BUILD A
 CLELLCLL LCLLLLEERELS

BY JOHN T. BAILEY

A $31 / 2$-digit meter

 with either LED or LCD displays, plus a variety of options including a temperature probe
scale dc meter. The basic meter also features automatic zeroing and polarity indication.

About the Circuit. The basic circuit for the LCD version is shown in Fig. 1, while the circuit for the LED version is shown in Fig. 2. Both circuits feature the same $31 / 2$-digit display capability. Since both chips have a noise level of about 15 $\mu \mathrm{V}$, the associated display should be quite stable. With the inputs shorted, the display should indicate 000 , with no roilover of the last digit.
With the component values shown, both circuits have full-scale displays of 200.0 . To change this to 2.000 , change C2 to $0.047-\mu \mathrm{F}, R 2$ to 470,000 ohms, and R4 to 25,000 ohms.

The decimal points in the LED display (Fig. 2) are driven by switching a 150ohm resistor from ground to the decimal point in the desired decade.
LCD displays, such as that shown in Fig. 1, are driven by a symmetrical square wave applied to the backplane. Each digit segment is then turned on by applying an identical waveform (but re-verse-phase) to it. For this reason, the decimal points of the LCD display are driven by inverting the backplane signal using NOR gate IC4. (LCD displays can be permanently damaged by prolonged application of a dc voltage. Any dc potential greater than 50 mV applied to the LCD for more than two minutes will permanently damage the display.)

Fig. 1. As single $31 / 2$-digit A / D converter 7106 can directly drive an LCD display, using a NOR gate for decimal selection.

PARTS LIST BASIC METER

B1-9-volt battery (not in kit)
$\mathrm{CI}-0.1-\mu \mathrm{F}$ Mylar or polypropylene
$\mathrm{C} 2-0.47-50-\mu \mathrm{F}$ Mylar or polypropylene
$\mathrm{C} 3-0.22-\mu \mathrm{F}$ polypropylene
C4-100-10-200)- pF disc
CS-0.01- $\mu \mathrm{F}$ dise
DISI thru DIS3-Common-anode 7-segment light-emitting diode display*
DIS4-Common-anode \pm light-emisting diode display*
DIS5-31/2-digit liquid-erystal display (Hamlin No. 3902 or similar)**
$1 \mathrm{CI}-7107^{*}$ or 7106** A/D converter IInter(il)
IC4 4077 NOR gate**
R1—24,000-thm, $1 / 4$-wats, 5% resistor R2- $17,0 \times \mathrm{K}$-ohm, $1 / 4$-want. 5% resistor R3-100,000-shm, 1/4-watt, 5% resistor R4-1600-ohm, 10-surn potentiometer R5-1-megohm, 1/4-wan, resistor RII-150-ohm, $1 / 2$-watt, 10% resistor Misc.-Battery holder (not in kit); printed-circuil board; $40-\mathrm{pin}$ and 14 -pin** IC socker; 14-pin sockets for LED displays (4).
*These items required for LED version only

* *These irems required for LCD version only.

Fig. 2. The LED circuit, using a 7107 is similar to that in Fig. 1. Decimal point is selected through R11 to ground.

Construction. The actual-size etch-ing-and-drilling and component-placement guides for the LCD version of the meter are shown in Fig. 3. Similar guides for the LED version are shown in Fig. 4. Note that the board for the LED (7107) version is arranged so that the display section can be cut from the main board to permit it to be mounted at a right angle to the latter.

In the LCD (7106) version, the display comes with an edge connector. Mount and soider this connector to the board at the appropriate location.

The components used in the circuit are not critical in determining the accuracy of the meter. However, it is important that integrating capacitor C3 have a low dielectric loss. Use either a polypropylene or a polystyrene capacitor. Mylar capacitors are satisfactory for reference capacitor Cl and auto-zero capacitor C2.

Temperature Probe. The addition of a few components can add a tempera-ture-measuring feature to your basic instrument. The circuit shown in Fig. 5 illustrates how this feature can be added. Note that a four-pole double-throw switch (S1) is used to transfer from regular DMM functions and the temperature function.

The temperature probe operates on the principle that a diode forward-biased at a constant but low forward current changes forward voltage linearly over a relatively wide range ($-40^{\circ} \mathrm{C}$ to $+150^{\circ}$ C) at about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. In Fig. 5, the emitter of a metal-cased npn transistor is used as one diode lead, while the base/ collector combination is used as the other lead. The transistor's metal case makes a convenient probe tip. (A zener diode rated at less than 20 volts would work as well.)

The probe itself is fabricated from an ordinary balipoint pen with screw-on top, a transistor sensor, shielded two-conductor cable, and a subminiature phone jack and plug. Open the pen and remove the ink cartridge, spring, and retractor mechanism. Then trim away the pen's top until its diameter is the same as that of the rim on the transistor's metal case. Slide the cable through the top and bottom of the pen and assemble the pen. Separate the cable's conductors for a distance of $2^{\prime \prime}(50.8 \mathrm{~mm})$ at the point end of the cable and trim away $1 / 4^{\prime \prime}(6.4 \mathrm{~mm})$ of insulation from each. Twist together the fine wires in each conductor and lightly tin with solder. Slide over each conductor a $1^{\prime \prime}$ ($25.4-\mathrm{mm}$) length of heat-

Fig. 3. Actual size etching and drilling guide for the pe board for the LCD display meter is shown at right, component placement above.

Fig. A. Actual size etching and drilling guide for pe board for LED meter is at left, component placement above. The display can be separated from main electronics if desired.

shrinkable tubing. Then twist together the base and collector leads of the tem-perature-sensor transistor, trim the lead pair to $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ and solder to one of the cable's conductors. Connect the solder and transistor's emitter lead to the other cable conductor. Then slide the heat-shrinkable tubing down over the respective connections and shrink into place.

Connect and solder a subminiature phone plug to the conductors at the free end of the cable. Epoxy the bottom of the heat-sensing transistor's case to the tip of the pen body and the cable to the top of the pen where it exits the body of the pen.

DMM Circuit. The circuit shown in Fig. 6 can be used to convert the basic dc meter into a digital multimeter. Note here that two new circuits have been added. One is a constant-current source for measuring resistance (ohms converter) and the other is a precision ac rectifier for the ac converter.

As shown in Fig 7, the ohms converter employs a constant-current FET regulator (D9) in one leg of the IC3 operational amplifier circuit to generate a reference voltage.

For ac measurements, the input signal from the voltage divider is fed to the

Fig. 6. Front-end switching converts the basic de meter into a full-fledged digital multimeter. The ohms and ac converter must be added also.

PARTS LIST

SCALING CIRCUIT

One each of the following I \% resistors:
9.00 to 9.09 megohms $90,0001090,900$ ohms

9000 to 9090 ohms 900 to 909 ohms 90 to 90.9 olms 0.9 -ohm 2% resistor

[^0]
precision rectifier shown in Fig. 7. The dc output from the rectifier can be scaled to indicate rms voltage by adjusting R20. FET input op amps are used to produce the high input impedance required when
the full 10 megohms of the input divider is in the circuit.

A useful power supply for the LED version of the DMM is shown in Fig. 8 . This supply can operate from a 12.6 -voit
center-tapped transformer or from a conventional 6.3 -volt transformer, both of which are shown in Fig. 8.

DMM Construction. The ac and ohms converters and power supply can be assembled on a single printed-circuit board, the etching-and-drilling and com-ponent-placement guides for which are shown in Fig. 9. If desired, the powersupply portion can be separated from the op-amp circuits.

When using the 6.3 -volt transformer in the power supply, connect one output lead to point CT and the other output lead to one of the 6.3 points. This converts the power supply from full wave to half wave.

The LCD version of the instrument requires only a single 9 -voit battery to drive both the logic and display. A linepowered 9 -volt dc charger can be used with a 9 -volt rechargeable battery in this version of the DMM.

The circuit shown in Fig. 10 can be used with the LCD DMM if you wish to use four small-sized cells to supply both the +6 and -5.6 volts required by the circuit.

Options. As shown in Fig. 6, additional ranges can be added to the instrument by switching into other points on the volt-age-divider network. For example, to add a 200 -ohm full-scale range to the ohms function, another switch is required to transfer the ohms input line to the 100-ohm point on the divider.

In a similar manner, the current range

Fig. 9. Actual size etching and drilling guide for pe board for the ohms and ac converter is shown at left, components placement above. Board can be separate from power supply if desired.
can be extended downward by switching into higher points on the divider network. A high-current range can best be added by using a separate 0.01 -ohm input shunt, with the shunt current feeding into the current line. The three options, with
the required lead breaks, are shown in Fig. 6.

To add the 20 -ampere option, use heavy-duty terminals and bus-bar wiring to minimize voltage drops and contact resistance. The 0.01 -ohm resistor
should have a minimum 10-watt rating. The circuit is arranged so that the current being measured does not flow through switch contacts.

The $20-\mu \mathrm{A}$ current option increases the low-current measuring capacity.

Fig. 10. This -5.6 -volt supply can be used with battery supplying the LCD circuit.

Photo shows inside of author's prototype meter. Switches on front can be arranged to suit builder.

However, it should be noted that the current shunt will be 10,000 ohms, a value that will limit current measurements to high-resistance circuits.
In the 200 -ohm resistance option, when the range switch is set to 20 volts. the decimal point energized for all three options will be correct even though this option has a three-decade scale range.

Calibration. The unloaded potential of a fresh mercury cell is 1.35 volts. A volt-age-divider network consisting of 0.5% or better tolerance resistors can be applied to this voltage source to arrive at almost any potential in the 150-to-200mV range. There is no need to obtain resistors that yield exact decade voltages. Instead, you can use Ohm's law to determine what the voltage will be between any two points in a voltage divider, Let us assume you have a voltage divider made up of a precision-tolerance 500and a 3000 -ohm resistor. Using Ohm's law, the current through this series network with a mercury cell would be 1,35 volts divided by 3500 ohms, or 3.86 mA , Then the voltage dropped across the 500 -ohm resistor would be 3.86 mA times 500 ohms, or 192.86 mV .

Ac calibration is achieved by setting the FUNCTION switch to AC VOLTS and the RANGE switch to the setting for which you have an accurate calibration voltage. Then adjust $R 20$ in the ac-converter section for the known voltage level being applied to the input, while observing the display.

The resistance ranges can be calibrated by adjusting R23 in the ohms converter section for exactly 100 mV between pins 2 and 6 of IC3. An alternative method is to use a known 0.1% tolerance resistor value and adjust R23 for a display of its value. Bear in mind, however, that the calibration will be only as good as the accuracy of the test resistor and the selting of R23.

Calibration of the temperaturemeasuring circuit is performed by immersing the probe tip in ice water and adjusting the $0^{\circ} \mathrm{C}$ ADJ potentiometer for a 00.0 display. Then, with the probe tip immersed in boiling water, adjust the $100^{\circ} \mathrm{C}$ ADJ pot for a 100.0 display. If you prefer a ${ }^{\circ} \mathrm{F}$ display in degrees Fahrenheit, use a 32.0 indication in ice water and 212.0 in boiling water.

Conclusion. As you can see from the foregoing, you can just about custorn tailor a digital multimeter to your needs and/or desires with the new $3^{3 / 2}$-digit A/D converters.

[^0]: 0.1 -ohm, 10\% resistor
 51. J2—Banana jack (not in kit)

 Misc.-Four-pole, five-ihrow swirches (2): solder: hookup wire; (not it knis).

