P. Agrawal

Federal Polytechnic Institute of Lausanne, Switzeriand

To add two binary-coded decimal numbers, at least four
full adders are needed, not to mention the gates and in-
verters that correct the sums from each adder and gen-
erate the decimal carry-out. But this extra logic hard-
ware can be simplified, as has already been shown
[“Simplifying sum-correction logic for adding two BCD
numbers,” by Robert D. Guyton: Electronics, May 30,
1974, p. 108], and the new approach proposed here
economizes on hardware and improves speed still fur-
ther.

The circuit in the accompanying diagram uses a neat

pared, and their boolean expressions can be obtained as

Sg’ = CoSs

S4/ = S4SQ + C:()Sq
or = 5,8, + S Sy

Sy = COS:2 + CoS2
or = Cos 2 + §SSZ
and Sy = §;

The circuit diagram clearly indicates the hardware ac-
complishment of each of these corrected sums. Note
that the portion of (a) that is inside the shaded box can
be replaced by the arrangement (b) to produce Sg’ with
one less gate and implement the alternative expressions
for Sy’ and Sy’.

The numbers in the accompanying table demonstrate
how effectively this BCD adder reduces parts count and
time delay, compared with some earlier circuits.[]

dodge to reduce the number of logic elements required | Excessd | Guyton's | P‘;t;posed Pru;)osedtpnli’der
to add the two BCD numbers AsAyA2A; and BsB4B:B. i adder | adder | szow"""‘;ze } ,:;,a'c';ﬂ; )
The dodge is to obtain the decimal carry-out, Cy, from _ =
the uncorrected sums S, S;, and Ss, and the uncor- | Number of full adders | 2 | b 4 4
. Number of half adders 2 - - -
rected carry Cye first, and only then to use C, to obtain Rt Zipa |
the corrected sums Sy, S»’, Sy, and Sy’. NAND gates | 0 | 4 | 1 1
The boolean expression for the decimal carry-out can | Number of Zinput .
. NAND gates i0 ‘ 9 8
be written as Number of 2-input ‘ j |
NOR gates | - | - ; = | 1
Co = Cig + S84 + Ss52 Number of inverters | ] 6 , 4 | 3
S . . . ; i | | |
The circuit schematic shows how to obtain this value for | Jjmedelay it terms | | |
Co by using just three NAND gates and one inverter. Full adders 5 | 4 l 4 | 4
The truth table for the corrected sums Sg’, Sy, Sy, Haltigddars 2 = = N
, . Gates ? 6 [ 5 4
and Sy’ as functions of Co, Sg, S4, Sg, and S; can be pre- L | |
Ag Bg As B4 A, B, A, By Sg |
SO T SR T | R S T |
FULL FULL FULL FULL
ADDER ADDER ADDER ADDER ¢ Cw t
VL Sg ¥ S, B ly Sy o
Co |
-
CARRY
ouT
(b) S
j'><‘r Hardware economy. Circuit adds two

Sg’ 84 Sy

binary-coded decimal numbers with com-
paratively few logic elements by first obtain-
ing decimal carry-out from uncorrected
sums and uncorrected carry, then using this
carry-out to obtain the corrected BCD sum.
Basic circuit (a) shows fundamental imple-

Si'y

- v

BCD SUM
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4 mentation of this method; refinement of logic
for corrected sum Sg' (b) saves a gate. With
fewer devices, computation is faster.
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Designer’s casebook

NAND gates and inverter
synchronize control signal

by Robert L. White

Applied Research Laboratories, University of Texas, Austin, Texas

In many sequential digital systems that respond to a ris-
ing pulse edge, control signals must be synchronized to
the clock pulses. These control signals are usually ob-
tained by decoding the desired states of a sequential
counter that is driven by the system clock (Fig. la).
Since the counter and decoder have propagation delays,
the decoded control signal is delayed or skewed relative
to the system clock, as illustrated in Fig. 1b. But as the
clock frequency of the system gets higher, the skew time
may become a significant portion of the clock cycle and
cause erratic circuit operation.

One example of this problem is encountered with an
accumulator operating with a 15-megahertz clock. On
the rising edge of every 40th clock pulse, a control sig-
nal transfers data from the accumulator to a data regis-
ter. The control-signal skew causes the data to be trans-
ferred at some instant between the clock edges, rather
than at the edges. Since the accumulator output is

changing between clock edges, its value is uncertain at
the instant of data transfer, and the system’s operation
is erratic.

But the skew of the control signal can be reduced to a
negligible value by configuring the sequential system as
shown in Fig. 2a. The clock of Fig. 1 becomes clock, and
inverters are added to the clock line. One inverter is
shown as a 74804, but it could be one gate of a 74500
IC. The other inverter is the top NAND gate in the 74S00.
Also, clock drives an input of a NAND gate in the con-
trol-signal line. The decoder in Fig. 2 responds one
clock-pulse sooner than the one in Fig. 1.

The synchronizing effect of the inverter and NAND
gates can be seen in Fig. 2b. Line 3 shows that the con-
trol signal waveform is in the high state until the de-
coder output goes high. This event occurs at the
(N - Dth clock pulse, i.e., one clock period before the
rising edge of the control signal.

After the decoder output goes high, the control signal
remains high until clock also goes high. After clock goes
high, the inputs of the two NAND gates are the same.
Therefore, the control-signal and clock waveforms are
alike; their falling edges and the subsequent rising
edges virtually coincide at the leading edge of the Nth
clock pulse. The only skew remaining is the difference
between the propagation delays in the two NAND gates.
With a 74500 ic, the difference between the delays in

1. Skewed up. In a digital system that re-
quires synchronization of clock and control

signal, pr'opagation delays in counter and
decoder cause erratic circuit operation.
Block diagram (a) shows how control signal
is delayed relative to clock pulse, and timing
diagram (b) shows waveforms for clock and
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2. Squared away. By adding inverter and
NAND gates to circuit and changing de-
coder to respond one pulse earlier than in
Fig. 1, the control signal and clock pulse are
synchronized accurately. After rising, the

|
(b COS“IIEER:Z | | r control signal is always high except for the
— g half clock period before its next rising edge.
the two NAND gates was less than 1 nanosecond. transfer of data in high-speed digital systems. The cir-

The circuit discussed above provides a control signal cuit can be used for any application requiring a pre-
with a rising edge that is closely synchronized with the cisely timed signal transition that does not occur on ev-
rising edge of the clock. Its applications involve the ery edge of the clock pulse. O
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"How to Simplify Logic Circuits

Introducing the decision-accounts table

by N. Darwood*

The theory of logical circuits is sometimes
called switching logic. This is because the
function of a combination of switches, such
as is shown in Fig. 1(a), is easily described.
Whether the components of which it is
finally built are NAND, AND or OR
gates or switches, the description of a
logical circuit is the same. To explain: two
switches in series make an AND gate, Fig.
2(a); two switches in parallel make an OR
gate, Fig. 2(b). A switch which is short-
circuit when ‘on’ and open-circuit when
‘off’ makes a logical inverter, Fig. 2(c).

. Although the individual switches of a
circuit may switch at electronic speeds, the
function, i.e. the logic of the circuit, is
described as though it is static and such
that there is continuity across the circuit;
the circuit is then said to be ‘on’. For

N
A, ) C,

(a

B

<

C

(b)
Fig. 1. All the possible switch states in these

two (equivalent) combinations are shown
in the truth table (first two tables in the
text).

example, the logic of Fig. 1(a) is: either (A
and B) or (A and C) which is written in
shorthand as AB+ AC. An instance of the
usefulness of switching theory is to fac-
torize AB+AC into A(B+C), which is
simpler to construct—Fig. 1(b).

In the paper and pencil analysis of a logic
circuit, it is sometimes useful to consider
all the possible combinations of states of
the switches. In the circuit of Fig. 1(b) there
are three switches, A, B and C. All the
possible states are shown below. Also
shown is the condition of the circuit in Figs
1(a) and (b).

4 B C AB+AC

off off off off
on off off off
off on off off

on on off on
off off on off
on off on on
off on on off
on on on on

Rather than having to write many ‘on’s and
‘off’s, it is usual® to use 1 for ‘on’ and 0 for
‘off’. Whence the above table becomes

Truth table for circuits of Fig. 1

State A B C AB+AC
0 0 0 O 0
1 I 0 0 0
2 0 1 0 0
3 1 1 0 1
4 0 0 1 0
5 1 0 1 1
6 0 1 1 0
7 I 1 1 1

From the above table we can describe the
logic of Fig. 1 as being on when the switches
are in state 3 (i.e. 110 in binary form where
the least significant bit is on the left), state 5
or state 7. This is the truth-table. One way
of designing a logic circuit is to write out
the truth-table which shows all the possible
states of the switches, then to enter the
required ‘on’ or ‘off circuit condition.
Suppose a table as shown below is required.

Truth table 2

State A B C

0 0 0 0 0
1 1 0 0 1
2 0 1 0 1
3 1 1 0 0
4 0 0 1 1
5 1 0 1 i
6 0 1 1 i
7 1 1 1 0

The first step would be to derive a logical
expression by extracting the states of the
switches 4, B and C that will produce an
‘on’ condition. From the table the circuit-
on conditions are

states: lor2ordorS5oré6

logical expression: ABC+ABC+ABC+
ABC+ABC

Armed with this expression we can draw
the logic diagram. There are five terms in
the expression, hence five AND gates which
feed into a five input OR gate are needed.
The logic diagram is shown in Fig. 3. The
logic diagram may now be converted into
some other type of logic using, say, NAND

*Decca Navigator Co. Ltd.
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Fig. 2. In writing the logic diagram
equivalent of switch diagrams, the notation
shown is used.

O DXMO DO D™D N W e

Fig. 3. To draw a logic circuit, the ‘on’
condition is normally written from the
desired truth table. Truth table 2 gives an
expression with five ‘on’ terms, realised by
the logic gates shown.

gates. The conversion technique is a separ-
ate branch of logic circuit theory.

Returning to the logic diagram of Fig.
3, the circuit uses six logical elements.
Using the truth-table or the rules of Boo-
lean algebra (for example AB+AC =
AB+C); A+A =1, A+A = A) the full
expression can be simplified, for example,
to AB+AC+ABC+BC. The logic dia-
gram of this expression, logically equivalent
to Fig. 3, is shown in Fig. 4. Thus we can
have two different, but logically equivalent,
expressions one of which is simpler to
construct than the other.

The question can be asked—are there
other different ways a logical circuit can be
built? Many methods exist for finding if a
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simpler logical expression is possible, e.g.
the Harvard method?; but they require a
knowledge and a skill of Boolean algebra
which usually only professional logic de-
signers, or logicians, attain through con-
stant practice.

Decision-accounts table

However, a new approach to the problem
is being made, whereby not only are simpler
expressions derived but also all the other
equivalent expressions can be listed. This
gives a complete analysis of the circuit. A
table lists all the states to which a particular
logic term, such as AC, applies—in this
instance states 4 and 6. (See logic tables
opposite for three factors.) The table does
not contain the states to which expressions
apply, found by looking up the states for
each term. To illustrate: the expression
derived for Fig. 4 is

AB+AC+ABC+BC

Enter the tables at the section for three
factors A, B and C, with each term, and
extract the corresponding state, thus

AB =15

AC = 4,6
ABC =2

BC =45

Therefore the expression, when implemen-
ted in hardware, will be on for states 1, 2, 4,
5 or 6, see Fig. 3.

Having found the states that apply to the
circuit, to find logically equivalent expres-
sions reverse the procedure by entering the
tables with the states 1, 2, 4, 5 and 6, and
extract all the terms that apply, as shown
below.

Decision-accounts table 1

State no.
1 2 4 5 6 term found
v v AB
v v AB
VY BC
v v AC

Now as long as we take a combination of
these terms that account for all the required
states, then that combination will suffice.
For example, the three terms AB, AB and
BC suffice. The circuit, Fig. 5, uses less
hardware than Fig. 4.

The above table is called a decision-

p S

state 1,5

=i o

W O » O

c

Fig. 4. The logic circuit of Fig. 3 could be
simplified by using the rules of Boolean
algebra on the logic expression of truth
table 2, resulting in five instead of six gates.

b

b state 1,5
2,6
& } 1
b a5
c

Fig. 5. To find other equivalent expressions
or logic circuits of Fig. 3, a ‘decision-
accounts’ table is compiled using logic
tables which show all the terms that account
for the required states. This allows the
simpler circuit shown to be drawn.

oy O

accounts-table. In conjunction with the
logic table, they form a Boolean expression
simplification method®. The tables are
easily derived*. This same decision pro-
cedure is useful also to programmers and
systems analysts who have to formulate
and programme complex logical decisions.

By extending the method we look for
other expressions, perhaps simpler or per-
haps just as simple but different, that will
produce the same output for the same com-
binations of switch states. Because this is a
new procedure it may be a little difficult to
grasp. One logical law need be used to per-
form the manipulation. The law is X + XY
=X, which allows us to eliminate a term if it
is ORed with a factor of itself. The logic
diagram of this law is shown in Fig. 6, in
terms of switches and gates. If, for clarity,
we label the rows of the decision-accounts
table P, Q, R and S, then a more complex
instance of the absorption law, as it is
called, could be

PQS+PQ = PQ

Having drawn up the accounts table, we
can now calculate the different ways of
constructing the logic of Fig. 3. (The ex-
ample is purposely obvious to show the
reasoning). The accounts table, re-labelled,
is

State
Row 1 2 4 5 6

P v v
Q v v
R v v
S v v

The first column is accounted for by row P,
the second by Q

the third by R or S (= R+S)

the fourth by P+ R

and the fifth by Q+S.

Also we have to account for the first
column and the second and the third, and
so on. Hence an expression for this par-
ticular decision-accounts table could be

P-Q (R+S)(P+R)(Q+S)

_ which can be expanded to

(PQR+PQS)(PQ+PS+RQ+RS) =
PQR +PQRS +PQR + PQRS + PQS

+PQS +PQRS +PQRS

= PQR +PQS (by application of the ab-

sorption law, X+ XY = X). The final ex-

pression PQR+PQS shows that either

rows P, Q and R or rows P, Q and S may be

used to construct the initial logic expression.

Wireless World, April 1972

Because P = AB, Q = AB and R = BC,
then one expression that could be used is

AB+AB+BC
or, alternatively, because S = AC, the
following expression could be used

AB +AB+AC

That the alternatives are equivalent to the
original may be proved by the truth table,

X
e
—— X [ S

2 }_.
X

" b b
Y

Fig. 6. In extending the decision-accounts
technique the basic Boolean absorptive law
X+ XY = X is used, which allows
elimination of a term which is ORed with a

Jactor of itself.

A

m | n O

)y

8

Fig. 7. In finding equivalent expressions for
this circuit, the decision-accounts table 2
shows it can be achieved in either of two
ways with one gate less.

or by showing via the logic tables that the
three expressions produce the same states,
which is the same thing.

Further example
Suppose the example is the circuit shown in
Fig. 7; the Boolean expression is derived
from the circuit as

AC+AB+BC+AB

Enter the logic tables at the section for
three factors A, B and C to extract the
states to which each term applies

AC =13
AB =15
BC =23
AB = 2,6

Therefore the expression is ON for states
1,2, 3, 5 or 6. Next draw up an accounts
table. To ease the working the rows are
labelled P, Q, R and S.

—
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Logic tables

two factors

0=AB 0,1=8B

1 =AB 0,2=A

2=AB ,3=A

three factors

0,1 =BC 2,6 = AB
0,2 = AC 3,7=AB
0,4 = AB 4,5 =BC
1,3 = AC 4,6 = AC
1,5 =AB 5,7=AC
2,3 =BC 6,7 = BC
0 = ABC 0,1,2,3=C
1 = ABC 0,1,4,5=8B
2 = ABC 0,2,4,6 = A
3 = ABC 1,3,5,7=A
4 = ABC 2,3,6,7=8B
5 = ABC 4,56,7=C
6 = ABC

7 = ABC

Decision-accounts table 2
State
Row 1 2 3 5 6 Term

v v AC

v v AB
v v BC
v v AB

The accounts table expression is

(P+Q)(R+S)(P+R) QS
= (R+S) QS (P+QR)
= QS(P+QR) = QSP+QRS

The final expressions show we can construct
the circuit by either rows Q,R or §, i.e.

AB+BC+AB
or, alternatively, from rows Q, S and P, i.e.
AB+AC+AB

On looking back at the accounts table, it is
intuitive that to account for each column
(‘on’ state of the switches) at least once,
then rows Q and S are essential (called
prime-implicants in the literature). Rows
Q and S account for states (columns) 1, 5, 2
and 6, leaving state 3 outstanding. With the
prime implicants we may choose either
row P or row R. Hence Q & S & (P or S) is
the choice of decisions.

 Readers may like to simplify and/or find
alternative expressions for the following

AB+AC+BC
AB+BC+BC+AB
A+BC+AB
ABC+ABC+ABC

nROo
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Counter and switches select
pulse-train length and dead time

by Héctor Gellbén and Enrique Marcoleta

San Luis, Argentina

Only the more expensive pulse generators can repeatedly
generate a pulse train of selectable length followed by an
off time also of selectable length. But this common
requirement is easily met by one cascaded counter, two
switches, and some logic. The number of pulses in the
train is selectable from 1 to 99, and irrespective of the
number of pulses delivered to the output, the off, or
dead, time can also be varied between 1 and 99 clock
periods. The lengths of both the pulse train and the off
time may be extended by adding to the number of stages
in the counter.

As shown in the figure, a system clock drives two
cascaded 7490 binary-coded-decimal decade counters,
and their outputs are converted to a decimal equivalent
by the 7442 Bcp-to-decimal decoders. The decoded
outputs are active low, and when the count reaches the

pulse-train length desired (preset in this case to 8 by
switches S|, and S;), gate G, moves high.

If the Q output of the 7472 flip-flop is high, as it will
be once the circuit settles after initialization, G, moves
low. This causes G to assume a high state, resetting the
counter and toggling the flip-flop, which in turn disables
G, and output gate G,.

There is no output until the counter reaches the
number set by switches S,, and S,,. G, moves high,
causing G, to move low and G to go high. The counter
is reset, and the flip-flop is toggled, thus once more
enabling G, and G, . The pulse train now appears at the
output until the settings of switches S,, and S,, are
reached, and the cycle repeats.

The Q output of the flip-flop is a signal having a duty
cycle that may be anything from 1 to 99 times the period
of the system clock. It is essentially an ungated version
of the signal at the pulse-output port.

Cascading additional BcD counters and decoders to
the circuit will extend its pulse-counting and dead-time
limits. Of course, more switches and gates must also be
added, to accommodate a greater number of inputs. ]

Designer's casebook is a regutar feature in Electronics. We invite readers to submit original
and unpublished circuit ideas and solutions to design problems. Explain briefly but thoroughty
the circuit's operating principle and purpose. We'll pay $50 for each item published.
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Selectable. Generator produces train of N pulse lengths followed by dead time of M clock pulses, set by 2-pole, 10-position switches S,,
through S,,, . N and M may assume any value of from 1 to 99. Switches are shown set for pulse train of 8, dead time of 3.

Electronics/October 13, 1977

97



PR

Digital normalizer derives
ratio of two analog signals

by James H. McQuaid

University of California, Lawrence Livermore Laboratory, Livermore, Calif.

The absolute value of a voltage or current at a circuit
point is frequently less important than the ratio of that
quantity to a reference. This circuit compares two analog
signals by using a high-accuracy digital technique for
normalizing the reference voltage, thus simplifying
circuitry and avoiding the use of analog dividers or

conjunction with track-and-hold logic, which controls
the sample rate, produces a voltage output that is
presented to their respective voltage-to-frequency con-
verters. Each converter’s output is a pulse train with a
frequency directly proportional to the input voltage.

The track-and-hold logic and associated gating
circuits simultaneously initialize both scalar circuits and
allow the output pulse train of both converters to be
counted. When the count in the reference scaler exceeds
its capacity, an overflow pulse is generated that closes
the gating circuit; at this time, the contents of the sample
scaler are clocked into the holding register and then sent
to the display. The contents of the reference scaler are
regarded as a unit voltage, and the reference scaler

microprocessors, It is invaluable in many light-chopping S VOLTAGE
applications, such as lasers, where the measurement of f\ — | . REUL%NC? r—r:[:)—, REFERENGE |
light intensity at a specific frequency must take into | ¢ » =~ | HOLO CONVERTER OVERFLOW |
account total source-intensity variations. It is also useful ENCE 1 |
in atmospheric physics when measuring the concentra- GyNC—s] TRACK] | _OPEN GATE CLOSE| |
tion of a specific gas in a mixture by infrared techniques HOLD CONTROL ET = |
in which the intensity of the beam is subject to drift. L Sl
As shown in the block diagram (Fig. 1), the reference R )
and sample signals are each introduced to a sample-and- I\ saweLe] | RLITE SAWPLE '
" 3 : S m o ; EE j EREOLENEY
hold circuit. Peak-detection circuitry in this device, in e [ N VEEreh T =
. ; HOLDING .J
1. Ratio meter. Voltage comparison of analog sample to time- REGISTER
dependent reference uses analog-to-digital converters. Voltages are e
converted to frequency and counted. Reference count normalized to I:LRKYlngRL |
unity serves as gating signal to count number in sample counter. DISPLAY
Output of circuit yields ratio of sample to reference voltage. !
SAMPLE AND HOLD V-F CONVERTER 16-B1T SAMPLE SCALER.  HOLDING |
(HYBRID SYSTEMS) (TELEDYNE PHILBRICK) REF SCALER (SIGNETICS) REGISTER
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| —fek g [
REFERENCE A bl Vo 4040A = fn 2 Lt
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2. Digital normalization. Circuit detects relationship of analog sample amplitude to reference voltage by digital means. Several one-shots are
used to obtain proper timing and gating. Circuit uses C-MOS devices where possible to reduce power consumption.
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controls the gating time to the sample scaler. Thus the
contents of the holding register will normally be some
fraction of the unity-set voltage. The sample scaler and
sampling circuits are then reset, ready to process the
next sample.

As shown in Fig. 2, the sample-and-hold devices are
Hybrid Systems 725LH devices, which are accurate to
within 0.01% and have a droop rate of 15 millivolts per
second using their internal holding capacitor. The sync
input used to control the sampling period is a S-volt,
1-to-100-hertz pulsed voltage. The converters are Tele-
dyne Philbrick 470501 devices with an upper limiting
frequency of about 1 megahertz. This frequency is
produced at an input of 10 v, and the device’s voltage-
frequency characteristic is linear to 0.005%. The
converter may be easily calibrated with its 50-kilohm
trimmer potentiometer and the 200-ohm rheostat at the
output of the 725LH device.

The 4040 reference scaler is a 12-bit binary counter.

After reaching its counting capacity (1,024) during a
given sampling period, it clocks the contents of the
Signetics 4518B into the 174C174 c-Mo0s holding register
while resetting the gating circuits. The sample scaler
capacity (16 bits) and the large reference scaler capacity
(12 bits) ensure a high counting accuracy, typically to
within 0.1%. In addition, the larger capacity of the
sample scaler allows the signal amplitude to exceed the
reference amplitude while the correct ratio is still
displayed.

The AT function in the block diagram is a small but
important part of the circuit. It is implemented as shown
in Fig. 2 with a number of one shots to achieve correct
timing and edge triggering for data transfer. The digi-
tizing time for the circuit shown is 4 milliseconds.
Greater speed (with less accuracy) can be easily
achieved by reducing the number of bits in the reference
scaler. For instance, a digitizing time of 250 micro-
seconds may be achieved with an 8-bit reference scaler.[]




1 Experimenter’s
Corner

THREE.-STATE LOGIC

F YOU want to stay abreast of the lat-

est developments in digital logic and
microprocessor technology, you need to
know something about three-state logic.
This month, we’re going to experiment
with circuits that will teach you the bas-
ics of three-state logic in an hour.

Suppose you need to connect the out-
puts from two or more gates to a com-
mon terminal, perhaps the input to
another gate. This is OK in the unlikely
event all the outputs are consistently low
or high; but what happens if the outputs
are at different logic states? Obviously,
it's not possible to place logic 0’'s and 1's
on a common terminal without creating
mass confusion—and possibly damag-
ing one or more gates.

Three-state logic provides an efficient
solution to this design problem. The out-
put of a conventional logic gate is al-
ways low or high as long as power is ap-
plied. A three-state gate, however, em-
ploys a clever circuit that effectively iso-
lates the gate from the output terminal.
This requires that a special control ter-
minal called the enable input be added
to the gate.

Figure 1 shows two buffers with three-
state outputs. When their enable inputs
are activated, these buffers pass the
logic state of their inputs to their outputs.
When the buffers are not enabled, the
outputs enter a high-impedance state.
This high-impedance output state
means the outputs of a dozen or more
buffers (or any other three-state logic

By Forrest M. Mims

gate) can be connected to a common
terminal if only one is enabled at any
one time.

Many digital circuits, particularly mi-
croprocessors and memories, use com-
mon terminals called buses to transmit
binary bits or words (a group of bits).
Thanks to three-state logic it's possible
to connect many different circuits to a
common bus so long as one simple rule
is followed: The output of only one circuit
connected to a bus can be enabled at
any one time. If more than one output is
enabled, logic 0's and 1's will be placed
on the bus at the same time, and we're
back to the problem that first caused us
to employ three-state logic.

We'll look at three-state buses again
later. First, let's get some hands-on ex-
perience with a three-state buffer.

Three-State Buffer Demonstra-
tor. Figure 2 shows a simple circuit you
can quickly build on a solderless bread-
board to demonstrate how three-state
logic works. It uses one of the gates in a
74125 quad three-state buffer. The two
LED's indicate the logic state applied to
the input of the buffer when the enable
input is at logic 0. When LED1 is on, the
input is low. When LED2 is on, the input
is high.

When the enable input is high, the
output of the buffer enters and remains
in the high-impedance state irrespective
of the logic state at the buffer's input.
Both LED's will then glow at about half

+5V
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Fig. 1. Two three-state buffer configurations (left).
Fig. 2. Three-state buffer demonstrater (right).
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their normal brightness, conducting a
limited amount of current along the path
between 5 volts and ground through the
series resistors and the LED’s.

Here’s a truth tabie that sums up the
operation of the demonstrator circuit:

Enable Input Output
LED1 LED2
0 0] ON OFF
0 1 OFF ON
1 0 * *
1 1 * *

*Both LED’s at half brightness.

Three-State Multiplexer. A multi-
plexer is a data selector. Apply an ap-
propriate input select signal and one of
several inputs will be applied to a single
output. Figure 3 shows how you can
make a 4-to-1-line multipiexer from a
quad, three-state buffer like the 74125.
The enable inputs of the buffers are
used as the data select inputs. Remem-
ber, only one buffer can be enabled at
any one time. With that in mind, here’s
the truth table for the multiplexer:

DataInputs Data Select  Output
ABCD ABCD

0 X X X 01 11 0

1 X X X 01 11 1
X0 XX 10 1 1 0
X1 XX 10 1 1 1
XX 0X 110 1 0
XX 1X 110 1 1
XX X0 1110 0
XX X1 1110 1
Note: The X means “don't care”; the

input can be eitheraQor 1.

If you build the circuit in Fig. 3, you
can apply the data select inputs with a 4-
position rotary switch (rotating contact
connected to ground) or a 1-of-4 decod-
er like half of a 74139. The decoder will
condense the data select inputs to tour
2-bit addresses.

Three-State Bus Demonstrator.
Figure 4 shows a simple circuit that will
teach you how a three-state bus works.
The circuit uses a 74173 4-bit data reg-
ister with a built-in, three-state output
buffer. This means you can connect
both the inputs and outputs of the regis-
ter to the same bus (!) and control the
transfer of data into and out of the regis-
ter by applying appropriate signals to the
register’s read and write inputs.

For best results, build this circuit on a
solderless breadboard. Use four rows of
adjacent terminal receptacles for the
bus and an 8-position DIP switch for the
data input and control switch. To write a
data word into the register, place the
word on the bus by loading it into the first
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Fig. 3. Three-state multiplexer.

four poles of the DIP switch (let on = 1
and off = 0) and turning switch 8 on. The
LED’s will display the word you've
switched into the input (LED one = logic
1.and LED off = logic 0),

The register will accept a data word
from the bus when the WRITE input is low
and the positive edge of a clock pulse
arrives at pin 7. Prepare to load the data
word into the register by turning
switches 6 and 7 on, Then apply a clock
pulse by turning switch 7 off. This dis-
connects the CLOCK input of the 74173
from ground, which is the equivalent of
applying a positive pulse (unconneécted
TTL inputs go high). Don’t worry about
extra clock pulses from the bouncing
that occurs when you throw the switch.

ing bounce, and any subsequent
bounces simply recopy the same word.

After the data word is written into the
74173, turn switch 8 off to remove the in-
put data from the bus. Then turn switch
6 off. To see the word stored in the reg-
ister, just turn switch 5 on. This will acti-
vate the READ input of the 74173 and
connect the register’s output to the bus.
This will display the stored word.

Going Further. You can expand the
three-state demonstrator by adding a
second 74173 to the data bus. You can
connect the cLock input of the new reg-
ister to the cLock input of the original
74173, but you'll need a couple of
switches on a second DIP switch for the
additional READ and WRITE inputs.

Can you think of a practical use for the
three-state bus demonstrator? A bus
system like this can send data between
registers in either direction. Therefore,
it's often called a bidirectional data bus.
If that rings a bell, it's because the bi-
directional data bus is used in most mi-
croprocessors. In fact the simple three-
state bus demonstrator we’ve been ex-
perimenting with is functionally equiva-
lent to part of a microprocessor.

In a real microprocessor, of course,
the signals that activate the control in-
puts of the various registers and circuits
are automatically supplied by a circuit
called a controller. The signals from the
controller are binary bit patterns called

The data word is copied on the first ris-  microinstructions. <&
q’ v
olcl 8| » LEP READOVT
SR
RI-RY= 1,2 K RISRSTHSRY
|
17
” 72z /3 /4([
_’i Ve D C 8 A TUREE-STRTE
7 € N —=] Le— B/DIRECT/ONVAL
cLock OCRTAR BUs
B8 woire 74173
h2l eeqp
Bl eimar —re
Blewno Tolreaiers
o W B F-

s| s ¢« 3]

PorES I-H4=0RTA

(I 5= READ
| & “HWRITE
7 = cLock
i 8 = toRe
oaTR NPur (50 A 3 £ 5 & 28
e g (000D DD DT
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Fig. 4. Three-state bus demonstrater.
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small computer
systems.

They'rethe
real
thing.

Use Sol computer systems for
scientific and business applications —
not just entertainment.

Visit your Sol dealer soon. He can
show you how the Sol in conjunction with
our new Helios 11 Floppy Disk System
can often dothe same job as fast or faster
than typical minicomputers at about
one-third the price.

Sol systems are complete. Keyboard,
interfaces, RAM and ROM memory,
and a complete, well written manual are
all there. As a standard software
package, each Sol comes with our own
BASIC/S language. At modest
extra cost, Extended BASIC, Assembler,
PILOT¥ FORTRAN? and FOCAL as
well as game software are also available.
Processor Technology backs up its
products with an excellent warranty and
support program after they’re out
in the field.

* Sol 20/8 Terminal Computer with
8192 bytes of RAM memory and SOLOS
module (ROM).

Factory Assembled/Tested . . .. .. $1850
BTl e i, . 51350

= Sol System Il includes Sol-20/16

with 16,384 bytes of RAM memory and
SOLOS module (ROM), video monitor,
cassette recorder, and BASIC/5 cassette.
Factory Assembled/Tested . . . . .. $2250
I e - oL e $1825

* Sol System I includes Sol-20 with
49,152 bytes of RAM memory and BOOT-
LOAD module {ROM), Helios 11 Model
2 Floppy Disk System with Extended
Disk BASIC, and video monitor.
Factory Assembled/Tested . . . . .. $5750

*Available soon.

ProcessorTechnology

Processor Technology Corporation,
Box [, 7100 Johnson Industrial Drive,
.Pleasanton, CA 94566. Phone {415) 829-2600.
CIRCLE NO 41 ON FREE INFORMATION CARD  B5



Capacitance-coupled logic
fills unusual jobs

by Stephen R. Pareles

Cook College of Environmental Science, New Brunswick, N.J.

Capacitively coupling logic signals may prove to be a
simple way to do several not-so-simple jobs. For in-
stance, capacitive coupling can make short work of bi-
directional pulse-edge detection, as well as comparison
of an analog signal and a digital signal.

With the circuit of Fig. 1 and a single-trace oscillo-
scope, an analog signal and a digital signal can be dis-
played at the same time, allowing the two signals to be
compared or synchronized. The circuit’s output is the
analog signal with superimposed digital cursors.

The capacitor serves as a bidirectional edge-detector
for the buffered arbitrary logic train. Analog-level tran-
sients are produced by the capacitor from this input
logic train. They are positive for leading pulse edges
and negative for trailing pulse edges.

ANALDG INPUT

These transients are then cross-coupled with the
analog signal through resistors that provide cross-cur-
rent isolation (100-kilohm resistors are sufficient for
most applications). A capacitance of 500 picofarads is
ideal for slow horizontal sweep rates of up to about 100
hertz. Smaller capacitance values should be used for
faster sweep rates to prevent the trailing edges of the
transients from becoming observable.

Capacitive coupling can also be used to perform bidi-
rectional edge-detection when a logic-level output is de-
sired. The detector circuit, which is drawn in Fig. 2, can
even handle variable pulse widths.

Normally, a 74121-type one-shot is only triggered by
a positive transition at point D, following a low condi-
tion at points D and Q. When the input first goes high,
point Al goes high. Since point A2 is still high, point C
momentarily remains-low. When A2 goes low and C
high, the one-shot is triggered by the positive edge at D.
Point B is kept high throughout.

When the input goes low, Al goes low before A2 goes
high, so that C remains high. Point B, however, is mo-
mentarily low. When B goes high again, the one-shot is
triggered by the positive edge at C, as before. The tables
in Fig. 2 detail the circuit’s operation at key points.  [J

100 k2

of

BV

2kQ
7404

>

DIGITAL INPUT
500 pE 100 kQ

F—QP' TO SCOPE

©
“J——'\/\/\N\/\z———‘ . ‘II|

1. Two-signatl display. A capacitor simplifies the task of observing two signals on a single-trace oscilloscope. The circuit’s output becomes
the analog input with superimposed digital timing cursors. The two 100-kilohm resistors provide the necessary cross-current isofation.

INPUT ONE-SHOT
i -
outPUT — L L 500 pF D
c
NPUT Al aQ QUTPUT
s 7400
A2
+5V 74121
o POSITIVEINPUT TRANSITION | NEGATIVE INPUT TRANSITION
INPUT|AT (A2 1 C | B[O Q INPUT|AY (A2 C B D| Q
B 5T @ I o B S = e i
1 0 ¢t frf{1io 1 1iop b 1rf1to
TRANSITION | 1 '1‘1.0 1‘0|0 0 0 0|1, 0/ 0!/ 0
tne1 (IR B VI O B {1 | onESHOT 0 0 1 1 1] 1| ONESHOT

2. Dual edge-detection. Both the leading and trailing edges of the input-pulse train are detected by this capacitively coupled circuit.
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Appropriate biasing mates
ECL and TTL families

by William A. Palm

Magnetic Peripherals Inc., Minneapolis, Minn.

The speed and flexibility of emitter-coupled logic can be
combined with the convenience of transistor-transistor
logic in circuits that work over a wide range of frequen-
cies. The easiest and most economical way to mate the

two logic families is to adapt ECL to the 5-volt operation
of TTL, since the rebiasing of ECL elements is easily
accomplished. Then the circuits can be powered by a
single supply voltage.

Emitter-coupled logic is costly and draws considerable
power at higher frequencies. So there is little sense in
using it throughout in such a circuit as a 100-megahertz
counter/divider, for example, when the part of the
circuit that operates at lower frequencies could be imple-
mented with TTL. As shown in (a), the typical dual-
output logic gate in the Motorola 10,000 series requires
a supply voltage of —5.2 v, conventionally wired as
shown in (a). ECL circuitry is so configured that such a

5 v
ﬂ .
16 16 Rg =108
-0.9 ECL A 1A ECL
eI Lo 8 > —_ I_" 2N4258
" 8 Rod < Rod ’d 8 A L | A
pdg Hpd g d3 Rpd 3 =
' 1 pd ¢ pd < de RL 2102
r =
-52V 220 < Rpq < 5000 2
+4.0 —
-1.0— +2.7 oo
SO i S o) NRIE .
v n T LHL
{c}
5V
16
A
:3‘,12 Baliaiyl ECL
8
2N4258
8
S 2 INPUTS
Rod2 2 Rpe 417032V
-TL QUTPUTS
= }—— 070 3.5 VOLTS
s 1 $ $
TR B B (d] - 1000 $100Q
“‘)) +20 —— 1 JL_

Evolution of an interface. Standard emitter-coupled logic is powered by at least one negative voltage, cannot drive or be driven by TTL (a).
Re-biased ECL device generates positive output voltage, but not within proper TTL switching threshold range (b). Adding a transistor enables
0-2.7-V swing, suitable for TTL (c). Five-volt ECL gate and two transistors drive 100-ohm TTL loads at 0-3.5 V (d).
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gate will operate if there is a supply voltage differential
of 5 v between pin 8 and pins 1 and 16, independent of
the actual values as long as they are within device limits.
Thus, it is permissible to place a 5-v supply voltage at
pins 1 and 16 and to ground pin 8 as shown in (b).

This arrangement is not suitable for driving TTL
because an input of 3.2 to 4.1 v results in an output
voltage swing at point A of only 3.2 v (logic 0) to 4.1 v
(logic 1). But note that the voltage at B is the inverted
output of A. By using both outputs and adding a transis-
tor to shift the output swing levels (c), approximately 10
milliamperes is made to flow through the 270-ohm
collector resistor at point A when the transistor is satu-
rated. Thus there will be a 2.7 v drop across R, when the

Calculator notes,

transistor is on, and the voltage will go to zero when the
transistor is off, enabling TTL elements (or any other
elements, for that matter) to be driven.

The fourth circuit (d) is useful in applications where
considerable speed and output current are required to
drive a balanced load. There will be a 1-v drop across the
27-Q resistor during the time each transistor conducts,
and so 35 mA will flow through the 100-Q collector
resistors. Thus 3.5 v will be developed at each output.
This circuit is suitable for driving a 100-Q twisted-pair
cable.

Engineer's notebook is a regular feature in Electronics. We invite readers to submit original
design shortcuts, calculation aids, measurement and test techniques, and other ideas for
saving engineering time or cost. We'li pay $50 for each item published.
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Standard symbols let designers grasp
logic operation quickly and easily

ANSI Y32. 14 specifies set of symbols for

clearly depicting logic,

from gates to systems

by Bill King, Hewlett-Packard Co., Santa Ciara (Calit.) Division

[J The more complex integrated circuits become, the
greater the detail in which designers and technicians
need to understand their workings. To give them that
information at a glance, manufacturers must depict the
logic operation of their chips clearly and cancisely.

In 1973, therefore, the American National Standards
Institute approved and published ANSI Y32.14, which
set the logic-symbol specifications for most devices—
notably gates, flip-flops, and counters—and for systems
containing them. But few users are familiar with the
standard, because so far it has been adopted by only two
manufacturers—by Hewlett-Packard Co. and, to some
extent, by Texas Instruments Inc. Nonetheless, since
ANSI does set standards for 1C makers, its symbolism is
likely to become widely accepted.

TABLE 1: BASIC LOGIC ELEMENTS

ANSI Y32.14 specifies:
® Definitions for the basic logic elements.
B Logic symbols, which show the defining shapes corre-
sponding to the logic function performed.
® Qualifiers, which consist of letters, numbers, or arrows
placed inside the logic-device symbol to indicate its logic
function or special properties.
® Indicators, which show primarily if the input and
output are active high or low.
® Dependency notation, which defines the logic-state
relationship between the inputs required to activate the
device.
B Control and contiguous blocks, which integrate with
gates, flip-flops, and other elements to form shift regis-
ters, counters, and other commonly used devices.

TABLE 2: SELECTED QUALIFIER DESIGNATIONS
Symbol Description

Symbol Function Description
The output W'H,be active only S Bilateral switch: a binary-controlled circuit
=N when the input is active (can th §f switch |
— amplifier be used with polarity or logic b‘at sl Tnf?n-q sywtbc r:odgna ol
N e Bror RS = inary signals flowing in both directions.
signify inversion).
=m 5 L A
— . - = Logic threshold: output will assume its
| & Thg output »y|l1 assume its ] = active state if m or more inputs are active.
AND indicated active state only
or when all its inputs assume
k= their indicated active levels.
—
—1 =m m and only m: output will be active when
i =S m and only m inputs are active (for example,
p The output will assume its = exclusive-OR).
OR indicated active state only
ar - when any of its inputs assume
=1 their indicated active levels. >n/2
— 1 2N » a } 3 i
—= = Majority function: output will be active only
— if more than half the inputs are active.
The output will assume its =
indicated active level if, and
B exclusive-OR only if, only one of the inputs
> assumes its indicated active | mod 2 | ; 7 :
i | =il level. =1 0Odd function: output is active only if an odd
number of inputs are active
= = puts are active,
—_—
This is a connection of ocutputs == e
) wired-AND of two or more elements that — oo
. i‘;‘i leoflfr;i? t?get?j:'r\lg)fachleye = Even function: output is active only if an even
ot an unction. number of inputs are active.
el .
==_=] This is a connection of outputs .
3 ] T E ! i
4 wired-OR of two or more elements that Signal-level converter: input levels are different
are joined together to achieve from output levels
the effect of an OR function. —r ;
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"M
. 1. Polarity convention. Indicator symbol (top) signifies that corre-
— I~ sponding inputs or outputs are active low (a), thereby characterizing
circuit operation without use of labeled outputs. The absence of the
I y=LOW, x = ACTIVE symbol (b) indicates inputs and outputs are active high.
¥ y = HIGH, x = INACTIVE
Table 1 gives the definitions of the basic elements—
x= ACTIVE, y = LOW the amplifier, AND, OR, exclusive-OR, wired-AND, and
XP—v x = INACTIVE, y = HIGH wired-OR circuits—and their logic symbols. Note that
fal the AND, OR, and exclusive-OR can be shown by their
assigned shape or by a rectangle, since the presence of an
J = HIGH, x = ACTIVE identifying symbol within those elements specifies the
y —— y = LOW, x = INACTIVE device functiﬂ.n.' The inverting functif)n_ f(_)r these
elements (that is, inverter, NAND, or NOR) is indicated by
placing the negation symbol (a small circle) at the
x y x=ACTIVE, y = HIGH corresponding output ports of the devices—the same
x = INACTIVE, y = LOW . ey
(bl symbol used currently. In addition to specifying the
function of a logic element, qualifier symbols are used
for classifying logic blocks. Table 2 shows the symbols
TABLE 3: FLIP-FLOP SYMBOLISM
Elip-l Original bol Previous standard ANSI Y32.14
1prilop HGEl TS MIL-STD-806B Control designations description for flip-flop
| R s a a
P . FF
_ - s Q | | ne: - nic
e s ° ! h h [
—r  FF — R G s hooo | h
(|3 h h undetermined
FF
—D ‘] [ Toggli ith
T I T T oggling occurs with every
33 — B clock pulse.
—D a e~
4
P __1e FFL__
LD —iD Q Do Data output follows data input;
D D — _ —CLK - e~d g L input is gated by C.
C
b1
é = J K Q a
J Q J
— —D Jx | | n.c. n.c
J-K T _ R | h | h
—x —D K @ - h [ h [
C h h toggles
)
- ’ P o Jg FF
J-K e s ﬁ Jand K inputs are gated by C.
{gated) ] FF - 5 R, U
K —«, a B
?
— 1, FFL—
J-K —XG Qutputs are dependent on the
(master- _ - —Kg + negative-going edge of the clock .
slave) — Mg P
— s
n.c. = no change
144 Electronics /December 7, 1978



2. Depen_doncy notation. Block-diagram equivalent of two-input GATE {G) DEPENDENCY
AND gate (a), which drives one-shot, provides quick overview of
circuit operation. Identifier indicates dependency between inputs a
and b, showing data on b is gated in by a. Approach to coding up
three-input AND gate follows logical extension of method (b). i & )

> IDENTIFIER

Il

~

for some of the most widely used ones. b—x,
The polarity indicator symbol, shown in Fig. 1 (top),
establishes the active states of the input leads required to
switch on the logic element or indicates whether the
output leads are active high or low. Any input or output | O
so labeled is active low (a). Otherwise, the inputs or 3 h— a2
outputs are active high (b). b & ) IDENTIFIER
Although this symbol provides the same information wE
as the negation symbol, it offers the advantage of visual- c—12X
ly representing the signal polarity required to activate (b)
the device. Furthermore, it climinates the inconsistent
labeling of logic devices. For example, the inverted

TABLE 4: COMMON CONTROL-BLOCK DEFINITIONS

Shift register block

This symbol is used with an array of fiip-flop symbols to
form a shift register, The data will shift to the right (]

or to the left {+) on the positive-going edge of the input
signal.

c —

> ——m
_____>m.4_
: | SREG I

— >+

Counter block

m
L This symbol is used with an array of flip-flops or other

CNT | circuits serving as a binary or decade counter. in (a),
(a) NTR the positive-going edge of an input to either the +m or

—m input causes the counter to count upward or down-

ward m times.

> +m In (b), a positive-going edge of an input to the + m port
will cause the counter to increment or decrement m

times depending on the input to the up-down control

L (U/D).
.| CNTR
{b)
{not ANSI-defined)
G1
G2
G3
Selector block
(a) SEL This control block is used with an array of OR symbols
to provide for the gating lines {a} or selection lines {b).
X The gating lines have an AND relation with the respective
input of each OR function: G1 with the inputs numbered
50 1, G2 with the inputs numbered 2, etc. The selection lines
enable the input designated 0, 1, . . . n of each OR function.
s1
(b) | EL

{not ANSI|-defined)
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TABLE 5: COMMON DEVICE BLOCKS

-E gl ® 4-bit universal shift register ® Random-access memory
5 This shift register has four parallel data inputs (D¢} 1 {without identical input/outaut pins}
t and two synchronol_u serial data N puts 4, K). T.he 2 Address selection is determined by the 4-bit
it~ control block contains those enable lines that will 4 An—A address input cades in the upper left corner
R select the way data is loaded inta the register. Data g 0 15 of the contral bisck. These address codes
entry into the -D fl_|p-f|ops is depend_em onC an_d 2 Gil are weighted to correspond to the possible
I SREG G2 (Dg 3l. A high input at C and_ a high at G2 will 3 G2 address (Aq—Ays). G1 and G2 are the read/
enagle 3 el Igad o tha pagitive-geing edge virite enable. A low on pin 2 will enable data
—1 dar.2 of 2 . . . | RAM I to be read into the chip in the memory loca-
“ipe] KGI'I | A serial load into the J-K flip-flop is dependent o ] tion addressed; a high on pin 3 will enable
02 on G1and G2 [Jg 3. Kgy,2). When there is a low 1,A 2,A p——D0 the chip to output data from the particular
: input at G1 and a high input at G2, data is foaded s 5 memory location addressed. The inputs on
Dc,2 = serially and shifted one position ta the right on 1A 2 A the lower left corner of the symbol are
the positive-going edge of G2. 12 1 labeled 1, A. This indicates that the informa-
—1Dc,2 = The device resets when there is a high present at lia 2A Dz tion will be stored in the memory location
the reset. L A 2 A b~ ° D3 addressed. 2, A on the outputs indicates that
—1Pc,2 e . . the data will be written from the memory
location when G2 is enabled.
® Presettable decade counter
' The counter control block is used to show the
=9, +1 1 — common inputs to a presettable decade up-down
i fal counter. The symbol "+m’’ means ta count up by
—=c1 Lot m and “—m" means to count down by m. (Note: if T (b
—R 2 m = 1, it may be omitted.) The ""=9, +1°* symbol is —2 e Read-only memory
the carry output or the terminal count up when : g e i ’ .
10 CNTRl the count equals 9. The =0, —1" symbol is the — o This is a read-only memory V\_ﬂ!h 1,024:
FF borrow output or the terminal count down when 32 Ag—Aq 023 addresses. A_ddress selgctlon_ns determined
e Dy ] the count equals 0. C1 is the control input for the 84 ! by the 10-bit address input in the upper
_1I5 P D flip-flops and R is the master reset. When C1 is — 1128 left corner of the cantrol block.
o) enabled, it loads all four flip-flops {D;) in parallel. —4 266 F1 is the three-state enable line. A high
—b, [ g )___ The presence of the output delay indicator is used — 512 signal on this line will enable the outputs.
@ to indicate that the D flip-flops are master-siave. J— Y A, 1 on the outputs indicates the depen-
—D, r;) e - Flip-flop weights are indicated in the parentheses. dency on the three-state enable and the
The symbol 10 CNTR" indicates that the counter ROM memory |location addressed.
is modulus 10. (three-
state)
A 1 p——D0
.
0 =15, +1 |— A 1pF—— D1
—=~c1 0 -1 b— ) A 1p——D2
—R ! ® Presettable binary counter
—lm CNTR ,_‘ Same as above except that the carry output is At D3
indicated with ""=15, +1,"" indicating that the Al D4
— b, bk T terminal count up occurs when the count equals .
m 16. The symbol “16 CNTR" indicates that the A1l—— D5
— D, FE - — 47— counter is modulus 16. .
g A1 |}—— D6
g bl - | g A1 — D7
FF ; 4
Dy @ -+

output of a flip-flop is normally designated @, and the
inverted R and S inputs have negation symbols at their
ports, rather than being labeled R and S. These ports will
now be labeled. Q, R, and S with appropriate polarity
indicators. This change can be seen in Table 3, which
shows the development of flip-flop symbolism.

Block form

By providing for dependency symbols and one-block
devices, ANSI Y32.14 makes it easicr for system design-
ers to understand the operation of large circuits. So-
called control blocks, which group the common control
inputs, can be joined to contiguous blocks, which depict
the remainder of the circuit (an array of gates, flip-flops,
etc.). A combination of control and contiguous blocks
forms a device block.

Figure 2 shows the application of dependency symbols.
Dependency is indicated by subscripts, prefixes, or
suflixes. For example, in the case of Dy, the 1 indicates a
logic connection between the input, D, and a control line
assigned the numeral 1. In prefix form, the notation
becomes 1D; in suffix form, D1.

In the simple example of Fig. 2a, a two-input AND gate

146

drives a one-shot multivibrator. The equivalent depen-
dency for the gate is shown to the right. G1 is an input,
through which data on line b is gated into the device.
The | identifies the existence of the relationship between
lines a and b, with the letter G defining the type of
relationship (AND-gate dependency). The appropriate
letter identifies other relationships: A (address), C (con-
trol), F (free, or three-state), or V (OR-gate).

Figure 2b, an extension of Fig. 2a, shows how a circuit
having a three-input AND gate is coded. Gl and G2 are
the gating inputs for data on line c, as indicated by the
1,2 of the input 1,2 X.

Symbol buildup

ANSI’s recommended control blocks include a shift
register, a counter, and a selector, all of which are shown
in Table 4. The lower figures of the counter block and of
the selector block are not part of ANsI’s standard, but
they have appeared occasionally in the literature and so
are included for reference.

When these control blocks are united with contiguous
blocks, such as flip-flops, then entire devices-can be built.
Several are illustrated in Table 5. W
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Solid-State
Developments

Do-lt-Yourself Logic Chips

N THIS day of ultra-sophisticated
semiconductor technology, large-
scale and very-large-scale integrated
circuits (LSI and VLSI respectively)
containing hundreds or even thousands
of logic gates have become common-
place. Nevertheless, examine any board
containing one or more LSI or VLSI
chips and you’ll probably find an assort-
ment of small- and medium-scale inte-
grated circuits (SSI and MSI) with rel-
atively few gates or flip-flops package.
Circuit designers have long wanted to
combine in a few packages the relatively
small number of gates and flip-flops re-
quired to support most LSI and VLSI
chips. Custom ICs are usually out of the
question because of their high price and
long development time. And what hap-
pens if a design change is necessary?
Semi-custom integrated circuits are a
better choice. These chips contain ar-
rays of gates which have not been metal-
ized. In other words, the gates are inde-
pendent of one another since they’ve not
yet been connected together electrically
by a metalization pattern on the top sur-
face of the chip. The customer tells the
custom IC house how he wants the gates
interconnected, and the gate chips are

B A
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By Forrest M. Mims

then metalized according to the custom-
er’s specifications and installed in DIPs.

This procedure is faster and cheaper
than the custom IC route, but it’s still
relatively expensive since the customer
usually must agree to buy a thousand or
more chips. And as in the case of the

8 N A

WVAVA

custom IC, what happens if a design
change is necessary?

A third alternative is the do-it-your-
self logic chip. Included in this category
are field programmable logic array
(FPLA) and programmable array logic
(PAL, a trademark of Monolithic Mem-
ories, Inc.) chips. These chips contain
arrays of logic gates interconnected via
the same kind of fusible links used to
make programmable read-only memo-
ries (PROMs). By selectively applying
high-current pulses to the programming
pins of an FPLA or PAL, fusible links
can be opened in various patterns to pro-
duce a customized integrated circuit.

The PROM is itself a versatile do-it-
yourself logic chip since it can be used to
implement any truth table for which it
has sufficient inputs and outputs.

You can better understand the opera-
tion and compare the differences of
PROMs, FPLAs and PALs be referring
to Figs. 1, 2 and 3. They show the inter-
nal circuitry of ultra-simple, hypotheti-
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Fig. 2. A hypothetical —l—

PAL of two four-bit —;
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Fig. 1. A PROM of four two-bit words

The AND array is fixed; the OR is programmable.

U U

PROGRAMMABLE
AND ARRAY

Fig. 3. An FPLA of two four-bit words.
Both the AND and the OR are programmable.
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cal versions of each of these three kinds
of programmable logic arrays.

As is readily apparent from these fig-
ures, all three circuits contain an AND
array followed by an OR array. The
input word applied to the AND array
can be considered an address, data word
or bit pattern. In any case, the effect is
the same since a particular input
switches the output of one of the AND
gates from low to high. The outputs then
reflect whether or not connections are
present at the junction of the output line

PAL10OHS8

PAL12H6

from a selected AND gate and the input
lines to the OR gates.

A solid dot at the intersection of two
array lines means the connection was
unalterably programmed when the chip
was made. User programmable fusible
links are indicated by small circles at
intersection array lines.

In the PROM (Fig. 1), the AND ar-
ray is permanently programmed or
fixed while the OR array is program-
mable. The AND array in Fig. 1 is pro-
grammed to address in turn each of the

PAL14H4

PAL16H2

AND gates from top to bottom accord-
ing to a standard 00, 01, 10, 11 input
sequence.

The PAL (Fig. 2) is a backward
PROM since the AND array is pro-
grammable while the OR array is fixed.
In real PALs the OR array is factory
programmed to give some of the most
commonly used logic functions.

The FPLA (Fig. 3) is the ultimate do-
it-yourself logic chip since both the
AND and OR arrays are program-
mable. While this provides the highest

PAL10OLS
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Fig. 4. Pin outlines and internal block diagrams of the PAL family of chips.
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solid-state

degree of flexibility, in practice the
FPLA is much more dificult to use and
more expensive than either the PROM
or the PAL. All three kinds of chips can
be programmed using standard PROM
programmers, but the programming
procedure for the FPLA is at least twice
as cumbersome since both the AND and
OR arrays must be programmed.

Some PALs and FPLAs include flip-
flops to store output states and feed re-
sults back to the inputs. This makes pos-
sible such functions as counting, shifting
and sequencing.

PALs without flip-flops can perform
virtually any task now accomplished
with SST and MSI logic chips up to and
including a 4-bit arithmetic logic unit!
In many applications a single PAL can
replace up to ten SSI/MSI packages.

A clever feature of PAL chips is a
data security fuse. After the PAL has
been programmed, the security fuse is
blown to disable the circuit’s internal
verification logic. This prevents the in-
ternal program from being read out by a
potential copier, thereby making the
chip proprietary.

The PAL concept was pioneered by
John Birkner of Monolithic Memories,
Inc., and that firm now makes a family
of fifteen PAL chips with National
Semiconductor as a second source. Fig-
ure 4 shows the pin outlines and internal
block diagrams for all fifteen chips. As
you can see, considerable flexibility is
provided by this lineup.

Information about PALs and FPLAs
is hot too abundant. The best way to
learn more about PALs is to contact a
Monolithic Memories or National dis-
tributor or representative. Try to obtain
a copy of the excellent “PAL Program-
mable Array Logic Handbook™ pub-
lished by Monolithic Memories (1165 E.
Arques, Sunnyvale, CA 94086).

Signetics (P.O. Box 9052, Sunnyvale,
CA 94086) is a major maker of FPLAs.
Their “Bipolar and MOS Memory Data
Manual” contains FPLA data sheets
and related information. Two Signetics
engineers, Napoleone Cavlan
Stephen J. Durham, have written an ex-
cellent two-part article of the subject for
Electronics (July 5, 1979, pp. 109-114
and July 19, 1979, pp. 132-139). In an
article for Computer Design (April
1980, pp. 141-147), Mr. Durham de-
scribed a complete 60-character key-
board encoder complete with key de-

and .

bouncing and made from a single Signe-
tics 82S105 FPLA!

You can find the aforementioned ar-
ticles in any good public or university
library. For manufacturer’s literature,
check the yellow pages and call local
electronics distributors or reps. If they
can’t help you, ask for the phone num-
ber of an authorized rep in any nearby

Fig. 5. Alphanumeric
liquid-crystal
displays from
Epson America, Inc.

city or state. If necessary, call the com-
pany direct. The cost of a few long dis-
tance calls may be well worth the results
you’ll harvest.

Do-it-yourselflogic chips require care-
ful design procedure and a PROM pro-
grammer so they’re not necessarily
suited for the typical hobbyist or experi-
menter. But if you want to greatly sim-
plify a favorite logic circuit while learn-
ing about one of the latest trends in digi-
tal circuit design, get your hands on
some manufacturer’s literature and
warm up your PROM zapper.

Component News. In a packet of re-
cently received specification sheets for
new National ICs was one which imme-
diately attracted my attention. The new
chip is the LHO0082 Optical Communi-
cation Receiver. It’s housed in a 14-pin
metal DIP and includes a fast FET-
input amplifier, output comparator with
hysteresis (to prevent output oscillations
near the reception threshold) and the
feedback and coupling resistors and ca-
pacitors necessary for a complete receiv-
er. With a suitable photodiode connect-
ed to its input, the LHO082 can receive
20-MHz analog signals sent via light-
waves through free space or by way of
an optical fiber.

The new chip is housed in a metal
DIP to reduce stray noise pickup and to

Fig. 6. Epson’s programmable
clock-pulse generator
contains a quartz crystal oscillator.
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Digital Reference Charts

NUMBER SYSTEM

Our present number system (decimal) uses
base 10 to perform all necessary arithmetic
operations. Example: 312 =3 X 102 + 1 X
10" + 2 X 100, Binary number system uses
combinations of 0's and 1’s to represent and
perform ail arithmetic operations that are pos-
sible in the decimal system. Binary number
system uses base 2:

27 128 |5 |2t |23 22 |2 |20

128164 | 32 |16 | 8 4 2 1

Table progresses to the left indefinitely as
2" wheren=20,1,2,3,4,... To change any
binary number to base 10, write binary number
underneath table and add decimal equivalent
where 1’s appear. Example, change 11000100
to decimal:

27 |28 | 2% |22 128|222 |0
128 |64 | 32 | 16| 8 | 4 | 2 | 1
1l1]Jololol1]o]o

ADDITION

Binary addition is manipulated the same as
decimal addition but keepin mindthat1+1=0
and 1 carries over.

Carry 1 Addition table
Carry 1 Carry
Carry 1 | 0+0=0 0
111 0+1=1 0
111 1+0=1 0
1010 1+1=0 1
Examples: Add 101011 Add 10000
+ 111001 + 00100
1100100 10100

SUBTRACTION
Reversed procedure from addition remem-
bering to borrow one from the left column.

needed application. A pulse is an abrupt
change in a voitage level.

For the pulse shown in the figure: the max-
imum amplitude is 5 volts; the reference level is
0 or ground. The total time duration is from
1y 10 tq = tygg. |f the pulse occurs 1 time in
one second, the frequency is one puise per sec-
ond. The period = 1/f. The duty cycle = d, /P.

P = 1/frequency

The left-hand side of the puise is called the
leading edge. The right-hand side of the pulse is
called the trailing edge. The width of the dotted
area under the leading edge is known as the pulse
risetime, Thewidth of the dotted area under the
trailing or decay edge is known as the falltime.
Digital pulses are fast pulses with very sharp
leading edges and very sharp trailing edges. Pos-
itive logic equates the maximum amplitude of
the pulse as the digital number 1 and the ground
or zero level as digital logic zero. Negative logic
equates the maximum amplitude of the pulse as
the digital number 0 and the ground or zero level
as digital 1.

where n is the number of bits in the digital word.
Example: Represent the maximum number of
combinations with a 2 bitword. Combinations =
20 =4, See table.

Decimal Binary
0 00
1 01
2 10
3 11

The highest decimal number that can be ex~
pressed for a given word is the total number of
combinations minus one. Equation: Decimal
Number = 2n — 1, Example: What is the highest
decimal number that can be expressed by a 2 bit
word. The total decimal number is 2" — 1 =
22_1=3.

DIGITAL PULSES

In digital logic, pulses are defined as voltage
transitions that occur during a determined lapse
of time. Timing puises are usuaily generated by
a circuit catled a clock. A set of digital pulses is
known as a train of pulses. The duration and
length of the pulses can be changed to fit the

t,

m

1001
_ Subtraction table
27 +26 +22 = 128 + 64 + 4 = 196. The number 100
hen < 196 5101 Borrow | | OCTAL NUMBER SYSTEM
- R R . 0-0=0 0 Number system widely used in computer lan-
To change decimal to binary: Divide number Here borrow one — guage. The octal system is a simpler way to store
by 2 and keep remainder that will aiways give from the left 1-0=1 0 and recall values stored in computer memory
Tor 0. Exampie: 196. which makes the ! =0 0 banks. The binary numbers to be stored are
- next number 0-1= 1 converted to octal saving considerable time and
i Remainder 1-1=0 possible errors. The octal number system has a
196+ 2=98 0 base of 8. The symbol to represent the numbers
98+2=49 0 are: 0,1,2,3,4,5,6&7. Notice the absence
49+-2=24 1 MULTIPLICATION of the number 8. The conversion from decimal
24+2=12 0 Proceed as arithmetic multiplication. to octal follows the same procedure as the dec-
12+2= 6 0] imal to binary, but the base is 8.
6+2= 3 0 Example: 10011 TABLE 2 3 5 ; 5
3:2= 1 1 X 10 0X0=0 8 8 8 8 8
1T-2= 0 1 10011 TX0-0 4096 | 512 | 64 | 8 1
. . . 00000 0X1=0 The table progresses indefinitely to the left
To write binary number from decimal begin at 10011 TX1=1 as8":wheren=012 3.4
bottom row of remainder table and write the dig- 1011111 C ’ t the octal mt n;be. 421 to decimal
its from left to right. Example: 196 = 11000100 onvert the octal numBer 278 :
g* | 8% | 8 | 8 | 8°
BINARY WORDS DIVISION 4096 | 512 64 8 1
A bit is a digit in binary language. A digit Binary division: proceed as arithmetic 2 1 0
can be either a 1 or 0. Binary numbers are also | division. 4X8° | 2X8 | 1X8
known as binary words. Consequently a 5 bit 1100 256 16 1
binary number is referred as a 5 bit word. The .
longer the word the greater the decimal number 101 11000 Division Table Add the powers of 8 to get th%demmal n1umber.
h b d. E le: A5 bi 10 Example: 421 octal =4 X 84 +2 X 8! +1X
that can be representel . Xample: it 0-1-0 gl = 273 (decimal). To convert decimal
word can represent 32 different combinations. 010 =10 number to1%ctal divide decimal number by 8
A 2 bit word can represent 4 different combina- 10 : and keep remain&er that will give octal number
tions. By the equation: combinations = 2" 0000 ’

Remainder
273+8=34 1
34+8=2 2
4+8=0 4

To write octal number begin at the bottom
row or last digit of the remainder and write octal
number from left to right. Example: 421g
(octal) = 27349 {decimai). The conversion of a
binary digit to octal is accomplished by group-
ing the binary number into groups of 3 digits.
Then proceed to evaluate the octal number in
each group of 3 digits. Example: Change binary
number 111100111110 to octal. Separate from
right to left in groups of 3. Example:111-100-
111-110 =7476g. Change each group of 3 digits
to octal converting binary to decimal. 111=7g;
100 = 4g; 110 = 6g.
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BOOLEAN ALGEBRA RULES
A symbol indicates a logic variable. This can
be either a logic O or a logic 1 level. :

Ota=a

1+a=1

AtA=A

A+Aa=1

0-a=0

1+A=A

A-A=A

A-A=0

9 [a)=a

10 A+Y =Y +a

11 A-Y=Y-a

12 A+t{(Y+Z)=(a+Y}+2
13 A(YZ)=(aY)Z

14 AlY +Z)=A4aY +aZ
15 At+tAZ=A

16 Aat+Y)=a

17 A+Y)(A+2Z)=X+Y2Z
18 A+AY =Aa+Y

W NOU B WN -

BOOLEAN SIMPLIFICATION

Simplify P+ X +X. Using Rule 4 from above
table, P+ X + X reduced to P + 1. Using Rule 2
reduced P + 1 to 1, Therefore, P+ X + X is al-
ways equal to a logic 1.

Simplify PQOL. By Ruie8 of above table,
Q- Q=0. Therefore, PQOL=P- Q- L. By
Rule5,P-0O-L= 0. Therefore, PQQL =0.

Simplify: M+ CSC + F. Use Rule 8: CSC;
CC=0. Use Rule5: 0+ S=0. Expression be-
comes M + 0 + F, which reduces to M + F.
Note we should not apply Rule 4 of boolean
table M + F because variables are not identical.
The answer is M+ F or an OR gate with inputs
M and F.

THE LAW OF UNIONS .
This law pertains to the OR gate and is related
to Rule 1 and 2 of the boolean table.

] >
'y
[
According to Rule 1{0 + A = 4), if one of the
inputs of an OR gate is 0 and we apply the

variable A to the other input, the output will be
the variable A, Accordingto Rule2 {1+a =1},

o

1

1

if we apply a 1 and the variable A to the inputs
of an OR gate, the output will be 1.

LAW OF TAUTOLOGY

The known Law of Tautology applies to
Rules 3and 7 of the boolean table. Rules 3 and 7
apply to AND gates and OR gates. Using this
law, simplification of long algebraic expressions
becomes simple. The rules merely state that
equal variabies in an equation should be omitted.
Example: Simplify the equation (M = A + A+
K + L). It is obvious that the variable A repeats
twice. By Rule 3, the equation simplifies to M =
A+ K+L,

3
. . . M-a+K+L
= K
K ! .
L
L

LAW OF PRODUCTS

The law of Products is also called the law of
{ntersection. - This law explains the behavior of
an AND gate. It follows Rules 5 and 6 from
the above table.

a Iy
» 0
1 0

Accordingto Rule 6 (1 + A = A}, if we apply a
logic 1 and the variable A to the input of an AND
gate, the output will be eq'ual to the variable A,
Accordingto Rule5 (0 A = 0), if we set the
variable A equal to a binary 1, the output of an
AND gate is still O.

For a pulsed input:

.JL I, LJL
| >—— ‘ }—o
1 ]
Consequently for a four input AND gate,
applying Ruie 5 of the boolean angebra table:

a
8
M
0
A+ B-M-0=0.Itis obvious that in the preced-
ing AND gate expression if any of the variables
is a logic 1 level, but either of the inputs is zero,
the output will be 0.
If the input 0 becomes 1, then:
a
B
M

A-B"M-1=4-B*M

1

THE LAW OF COMPLEMENTS

If a logic signal and the complement of this
logic signal is applied to a logic gate the result-
ing output is 1 or 0 depending on the logic gate
being used. The law of the complement is stated
in Rules 4 and 8 of the boolean table. Let's
apply this rule to an OR gate.

- 1 - 1
a=1 A=0
Accordingto Rule 4 (A + X = 1), if ane of the

inputs of the OR gate is logic {1 = A) and the
other input is (0 = &) the output will be 1.

Example: Pulsed
I
1o
I

Accordingto Rule8 (A + A =0), if one input
to an AND gate is variable A and the other input
is 0, the output of the gate will be 0.

a= A=

1o

A= res

THE LAW OF DOUBLE NEGATION

The Law of Double Negation is expressed by
Rule 9 of the boolean algebra table. This law
states that feeding the negation of a variable

through an inverter produces the original
variable.
¥ @
A 4:A

Complementing a signal an even number of
times produces the original signal.

FLIP-FLOPS
A digital logic circuit able to memorize by
storing logic levels. A flip-flop has two stable

states: |t will remain in either set or reset state
until its state is changed by external signals.
The data stored in a flip-flop can be quickly
checked by using an oscilloscope or meter to
detect the state of its output. There are three
basic types of flip-flops.

1 The RS
2 The D type
3 The JK

The logic symbol for an RS flip-flop is

R al—

—{R op—

The inputs are S and R. The outputs are Q
and Q. Application of a logic 1 fevel on the S
input wiil make the Q output go to a logic 1 level
and the Q output go to a logic O level. If the
logic 1 leve! is applied to the R input, the output
levels are reversed. The unused input must be
held at a logic O level.

RS FLIP-FLOP LOGIC TABLE
INPUTS QUTPUTS
R s : o Qa
High Low Low High
Low High High Low
Low Low Unchanged
High High Not Permitted

When the S input is 1 and the R is O the flip-
flop is reset. When the SisQand R is 1, it is
set. All the other input combinations produce
ambiguous or race states.

The D-type flip-fiop logic symbol.

—dD alb—
—r . a}—

The D-type flip-flop generally behaves like
the RS flip-fiop but the main difference is that
a low-to-high transition must be applied to the
T input for the D flip-flop to toggle and store
information. -

D-TYPE FLIP-FLOP LOGIC TABLE
INPUT OUTPUT
D T a [ @
Low Low Previous state
Low High Low | High
High Low Previous state
High High High | Low
The JK flip-flop symbal
&
—T
—4K c a

The S and C inputs presets the JK flip-fiop
to a desired state before another operation is
begun. The S and C inputs are referred to as
asynchronous inputs because they don’t require
a transition on the T input. The J and K inputs
only affect the Q and Q outputs when a transi-
tion occurs on the T or clock input. [f the J
input is 1 and the K input is 1, the flip-flopwill
reset from the previous state in the presence of
a low-to-high transition on the T input. To set
the JK flip-flop, apply a 1 to the J input and a
0 to the K input, then apply a low-to-high
transition (clock pulse} to the T input. This
operation is referred as synchronous with the
clock operation.
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THE NOR GATE

A logic circuit with two or more input ca-
pable of resolving the equation A =C + B. The
NOR gate is a combination of an OR logic gate
followed by an inverter.

NOR GATE

B
A=B+C
C

The NOR gate could be constructed using an
OR gate followed by an inverter.

B:
A=B+C
c N

The operation of a NOR gate is represented
in the following truth table.

Input QOutput
B C A=B+C
0 0 1
0 1 o]
1 0 0
1 1 0

Notice that the NOR table is the exact oppo-
site or complement of the OR truth table.
Summary: The 2 input NOR gate produces an
output when both of the inputs are logic 0 ievel.
if either of the inputs is 1, the output is always
a logic 0 fevel,

Pulse Behavior

A NOR gate using inverters in the input will act
as an AND gate.

Truth Table for inverted input NOR gate shown
above.

- 0 0 =|lw
- o - o|O

O~ - o|lm

o~ o=l
- 0o o|p

DUALITY OF LOGIC GATES

Gates can provide different functions de-
pending on the assumed reference logic level
applied to the input. There are two widely used
types of combinational logic levels used in pres-
ent logic circuits. These are known as positive
logic and negative logic.

POSITIVE LOGIC LEVELS
Input Output
Logic 1 = +5 volts +5 volts
Logic 0 = 0 volts to 0 volts to +0.2
+0.2 volts

The logic O is relatively close to the O or
ground reference level but in practical gate de-
sign the O reference is usually a few tenthsofa
volt above ground level.

NEGATIVE LOGIC LEVELS

Input Output
Logic 1 =0 volts to 0 volts to
+0.2 voits +0.2 volts

Logic 0 = +5 volts +5 volts

Truth Table for Positive Logic
2-input AND gate

Voltage Table

Input Output
B C A
oV ov ov
oV | #bV ov
+5V ov oV
+5 V +5 V +5V
Truth Table
Input Output
B C A
0 0 0
0 1 0
1 0 0
1 1 1

Compare above Truth Table with Truth Table
below for a negative logic 2-input AND gate.

Negative Logic AND gate.
Voltage Table

Input Output
B [ A
oV ov - ov
+5V ov ov
ov +5V ov
+5V +5V +5V

Truth Table

Input Output
B C A
1 1 1
0 1 1
1 0 1
0 0 0

Notice that the Truth Table for the negative
logic AND gate is exactly opposite to the Truth
Table for the positive logic AND gate. The
negative logic AND gate acts as a positive logic
OR gate.

_ Consequently an AND gate can provide the
OR function and an OR gate can provide the
AND function by selecting positive or negative
logic levei assignments.

Positive logic AND gate Negative logic equivalent

of AND gate.
B B
A A
(o} [of
A=B-C A=B+C

Negative logic equivalent

of OR gate.
B B-
A A
Cc C
A=B+C A=B-C

Flexibility in implementation of the basic
gate functions. NOR gates and NAND gates can
be used to implement any of three basic logic
fupctions. Example: By connecting all the in-
puts of a NOR or NAND gate together we can
implement an inverter.

By connecting an inverter in the output of a
NOR gate, we can implement an OR gate. {Same

“applies for a NAND gate.)

B B C
c

BOOLEAN ALGEBRA

Is the mathematical method of analyzing
logic circuits. Boolean equations describe the
operation and provides the mathematical tool
for the manipulation of logic circuits. For ex-
ample, draw the logic circuit that solves the
boolean equation A = (B+C) + {M+D): The
expression indicates that there are two OR gates
being OR’ed by another single OR gate: Analy-
sis: Draw the sumbo! for the first member of
the equation. {B+C):

B+C

%

Then draw the symbol for the second member
of the equation (M+D).

M+D

5

D

Use asingle OR gate to combine the two OR gate
outputs as required by the indicated + symbol.

B.
¢ B+C

M+D

lv]

A=(B+C)+(M+D)

Draw symbo! for the second term of the
equation (M+D).

Draw the logic circuit to solve the boolean
equation A = (B+C) + (M+D).

The first term (B+G) of the equation indicates
an OR gate with inputs B and C.

Combine the two OR gate outputs using a sin-
gle AND gate as required by the multiplication.

8+C

[a -}

M+D

o =

A=(BiC}-(M+D)

Write the boolean algebraic expression from
the given logic circuit. -

=l

x
=

W
~

<

M '

:

s 5 >

First write the expression describing the out-
put of gate 2. This is an OR gate, therefore, the
expression is X+Y. Secondly write the out-
put equation for gate 3. This is another OR gate,
so the expression is M + P +S. Notice that the
algebraic expressions are being AND’ed by gate
1. Consequently the output expression so far is
{(X+Y} « (M+P+S). Input T could have been in-
cluded anywhere in the equation because it is
being AND’ed by gate 1 with the other two
equations. Thé complete output equation is:
W=(X+Y)(M+P+S)T.

Write the boolean equation for the logic
diagram.

A

o O

Final Equation: M= (A+B) [C+D + F)

8261 HIANIAON
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AND GATE

Logic circuits with two or more inputs and a
single output capable of resolving an output with
combinations of input variables. The two-input
AND gate resolves the equation A = BC. The
output (A) is expressed in terms of the two
variables (B) and (C). The expression A = BC
does not imply muitiplication but rather (A) is
the result of quantity (B) AND quantity {C)
presented at the input. AND gate symbol

8.
A
C A=B-C

The operation of the AND gate is better repre-
sented by the use of a Truth Table that indicates
the output for the various input combinations.

Truth Table for 2-input AND gate:
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The AND gate performs binary muitiplica-
tion.

MULTIPLICATION TABLE
0X0=0
1X0=0
0X1=0
1X1=1

The total number of possible input combina-
tions for a gate with an even number of inputs is
given as {inputs)? = outputs. For a two input
AND gate; 22 = 4. The truth table then contains
4 possible input combinations. Summary: A
two-input AND gate gives an output only when
both inputs are logic 1.

For a pulse input.
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Notice that the AND gate produces 2 -output
pulses out of 4 inﬁut pulses arriving at the B in-
put because the duration of pulse C is exactly
twice the total duration of input pulses B.

Algebraic equations. Example: ForA=W -
TX « MPS. Using AND gate

w
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If an even number of inverters are connected
in series, the output will be the same as the input
with no inversion.

THE INVERTER

A digital gate that inverts the input signal. It
is also known as a complementary gate because
the output is inverted in relation to the input.
The inverted output is written with a bar over
the inverted variable.

The inverter has only one input connection
and one output connection.
For a pulise input:

Pulse Output
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CASCADED INVERTERS

If an odd number of inverters are connected
in series, the output will always be the negation
of compiement or the input variable.

THE OR GATE

Logic circuit with two or more inputs that
provides an output when any input is a logic (1).
The two input OR gate resolves the equation A =
B + C. The output is expressed in terms of either
variable B or C acting on the input. The ex-
pression A = B + C does not imply addition but
rather A is the result of either B or C acting on

the input.
B
A
c A=B+C

The operation of the OR gate is better repre-
sented by the use of a Truth Table that indicates
the output when the inputs are modified by (1)
or (0):

2 INPUT OR GATE

INPUT OUTPUT
B |C A
0|0 "0
0|1 1
1|0 1
111 1

Below is a 3-input OR gate Truth Table.

INPUT OUTPUT

A B [ D
o o o] 0
1 o] 0 1

1 1 0 1

1 1 1 1

0 0 1 1

0 1 1 1

0 1 0 1

1 ] 1 1

The number of inputs determines the number
of combinations in the same manner as for the

AND gate: input = combinations — 1. Example:

32_-1=8.
Note: The equation; inpu'(s2 =combinations— 1;
is for an ODD number of inputs. Use inputs? =
combinations for an EVEN number of inputs.
Example: An OR gate with 2 inputs has 22 = 4
possible input combinations. An OR gate with
5 inputs has 52 = 25 — 1 = 24 possible input
combinations.

The OR gate equation satisfies the rule of
binary addition.

LOGICAL ADDITION TABLE
0+0=0
1+0=1
0+1=1

. T+1=1

Note: Binary addition"and logical addition are
not EQUAL. Summary: The OR gate gives an
output when any input is a logic one. Output is
zero when all inputs are zero.
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The OR GATE preserves the individual char-
acteristics of pulses arriving at the input.

Output

Note: Each output pulse has the same time
interval at the output as it had in the input. If
there is time coincidence at the input, the out-
put pulse will be equivalent to the longest pulse
at the input. Example:
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THE NAND GATE

The NAND (NOT-AND) gate is the combina-
tion of an AND gate and inverter. The operation
of a NAND gate is represented by the equation
A =B - C andisread A is the result of Band C
operating at the input of the NAND gate but
inverted at the output. The solid barover B - C
means inversion.

B —
A=B-T
[

The NAND gate could be constructed by
using an AND gate followed by an inverter.

The operation of a 2-input NAND gate is
easily represented by a truth table form.

INPUT | OUTPUT
B| A=B-C

0 0 1

1 0 1

0 1 1

1 1 0

Note: The NAND gate truth table is the com-
plement of the AND gate truth table. Both
inputs must be at a logic 1 level to produce a
logic 0 output. Pulse behavior:

0—] I— _r_—l__ Output

o— —_—
0
Non-coincident input pulses have no effect on
the output of a NAND gate. The output always
stays at logic 1 level. Coincidence at input of

logic 1 level pulses produces a negative going
puise at the output.

A NAND gate with inverters connected to the
inputs will act as an OR gate.




Expanding Ex-Or Gates
By L. Robertson

Exclusive-OR gates are only obtainable in
2-input packages, and simply cascading
two gates does not give the correct truth
table. Any application, therefore, which
requires an Ex-OR gate with three or
more inputs is going to require some
tricky logic combinations.

In the first circuit, inputs A and B are
fed into gate 1 and the output of the gate
is combined with input C at gate 2. This
arrangement satisfies every part of the
truth table except A=B=C=1, where the
output from gate 2 will be 1 instead of 0.
To overcome this problem, inputs A and
B are also fed to gate 3 so that when both
are high the consequent high output from
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that gate will disable gate 4 and so pro-
duce a final output of 0.
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If a four-input arrangement is re-
quired; the expansion can be achieved by
treating inputs C and D in the same way as
inputs A and B in the first circuit. Thus, in
the second circuitt gate 5 performs a
similar function to gate 1 and gate 6
behaves in the same way as gate 3.

The final permutation is a six-input
gate, shown in simplified form in the third
circuit diagram. The three-input Ex- OR
gate shown as gate 4 is made up as shown

continued on next page
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in the first diagram above and the pairs of
inputs AB, CD, EF are combined in three
NAND gates and fed to three of the inputs
of the final AND gate.



Simple bounce-free switch

A single non-inverting gate or buffer
wired as shown forms a bistable circuit
because the positive loop gain is greater
than unity. Whilst the switch is in the up
position, the output will be high. When
the switch leaves this position and is in
transit, the output remains high be-
cause the input is still high. When the
switch first makes contact with the
lower position, the output of the gate is
momentarily shorted. This situation is
however remedied within a few
nanoseconds because the input is also
taken to ground which drives the out-
put of the gate low. Thereafter, if the

switch contact bounces, the output will
stay low because the input is low.

This single non-inverting gate
arrangement is simpler than the usual
SR flip-flop, and the annoying pull -up
resistors are eliminated.

v,
P. Seligman cc
Victoria
Australia output
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One’s complement adder
eliminates unwanted zero

by John F. Wakerly
Digital Systems Lahoratory, Stanford University, Stanford, Calif.

To enable an adder to subtract, a binary system can use
the one’s complement representation for negative num-
bers. However, since the negative of a number is created
by replacing 1s by Os and Os by Is, two forms of zero re-
sult—00 . . . 0 and 11 . . . 1—to the complication of
later zero-checking operations. Fortunately, it’s possible
to eliminate the 11 . . . 1 version if a NAND gate is in-
cluded in the adder circuitry.

In a one’s complement binary system, the most sig-
nificant digit in a positive number must be 0 and in a
negative number must be 1, Thus the eight possible val-
ues that can be represented by 3-bit number are no
longer 0, 1, . . . 7. Instead, they are -3, -2, -1, -0,-+0,
+1, +2, +3. The following table shows why both +0
and -0 occur:

1111 -0
0011 +3 0000 +0 1111 -0
0010 +2 0000 +0 17110 -1
0101 +5 0000 +0 L—1 +1
1111 -0

0111 +7 1011 —4

0110 +6 1001 -6 0111 +7
1001 =6 10000 +0 10010 +2
1111 -0 1 41 1 +1
0001 +1 0011 +3

1. One’s complement addition. Examples show the one’s comple-
ment representation in which a negative number is just the bit-by-bit
complement of the positive number; the '‘end-around carry’’ rule for
addition, and the two forms of zero.

One’s complement form

Value represented

111 -0
110 -1
101 -2
100 -3
011 +3
010 +2
001 +1
000 +0

More generally, positive zero is represented by

00 . .. 0,and negativezeroby 11 . . . 1.

When two numbers are added in this representation,
any carry from the most significant position is added
into the least significant position—a process termed
“end-around carry.” As it happens (see Fig. 1), positive
zero is produced only when positive zero is added to it-
self. '

The standard implementation of a one’s complement
adder uses a conventional binary adder with the carry
output connected to the carry input to achieve the end-
around carry. This direct connection of the carry output
to input in effect turns the adder into an asynchronous
sequential circuit, whose state depends on its previous
state. (A D-type flip-flop is a familiar example of a se-
quential circuit.)

To see this, consider Fig. 2(a), which shows a 4-bit
one’s complement adder that can be implemented with
a single MSI circuit such as a 7483. The two input num-
bers are A = agasajap and B = bzbsbiby, the carry n-
put is ¢;, and the carry output is ¢,. The state of the se-
quential circuit is the state of the carry line C.

In Fig. 2(a), A equals 0110, B equals 1001, and C
equals 0, making the output is 1111 as expected. In Fig.
2(b), A is changed by one bit to 0111, C changes to 1,
and the output changes to 0001. When A is changed
back to 0110, as shown in Fig. 2(c), the carry line C,
which was 1 before the change, produces the sum of
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2. Unpredictable zero. Standard binary adder has carry output con-
nected to carry input for “‘end-around carry” in adding one’'s com-
plement numbers. A result that is zero may come outas 1111 (nega-
tive zero) or 0000 (positive zero), depending upon prior condition of
circuit. In both (a) and (c), computation of (6 — 6) is represented by
(0110 + 1001); results are 1111 and 0000, respectively, because
intervening computation in (b) changed state of circuit.
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3. Eliminates negative zero. This 4-bit
one’s complement adder has only one form
of zero—0000. The 1111 representation of
zero is eliminated by use of NAND gate and
arithmetic logic unit that has carry-generate
(G) and carry-propagate (P) outputs.

4. More bits. Here a 16-bit one's comple-
ment adder uses NAND gate to assure that
zero appears as 00 . . . 0. NAND-gate ar-
rangement introduces no more delay than
the conventional end-around carry.
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0110 + 1001 + 1 = 10000 after the change, so that C
remains 1 after the change.

Thus the circuit has two stable states, either C = 0 or
C = 1, for any input combination having exactly one 0
and one | at each bit position (that is, a number and its
one’s complement are being added). Which state the
circuit attains for a particular input combination de-
pends on the state of the carry line C for the previous

operation. Unless the inputs of the adder are set to a

known value (say 0) before each operation, it is quite
impossible to predict which form of zero will be pro-
duced by adding a number and its complement.

Nevertheless, despite its unpredictability, the un-
wanted form of zero (11 . . . 1) can be eliminated very
easily with most MSI and LSI arithmetic logic units
(ALUs) and data path slices. MSI circuits such as any
74181, 748281, and 74S381 ALUs, and LSI circuits such
as Monolithic Memories’ 6701, Intel’s 3002, and Ad-
vanced Micro Devices’ 2901 data path slices, all have
carry-generate (G) and carry-propagate (P) outputs for
fast carry lookahead, in addition to the normal ripple
carry output (C,). Examination of the carry-propagate
equations shows that P equals 1 if a number and its
one’s complement are being added, i.e., the sum equals
11 ... 1. Therefore the 11 . . . 1 representation of
zero can be eliminated by producing a carry input of 1
whenever a carry is generated (G = 1) or P equals 1.
For typical devices this process requires a single two-in-
put NAND gate, as shown in Fig. 3 for a 4-bit one’s com-
plement adder using one 74181.
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For larger adders, the G and P outputs of the carry
lookahead generator may be used, as shown in Fig. 4
for a 16-bit one’s complement adder using four 74181’s
and one 74182 lookahead carry generator. In all cases
the resulting circuit is no longer a sequential circuit, be-
cause generate and propagate outputs do not depend on
the carry input.

The total propagation delay of a one’s complement
adder using a conventional end-around carry is tapp
tico + tcis, where tico is the propagation delay from
any data input to the carry output and tcrs is the propa-
gation delay from the carry input to the sum output.

For the scheme illustrated in Fig. 3, the delay is tapp
= tipg + t~ + tcis, Where tipg is the delay from any
data input to the P and G outputs and ty is the NAND-
gate delay. Typical values for standard 7400-series parts
are tico = 28 ns, tois 13 ns, tipg 17 ns, and ty =
11 ns. Hence the total delay for both schemes is the
same: tapp = 28 + 13 =17 + 11 + 13 = 41 ns.

For larger adders, as in Fig. 4, the delay for both
schemes is still approximately the same, since the delay
of the external NAND gate is comparable to the delay of
the internal gate used to compute the ripple carry out-
put ftom P, G, and ¢; in the ALU or lookahead gener-
ator.

The scheme of Fig. 3 or Fig. 4 automatically converts
all arithmetic results of 11 . . . 1to 00 . . . 0. How-
ever, it should be noted that in logic operations a result

of 11 . . . 11is not converted. In most applications this
is the desired behavior. O
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