

A look at compression techniques by Mike Bedford

If it wasn't for data compression,
many of todays up and coming
technologies could never have

come to fruition. Without employing
compression, for example, it would
have been impassible to cram more
than a few minutes of high quality
video onto a 120mm diameter disk.
Yet, as home cinema enthusiasts are
well aware, DVDs are capable of
storing a full-length movie at
broadcast quality. Much the same
argument applies to digital 1V Simply
digitising an analogue TV signal would
result in a data stream that would
require a much higher bandwidth
than analogue. When that same signal
is subjected to data compression,
though, it becomes pa ssible to cram
half a dozen programmes into the
bandwidth that was formerly required
for a single 1V station. And for reasons
of reducing transmission time,
reducing RF bandwidth, and/or
reducing the cost of distribution
media, data compression is also
applied on the Web, for software
publishing, and in mobile telephony
to name just a few of the more obvious areas.

But although data compression is such a
familiar term, at first sight it appears rather
counter -intuitive. Surely reducing the amount
of data by some means reduces the amount
of information it carries and this would
appear to be unacceptable. In fact, both these
assumptions are incorrect in some cases. First
of all it is often possible to reduce the
amount of data without loosing any of the
information it carries. And in other cases, by
accepting some loss of information an even
greater degree of compression can be
achieved and, furthermore, that loss of
information can sometimes go unnoticed.
This article - an introduction to the
technology of data compression - will look at
many of the methods in use today and
explain how a quart can be crammed into a
pint pot and why, even if we don't quite
manage it, it doesn't always matter too much.

Lossless Compression
The fact that the volume of data can
sometimes be reduced with no loss to the
information carried is generally due to the
fact that it's represented in an inefficient
manner. For example, English text uses the
ASCII characters in the range 00 to 7F
hexadecimal and it requires seven bits to

store any of these characters. For
convenience, though, characters are nearly
always stored and transmitted as bytes, i.e.
eight bits, so one bit in eight is wasted.
Clearly, therefore, textual data could be
compressed to 87.5% of its original size
simply by stripping out these redundant bits.
This isn't a practical compression method,
of course, because it doesn't achieve an
appreciable improvement; I simply give it as
an example of how information is often
represented inefficiently.

If you're a linguist you'll have noticed that I
deliberately referred to English text. And, if
we want to be able to write in the common
European languages, compressing the data by
stripping out the most significant bit won't
work since the accented characters which
would be required are ASCII characters in the
range 80 to FF hexadecimal. Now let's
assume that we're writing in French and that,
accordingly, an extra handful of characters are
required. To use these few extra characters,
though, we have to move from seven bits per
characters to eight, which seems rather
inefficient. But the same argument applies
even if we stay with English. The letter J, for
example, crops up very infrequently but the
ASCII coding scheme assigns it an 8 -bit code,
just the same as more common letters such
as E and T. The problem with ASCII is that it's
a fixed length code. When we're dealing with
data in which the various symbols have
differing f equencies of occurrence, though -
and this is common in many types of data,
not just text - greater efficiency can be
achieved by using a variable length code in
which the shorter codes are assigned to the
commonest symbols. Compared to a fixed
length code, the uncommon symbols will be
represented by longer codes but the fact that
the very common ones use short codes more
than compensates for this and an overall
reduction on the amount of data results.

Of course, once we move to a variable
length code some method of determining
when one code ends and another one starts
has to be devised. The most common
method is to derive the codes such that no
code can start with a bit combination assigned
to a shorter code. This is done using a binary
tree in which symbols are represented by the
leaves of the tree (i.e. the end points) and the
code for each leaf is determined by starting at

L

Luminance &

down -sample
chromionance

(optional) Luminance &
RGB convert Chrominance Down -sampled

Image Planes Chrominance
Planes

Figure 3.

ELECTRONICS AND BEYOND February 2001

the top and adding a 1 for each right turn and
a 0 for each left turn. Since the symbols are all
at the ends of branches, no other symbol can
have a route that passes through an already
defined symbol that is the property we
require. I'm not going to describe how this
sort of binary tree is generated but Figure 1 is
a portion of a tree for encoding the string
ABBDCAAACBBAABCABAAA'. Analysing the

string reveals that there are 10 As, 6 Bs, 3 Cs
and 1 D so the
encoding process must
assign the shortest
code to A and the
longest to D which is
exactly what's shown in
Figure 1. The string has
20 characters, which if
we encoded it in ASCII
would occupy 20 bytes.
Using this tree, though,
the data is reduced to
34 bits or just over 4
bytes. Of course, the
definition of the tree
must also be placed in
the file along with the compressed data and
this will reduce the compression ratio
somewhat. With long files, though, the
overhead imposed by induding the tree
definition is very small in percentage terms.
What I've just described forms the basis of
Huffman encoding. This is a common method
of lossless compression but it does have a
significant disadvantage. Because the data has
to be analysed before it can be encoded, it's
suitable for encoding a file on disk but not, for
example, a stream of data being transmitted
via some communication channel.

Another method which achieves much
the same sort of compression ratio uses a
fixed length code but assigns these codes to
differing amounts of data. So for example,
one code might represent a single
uncommon letter such as J or Z, whereas
another code of the same length might
represent a whole string of characters that
crop up very frequently - " <space> the
<space>" for example. This is the method
used in the 12W compression algorithm
and, unlike Huffman, the coding scheme is
built up on the fly so it can be used for
compressing data, which can't be analysed
in advance. It is used in the common ZIP

compression utility and, typically, is able to
reduce the size of many types of files by
around 50%. Similar compression
algorithms have also been built into
modems.

Figure 2 shows a small portion of a
bitmapped image. You can't make out any
features in the image, admittedly, but this is
much the same sort of thing you might see
if you took a very small portion of any

bitmapped image and
expanded it like this.
Normally, this sort of
image would be
represented in a file
as a string of values,
one per pixel,
indicating the colour
of that pixel. In this
case we'll assume that
there are 256 possible
colours and,
accordingly, each
pixel has to be
represented by a
single byte. If we

assume that the code for black is 0, the
code for red is 63, for blue is 127 and for
white it is 255 it should be clear that the
data which represents this image is 255,

Figure 2.

255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 255, 63, 63, 255, 255,
255, 255, 255, 255, 63, 63, 127, 255, 255,
255, 255, 255, 63, 63, 127, 127, 127, 127,
127, 127. Now clearly, although I've stated
that there are 256 possible colours, only
four are actually used and this suggests
scope for data compression. However, let's
forget about the sorts of methods we
looked at in the previous section and think,
instead, of a method that would work even
if most of those 256 colours were
represented in an image. A method which is
often used for compressing bitmaps is
called run -length encoding and takes
advantage of the fact that if one pixel is a
particular colour then successive pixels will
often be in the same colour. The following
is the same data represented by run -length
encoding: 255, 25, 0, 14, 255, 1, 63, 2, 255,
6, 63, 2, 127, 1, 255, 5, 63, 2, 127, 6. The
figures are actually in pairs - the first figure

in each pair is the colour and the second
figure is the number of times that colour
appears in succession. In this case the data
has been compressed to 31.25% of its
original size. In real world applications
much greater compression ratios can often
be achieved.

So far we've looked at three methods of
data compression. All three methods have
the potential for reducing the amount of
data even though none of them will actually
loose any of the information that is
represented by the data. As such these
methods are referred to as lossless. Any
method of compression is lossless if the
data remains the same when subjected to
compression followed by decompression.
And for many applications, lossless
compression is absolutely essential.
Software distribution is such an application.
If the compression process causes even a
single bit in a program to change then
there's potential for that program to crash
when it's run. But although the lossless
methods are the only ones available in
certain areas, the amount of compression
achievable tends to me modest. Although
there are exceptions - run -length encoding
a bitmap consisting of nothing more than a
single black dot in the middle of a white
background, for example - lossless
compression rarely achieves a compression
ratio of much more than 50%. To go beyond
this sort of performance, lossy compression
has to be employed. This is a compression
method in which information is lost by
compression followed by decompression.
At first sight this might seem totally
unacceptable. However, if the data
represents an image or audio information,
for example, the human senses may fail to
notice a certain degree of information loss.
And even when the loss is noticeable -
perhaps as a reduction in the sharpness of a
picture - it could be that this is a price
worth paying for the reduction in the
volume of data.

DCT Compression
The first lossy compression scheme that
we'll look at makes use of something called
the discrete cosine transformation. It's
integral to the JPEG file format which is
used for representing images on the Web

Luminance &
Chrominance
Planes split

into 8x8 Blocks

discrete
cosine

transformation

Luminance &
Chrominance

DCT Coefficients
for 8x8 Blocks quantise

Quantised
Luminance &
Chrominance

DCT Coefficients re -order & encode

Run -length Encoded
Quantised

Luminance &
Chrominance

DCT Coefficients

February 2001 ELECTRONICS AND BEYOND

and it also forms as part of the MPEG family
of compression algorithms which are used
for compressing moving images.

The Fourier Theorem states that any
waveform can be expressed as the sum of
sine waves of differing frequencies and
amplitudes. To represent some waveforms
accurately an infinite number of sine waves
would have to be added together but a
waveform could be approximately just by
giving the amplitudes of the first few
harmonics. A Fourier Transformation is the
analysis of a waveform to determine these
amplitudes. The Discrete Cosine
Transformation (DCT) is a close relative of
the Fourier Transformation which is used to
split a waveform into frequency
components and is at the heart of many
methods of compressing photographic
images. Figure 3 is a block diagram of the
process - this should clarify the following
verbal description.

For a colour photograph the first step is
to convert the image from the usual RGB
form to luminance and chrominance values
like those which are used in TV
transmission. The luminance contains the
basic monochrome image whereas the two
chrominance values provides information
on the intensity of two of the primary
colours (the intensity of the third primary
colour is the luminance value minus the
two chrominance values). Since the eye is
less sensitive to chrominance than
luminance information, an optional first
step is to re -sample the chrominance data
using a coarser grid. Generally a two -fold
reduction here goes unnoticed. The other
reason for representing the data in this

0

2

3

4

5

6

7

Figure 4.

Increasing Horizontal Frequency

0 1 2 3 4 5

1

-

I I

E:

=

I I

ÍÍ - .

III III

6

IÍÍu. . .Í laÍ I 1n1: u ' I= ': MI
1. I.E.' 11 11 11..

 .: ' .

7

MEN..u.ZEE . ' NI'uu...

bitmap is two-dimensional, though, this is
somewhat more complicated than
performing the transformation on one-
dimensional data like an audio signal. The
output of this stage is a set of DCT
coefficients relating to the amplitude of the
various combinations of horizontal and

important to note, though, that just
converting bitmaps into DCT coefficients
doesn't result in data compression.
However, it is an important first step.

What does achieve a reduction in the
volume of data is the quantisation of each
of these samples using different

185 203 206 203 193 178 12 0 0176 171 1106 12 -22 4 6 2 0 138 1 -1 1 0 0

165 156 160 170 171 168 159 152 145 -15 -16 10 3 7 1 0 8 -1 -1 0 0 0 0 0

-140 132 136 135 134 134 127 98 -4 -20 4 5 1 1 -1 5 0 -1 0 0 0 0 0

31 129 127 128 128 128 128
DCT

Process 52 -15 -8 1 -1 2 -2 0 Quantise 2 -1 0 0 0 0 0 0

4 122 122 120 120 121 124 18 -10 -1 -1 -1 1 -2 0 1 0 0 0 0 0 0 0

127 127 127 127 126 126 123 9 -4 -3 -2 1 -1 0 0 0 O 0 0 0 0 0 0

127 127 127 127 127 122 117 -4 2 -4 1 -3 2 1 0 0 0 0 0 0 0 0 0

-13 1 0 0 -1 1 1 2 o o o o o o o o

8 x 8 block of
pixel intensities

Figure 5.

DCT
Coefficients

Quantised
DCT Coefficients

form is because the later compression steps
work better on a luminance and
chrominance data than on RGB data. It also
allows a greater degree of compression to
be applied to the chrominance data in these
later stages. The next step is to split the
luminance and each of the chrominance
bitmaps into 8 x 8 pixel blocks and perform
a DCT on each of these blocks. Since a

vertical frequencies. A verbal description of
this is, perhaps, not the easiest thing to
understand but Figure 4 should, hopefully,
clarify things. Any pattern that can be
represented in an 8x8 pixel block can be
expressed as the amplitudes of each of
these 64 patterns. Therefore, storing or
transmitting each of these 64 coefficients
can reconstitute the original image. It's

quantisation coefficients for each DCT
coefficient. The rationale here is that the
eye is more sensitive to low frequency than
to high frequency information so the
coefficients toward the top left are assigned
the most bits and the quantisation becomes
more coarse as we move toward the bottom
right. The final step is to run -length encode
the quantised coefficients but this only

<ED ELECTRONICS AND BEYOND February 2001

achieves a further reduction in the amount
of data if the coefficients are read out in a
zig-zag manner starting at the top left and
working toward the bottom right. By re-
ordering the coefficients in this way, and
since those toward the bottom right tend to
be zero, the zero coefficients are generally
consecutive so run -length encoding is
especially efficient. Figure 5 shows this
process on one 8x8 pixel block of
luminance information.

This method of data compression takes
account of the fact that the eye is more
sensitive to some parts of the overall data
stream than others. In this instance, having
re -coded the image into the frequency
domain, the less noticeable high frequency
components can be de-emphasised by using
a coarser quantisation coefficient. This sort
of reasoning is common in lossy data
compression algorithms. However, it also
raises the question 'at what point can we
safely assume that data can be discarded
without having an adverse affect on the final
quality?'. This question has resulted in much
heated debate, for example, in drawing up
the specification for DVD-audio, the up-and-
coming replacement for the audio CD.
However, it also raises the possibility of
having variable compression ratios with a
corresponding variation in quality. So, for
example, you could choose a low.
compression ratio and, thereby achieve a
high quality result, or you could pick a
higher compression ratio and, in so doing,
accept that the quality will suffer. JPEG offers
just such a range of compression ratios and
Web designers have to choose between file
size (and hence download time) and quality.

MPEG Compression
The next compression scheme we're about
to take a look at is MPEG that is used for
moving images. The original MPEG was used
for transmitting Web -based video but the
newer MPEG-2 is key both to digital 1V and
to DVD so is at the heart of many of today's

high profile consumer products. MPEG
employs two quite different forms of
compression. The first is referred to as intra-
frame compression and involves compressing
individual frames so this is much the same as
compressing still images. As such, the
method used is very similar to the DCT

Zig-zag
Scanning

Data stream to VCL and
run -length encoding:

138, 1, 8, 5, -1, -1, 1, -1,
0,2,1,-1,-1, 0, 0, 0, 0,0etc.

Frequently, for Web use, a high compression
ratio is selected even though this will result
in a noticeably inferior image. Figures 6, 7
and 8 show an image - in each case with an
inset enlargement of pan of that image -
compressed using JPEG compression ratios
of 2, 127 and 255 respectively. The reduction
in image quality with increasing
compression ratio is clear to see.

compression algorithm that we looked at in
the previous section. I'll say little more about
it here, therefore, and move on to the aspect
which is unique to compressing moving
images - inter -frame compression.

The key to inter -frame compression is
that, in general, one frame is very similar to
the previous frame which represents the
state of play a fiftieth of a second earlier. And

if very little has changed it's clearly
inefficient to duplicate the data. Security
recording equipment is an extreme case and
one in which MPEG compression is highly
efficient. Here a CCTV camera captures an
image, which is recorded to tape,
conventionally an analogue tape. But unless

a burglar walks into the frame, nothing
changes at all and every frame is virtually
identical to the previous one. Yet an
analogue tape will keep on running storing
the information for that unchanging over
and over again. Clearly if the initial frame can
be stored and following this only the
changes are recorded, a vast reduction in
the overall amount of data can be achieved.
But this is an extreme case - movies and 1V
programs aren't as static as this - so let's
look in a bit more detail at how MPEG copes
with more typical video footage.

To set the ball rolling a complete frame is
encoded. In an ideal world, from this point
onwards only changes need be stored but
it's not hard to see why this doesn't work in
practice. For a start, viewers need to be able
to switch on the TV at any time or start
watching a movie on DVD part way
through. To allow this, complete frames
have to be transmitted periodically. But
whereas a complete frame every 100 frames
may be adequate to allow this - since this
would result, at the most, in a two second
delay - they actually tend to be transmitted
more frequently than this. This is to
eliminate cumulative errors in the decoding
process. Any dropped bit, for example, will
carry forward until the next complete frame
is received so these need to be
comparatively frequent. In MPEG encoding,
these complete frames are referred to as I -
frames since they're compressed only by
the intra-frame compression techniques.

February 2001 ELECTRONICS AND BEYOND 422>

The next type of frame is the P -frame and
this stands for predictive frame - here's
how it works. The frame is split up into
16x16 pixel blocks. Now the previous frame
is scanned to find each of those blocks or,
at least, something that appears to be very
similar. Having found a matching block, its
position in the frame is compared to its
position in the previous frame to give
something referred to as a motion vector.
Typically the motion vectors will be zero or
small but, of course, in the case of a fast
moving object they can be significant. But
transmitting motion vectors alone isn't
adequate. You'll remember that I referred to
finding a closest match to each 16x16 pixel
block in the previous frame. The fact is that
blocks don't just move between one frame
and the next, they can also change slightly.
To take this into account, each 16x16 pixel
block in the current frame is subtracted
from its counterpart in the previous frame
to produce a block of error information.
This - which is often strings of zeros and
thereby easily compressed - in addition to
the motion vectors adequately describes the
differences between one frame and the next
and is the data contained in a P -frame.

The third type of frame is the B -frame or
bi-directional predictive frame. This works in
a similar way to the P -frame but it looks, not
only at the closest previous I -frame or P -
frame, but also at the closest future I -frame
or P -frame. Since most blocks will be found
in one or the other of these two reference
frames, the amount of data in the error
signal will be smaller than in a P -frame and,
therefore, a higher degree of compression
can be achieved. There is a disadvantage in
using B -frames, though, specifically that
these frames cannot be interpreted until a
subsequent frame is received. This can result
in a delay that would not he acceptable in

some real-time applications such as video -
telephony and video-conferencing. These
delays are reduced by placing a limit on the
number of B -frames that can be interspersed
between I and P frames.

MPEG-2 does not specify the particular
sequence of I, P and B frames. This can be
chosen by the user to give a level of
performance, which is appropriate for the
application. Specifically a balance has to be
struck between the amount of compression,
of random access, and of the encoding
delay. Using I -frames only (I 11111111111
...), for example, will result in total random
access and no delays but the compression
won't be very good. If we add P frames only
(e.g.IPPPPIPPPPPI...)the
compression ratio is improved, there is still
no encoding delay but a lower degree of

Figure 8.

random access is available. And by adding B-
frames(e.g.IBBPBBIBBPBBI...)the
compression ratio improves yet again but an
encoding delay is introduced. An interesting
feature of MPEG compression, and of many
other schemes for that matter, is that the
compression ratio depends on the data
being compressed. For example, an action
movie will compress much less well than a
chat show since there will be more motion
and hence the motion vectors and error
information will be greater. If the data is
being transmitted over a fixed bandwidth
channel - and this channel has been
designed to cope with the average bit rate -
this will give problems at times. A means has
to be found, therefore, of further reducing
the bit rate at times when lots of action
would otherwise cause frames to be lost.
This is achieved in the intra-frame
compression stage that follows the inter -
frame compression. The quantisation stage
of the DCT compression is controlled so
that the output buffer will never overflow. In
particularly bad cases, this can result in a
very pixelated image for a fraction of a
second and this is an artefact that many
digital TV viewers will recognise. Figure 9 is
an overall block diagram of MPEG
compression and Figure 10 sheds a bit more
light on the way images are reconstituted
from a stream of I-. P- and B -frames.

Wavelet Compression
The up-and-coming compression technique
which everyone is now talking about is wavelet
compression, as employed in the soon -to -be -
released JPEG 2000 standard for the
compression of still images. This is quite a big

topic and the subject of wavelets and their
application to data compression would deserve
an article in itself. Nevertheless, no article on
data compression could be complete without

Q ELECTRONICS AND BEYOND February 2001

Analogue
Video
Input

Figure 9.

Sample
Analogue

Video

Motion
Estimation &

Error Correction

Discrete
Cosine

Transformation

l -frames.
P -frames

& 8 -frames

Quantisation
Adjustment

Quantise
DCT

Coefficients

8 x 8 blocks
of CDT

coefficients

Data
Rate

Control

Run -length
Encoding

Buffer
Occupancy

Buffer
Store

Variab e
Data
Rate

Fixed Rate
MPEG-2
Output

at least introducing the subject.
We've already looked at the Fourier

Transformation and the closely related
Discrete Cosine Transformation which is key
to many of today's image compression
standards. In both cases, a signal is
converted from the spatial domain (or in

result is the sum of multiple waveforms.
However, instead of an infinite pure sine or
cosine waves, the waveform which is
summed is irregular in shape and is
localised. In fact a number of so-called
wavelets have been used but one of the
most successful ones, at least in the area of

compared to the DCT compression
employed by the initial JPEG standard. Its
designers claim that JPEG 2000 will "avoid
some of the more unpleasant JPEG DCT
artefacts - the ringing near sharp edges, the
clear tile boundaries, and the harsh colour
quantisation" which tend to occur with DCT

XXXXXXXXXX/21311

the case of an audio signal the time
domain) into the frequency domain. In
other words, the input signal ends up being
represented as a series of sine waves of
different frequencies. Wavelet analysis is like
Fourier or DCT analysis in that the end

data compression, is called the Daubechies
wavelet and is shown in Figure 11. You'll
notice that it contains a mixture of
frequency components and is localised. As
such, it is better suited than sine waves for
representing many real world waveforms.

To cut a long story short,
an image expressed as a
series of wavelets of
differing amplitudes,
frequencies and
translations can be
compressed in much the
same way that an image
consisting in a series of
sine waves can be
compressed.
Furthermore, it's
generally true that a
higher degree of
compression can be
achieved at the expense
of less visual degradation.
To wind up this brief
look at wavelet
compression I'll provide
one or two facts about
JPEG 2000. This will
illustrate the advantages
of wavelet compression

compression at high compression ratios.
Furthermore it is their aim and expectation
that the new standard will offer "fair" quality
image reproduction at rates down to 0.1
bits per pixel and below. It has also been
suggested that a JPEG 2000 file compressed
at 200:1 will offer superior quality than a
standard JPEG image compressed at 5:1.

The Squeeze is On
But this talk of the advantages of Wavelet
compression compared to DCT isn't just of
pure academic interest. With BT dragging
its feet over the roll -out of ADSL, and with
indications that prices will be significantly
higher than most people will be prepared
to pay, many Web users may be stuck with
56k modems over POTS (the Plain Old
Telephone Service) for some time yet. But
with new compression standards promising
more for less, the lack of wide -band
Internet access means that we might not
have to continue to endure the World Wide
Wait for much longer. And remember, this is
just one application of data compression.
Digital TV digital radio, DVD, mobile
phones all rely on data compression for
their very existence. Like it or not, the
squeeze is on and life in the 21st century
just won't be the same without it

February 2001 ELECTRONICS AND BEYOND

