Dc restorer for video use offers ultra-stability

by Roland J. Turner AEL Communications Corp., Lansdale, Pa.

A sample-and-hold technique, along with strong degenerative feedback, permits an active dc restorer to operate with very high stability over a wide temperature range. Restoration stability can be maintained to within 30 microvolts, even in the presence of a dc offset voltage as large as 100 millivolts.

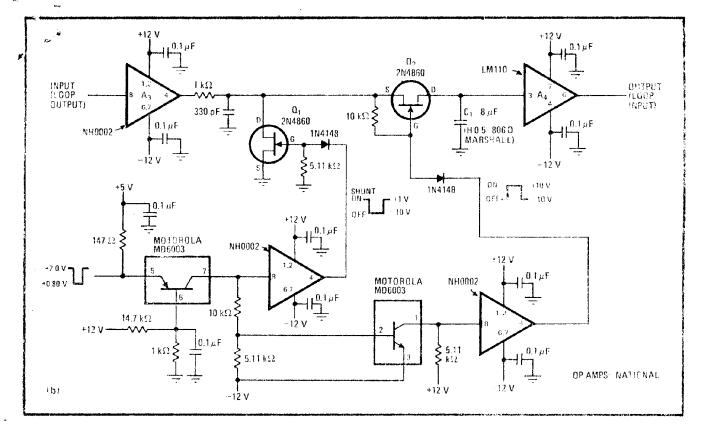
The circuit is useful in radar applications, where it is often essential to peak-detect or integrate video signals relative to a stable de reference. This is especially true if the video sensor contains diodes that have a tempera-

ture-dependent offset voltage.


The dc restoration must be performed without any temperature-induced offset voltage, since dc coupling must be preserved in the video processing (peak detection or integration) following dc restoration. Accurate signal detection, then, heavily depends on providing a stabilized dc restoration level. The video output signals must be independent of any thermal variations that may occur in the video detector and dc restorer.

Conventionally, a dc restorer operates at relatively high signal levels and requires considerable video gain prior to dc restoration. Moreover, a dc restorer generally employs a temperature-compensated zener diode, and two matched diodes to keep the dc restored level relatively constant over a wide temperature range. But even with the best matched diodes and the most stable temperature-compensated zener, the dc restored level cannot be made more stable than ± 10 mv over a 100°C temperature range. With the dc restorer shown here, however, stabilities of $30~\mu\text{V}$ can be established at extremely low video levels.

A complete video amplifier employing this improved de restoration technique is drawn in (a). In this circuit's sample-and-hold scheme, the de output of a de-coupled amplifier is sampled over a 50-microsecond gating interval. It should be noted that de coupling must be maintained from the input (sensor) through to the output integrator or peak detector. As a result, de signal changes longer than the sensor's thermal time constant, which is typically less than 10 milliseconds, can be recognized as a valid signal/target by the peak detector or integrator.


The full schematic of the de-restorer section of the video amplifier is given in (b). During the de-restoration interval, the FET shunt gate, Q_1 , is open, while the FET series gate, Q_2 , is closed. During the gating interval, sampling capacitor C_1 , which is a highly temperature-stable polycarbonate-film capacitor, charges to the average noise level present at the output of amplifier A.

When the sampling gate is closed, the circuit's sampling process activates a degenerative-feedback loop that forces the average signal value at A₃'s output to approach the signal-noise level. In effect, the dc level at the noninverting terminal of input amplifier A₁ is forced to match the dc level at A₁'s inverting terminal to

Emphasizing stability. Do restoration loop of video amplifier (a) allows the amplifier to match do input levels to within 30 microvolts, in spite of widely varying temperatures. The sample-and-hold circuitry of the do restorer loop is shown in (b). During the gating interval, which is 50 microseconds long. FET shunt gate Q_1 is off, FET series gate Q_2 is on, and capacitor C_1 (a temperature-stable unit) charges.

1

within 30 μ V. During the signal processing interval, when shunt FET gate Q_1 is on and series FET gate Q_2 is off, the voltage across capacitor C_1 establishes an ultrastable dc-restored level at the positive input to amplifier A_1 as a reference for detecting whatever video signals may be present at the negative input of A_1 .

To realize a high degree of de-restoration stability within the gating aperture, it is essential to select op amps for amplifiers A₁ and A₂ that have fast slew rates. This is why Harris' type HA2620 op amp, which has a gain-bandwidth product of greater than 30 megahertz, is used for both A₁ and A₂. Amplifier A₄ is a high-stability buffer that serves as a high-input-impedance load for the sampling capacitor, C₁.

This active do restorer can reduce a 100-mv do offset at the sensor to an equivalent do offset of less than 30 uv. And because of the low leakage of the sampling

gate, the stored charge on capacitor C_1 is not disturbed during the hold interval, even if a 10-V signal is present at the gate input.

The forward gains (80 decibels) of amplifiers A₁, A₂, and A₃ contribute to the degenerative-feedback loop during the de restoration interval, forcing A₁'s positive input to follow the de offset present at A₁'s negative (sensor) input. The circuit's integrating stage containing amplifiers A₅ and A₆ must be placed outside the de-restoration loop, since the fast slew rate of the forward-control loop must be preserved during the de restoration interval.

For the circuit to operate properly, the input-signal condition must be known during the de-restoration interval. In radar systems, this time occurs between pulse transmission and signal reception; for television signals, this time occurs during the sync tip transmission.