A MUITIPIE TESTPOINT

 Measures volts at a number of circuit points simultaneouslyHave you ever had a situation arise in troubleshooting or aligning an electronic circuit when adjustments of a potentiometer, capacitor, or coil caused two or more test point signals to vary simultaneously? When this happens, you must either move your test equipment inputs from one point to another or use several pieces of the same equipment to monitor each test point at the same time.

The Multiple Test-Point Monitor described in this article overcomes this problem. It can measure up to four test points at intervals of 1 to 10 seconds. All four test points can have the same polarity, or two can have positive polarity and the other two negative. The monitor can also be set to operate on two test points only or "look" at one preselected test point indefinitely.

Circuit Operation. As shown in Fig. 1, the circuit is based on IC2, a 4-bit shift register. The inputs to this register are loaded with a binary " 1000 " when pins 4,5 , and 6 are low, and pins 9 and 10 are high.

When pin 10 is forced low and the right shift is activated by a signal on pin 2, clock pulses from IC1 shift the 1 bit to the right thus changing the binary word at pins 12 through 15 . After a 2 - or 4 -bit shift (whichever is selected by $S 2$), the 1 bit returns to the A output (pin 15).

Switch $S 2$ performs two functions. It initializes the $I C 2 \mathrm{ABCD}$ inputs to binary 1000 and sets the system to shift 2or 4-bit positions. When $S 2$ is momentarily activated, it places a low at pin 1 of IC3A (a set-reset flip-flop) which forces its pin 3 high. This high is coupled to pin 10 of $I C 2$. With pin 9 of $I C 2$ tied to high, the next clock pulse will initialize IC2. The low-to-high transition at $I C 3 A$ pin 3 is also fed to the clock input of IC6A to toggle this flip-flop. When $I C 6 A$ is set, $I C 2$ shifts 4 bit positions, and when $I C 6 A$ is reset, $I C 2$ shifts 2 bit positions. The shift is actuated by a closure of momentary switch $S 2$ for one clock pulse.

Transistors Q1 and Q2 are driven by the A and B outputs of $I C 2$, while $I C 4 A$ and IC4B gate bits C and D from $I C 2$ to transistors Q3 and Q4, with IC6A inhibiting or enabling the two gates. When IC6A is set, the gates are enabled, and when IC6A is reset, they are inhibited. Gate $I C 4 B$'s output at pin 6 is also fed to IC5A to reenter the 1 back into the shift register A position after 4 shifts, while IC4C shifts the 1 back to the shift register when the system is in a 2 -bit monitor position. Gate IC4C is enabled or inhibited by $I C 6 A$ depending on whether the latter IC is set or reset. Gate $I C 5 B$ puts bits A and B from $I C 2$ through to one section of $S 3$ to activate Q5. Transistor $Q 5$ and relay $K 5$ form a polarity-switching network that allows negative signals to be monitored at $J 1$ and $J 2$ without changing the voltmeter leads.

The clock signal generated by IC1 can be adjusted from one pulse per second to one pulse every 10 seconds by potentiometer R3. The clock output is fed to one input of AND gate IC4D, whose other input comes from the set-reset

At left is a view of the
inside of the author's prototype.

Fig. 2. A suitable power supply.

PARTS LIST

C1-1000- $\mu \mathrm{F}, 25-\mathrm{V}$ electrolytic
C2-1- $\mu \mathrm{F}, 10-\mathrm{V}$ electrolytic
D1,D2-1N4001 diode
F1- $1 / 4-\mathrm{A}$ fuse with holder
IC1-7805 5-V regulator
S1—Spst switch
T1-12.6-V center-tap transformer (Triad F-25X or similar)

PARTS LIST (Fig. 1)

C1-10- $\mu \mathrm{F}$ electrolytic
C2-0.1- $\mu \mathrm{F}$ capacitor
D1 through D5-1N914 diode
IC1-555 timer
IC2-74194 4-bit shift register
IC3-7400 quad 2-input NAND gate
IC4-7408 quad 2-input AND gate
IC5-7432 quad 2 -input OR gate
IC6-7476 dual JK flip-flop
J1 through J7-Banana connector
K1 through K5-Spdt relay
LED1 through LED4-Red light-emitting diode
R1,R17 through R20-1-kilohm, 5\%, 1/2-W resistor
R2-100-kilohm, 5\%, $1 / 2$-W resistor
R3-250-kilohm potentiometer
R4 through R8-6.8-kilohm, 5\%, ½-W resistor
R9,R11,R13,R15-220-ohm, 5\%, 1/2-W resistor
R10,R12,R14,R16-4.7-kilohm, 5\%, 1⁄2-W resistor
S1-Spdt slide switch
S2-Spdt momentary-contact switch
S3-3pdt slide switch
Q1 through Q5-2N1613 transistor
Q6 through Q9-2N3904 transistor
Misc.-Suitable enclosure, knob, press-on types, etc.
flip-flop formed by $I C 3 C$ and $I C 3 D$.
The IC3 flip-flop is switched by the operation of $S 1$ to either enable or inhibit the clock signal from reaching IC2. Stopping the clock signal allows indefinite monitoring of one selected test point.

The four lines driving relay drives $Q 1$ through $Q 4$ are monitored by transistors $Q 6$ through $Q 9$, each of which has a LED and associated current-limiting resistor as a collector load. When the line goes high, it activates both sets of transistors thus selecting one line and indicating it by the glowing LED.

Construction. Since parts placement is not critical, any type of construction can be used. Once a board has been constructed, it can be mounted with the associated relays and a power supply (see Fig. 2 for a circuit) in a convenient enclosure. The front panel should mount the four input banana connectors $J 1$ through $J 4$, the system ground connector $J 5$, clock speed control $R 3$, and the three switches ($S 1$ through $S 3$).

Input connectors $J 1$ through $J 4$ are connected to the signals of interest, while $J 5$ is connected to the tested system's ground. Connectors J6 and J7 connect to the monitoring device being used (voltmeter, scope, etc.) in accordance with the polarity specified by $J 6$ and $J 7$.

BEEP? …EPP.․․

Add a power-failure sensor to any ac digital clock

By James Antonakos

MOST digital clocks do not have the backup circuits (reserve power supply and oscillator) necessary to keep them running during a power outage. Thus, it is possible that someone glancing casually at a clock can be misled as to the time. One way to combat this problem is to install the "Power Out Sensor" in your digital clock. After a power failure, the circuit will "beep" until you reset the clock.

Circuit Operation. When power is first supplied to the circuit, a positive spike, produced by $C 1$, is applied to the SET input of flip-flop IC1. This causes the Q output to go high and enables one half of the dual timer, IC2. The latter oscillates at about 5 Hz , alternately enabling the other half, a $1-\mathrm{kHz}$ oscillator. The circuit will continue to oscillate until the flip-flop is reset by momentarily closing $S 1$. This forces Q low
and disables the timer. The circuit will remain in this state because the inputs to the 4027 are grounded through R3. Therefore, the circuit is actuated only when power is shut off and then re-applied.
The output from $I C 2$ is applied to emitter follower Q1, which drives the speaker through R10. The value of the latter resistor is selected for the desired audio level. If the clock is a radio alarm, its speaker can be used, or any small type of speaker can be added. If desired, the audio oscillator output from pin 9 of IC2 can be used to drive any external audio system.

Construction. Assembly is not critical. The prototype was built on a standard perf board cut to fit into the clock to be used. A printed-circuit board could be used but is not required and is time-consuming to prepare.

Because CMOS integrated circuits are used, the supply voltage can be any value between 5 and 18 V , a range suitable for most applications. The current drain for the alarm is only 30 mA and can be safely drawn from most clock power supplies.

C1, C2, C4-0.05- μ F capacitor C3-1- $\mu \mathrm{F}, 35-\mathrm{V}$ electrolytic
IC1-4027 CMOS dual JK flip-flop
IC2-556 dual timer
Q1-2N4401 transistor
R1, R6, R7-10-kilohm, $1 / 4-\mathrm{W}$ resistor R2 through R5, R8-100-kilohm, $1 / 4-$ W
resistor
R9-2.2-kilohm, $1 / 4-\mathrm{W}$ resistor
R10-See text
S1-Normally open pushbutton switch SPKR-8-ohm speaker
Misc.-Mounting hardware, perf board,
IC sockets, etc.

