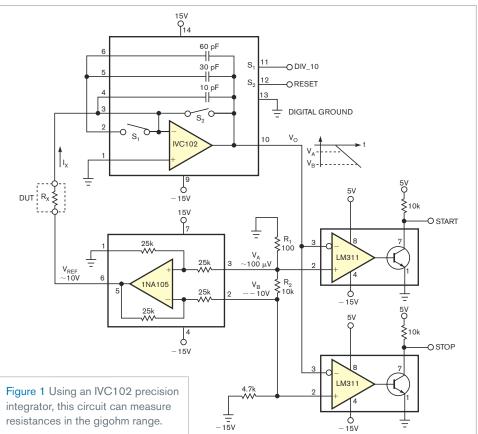
Integrator enables simple ohmmeter with gigohm range


Stefano Salvatori and Gennaro Conte, Università degli Studi di Roma Tre, Rome, Italy

The Texas Instruments (www. ti.com) IVC102 precision integrator has high-quality internal capacitors. The circuit in **Figure 1** allows you to measure very-high-resistance values of R_x . A precision difference amplifier, a TI INA105, applies a reference voltage to R_x . During integration, a negative voltage ramp, V_{Ω} , is generated at the output of the IVC102. The two LM311s compare the amplitude of V_{0} with two fixed thresholds and generate the two digital signals: start and stop. The delta time between two such events relates to the system parameters by the expression: $\Delta T = C_{INT} [(V_A -$ $V_{\rm B}$ / $V_{\rm REE}$]R_x, where ΔT is the delta time and C_{INT} is the internal integrating ca-

designideas

pacitance of the IVC102, which external connections on pins 4, 5, and 6 select. (Note: when S_1 is open, $C_{INT} = 10 \text{ pF}$, whereas, when S_1 is closed, $C_{INT} = 100 \text{ pF.}$) The V_A threshold allows the circuit to see the output ramp without any offset on the V_{\odot} signal. Because of the INA105 difference amplifier, $V_{RFF} = V_A - V_B$, so the previous equation reduces to: $\Delta T = C_{INT} R_x$. Also note that the precision of resistors R_1 , R_2 , and R_3 is not critical. The difference amplifier guarantees the precision of the ohmmeter.

External digital-control circuitry can measure delta time by counting the clock periods between the start and the stop events. At the end, the control circuit can generate a reset signal for the IVC102 to perform a new measurement.EDN

