Test circuit checks optical isolators

by D. Bruce Johnson Tullahoma, Tenn.

When you add your own voltmeter to this test circuit, you can accurately measure the current-transfer efficiency of an optically coupled isolator that has a phototransistor output. The test circuit also enables you to evaluate the current gain $(h_{\rm FE})$ of the coupler's phototransistor. Both parameters, which are measured to within $\pm 3\%$, can be read directly from the voltmeter's display over the useful current range of most couplers.

The test circuit employs an operational amplifier (A₁) as a voltage-to-current converter to supply a maximum drive current of 10 milliamperes for the coupler's input light-emitting diode for the transfer-efficiency test. A pnp transistor is also wired as a voltage-to-current converter for providing a maximum base current of 10 microamperes to the coupler's phototransistor for the h_{FE} measurement. Another op amp (A₂) acts as a current-to-voltage converter during both tests.

The coupler's transfer efficiency can be defined as:

efficiency =
$$|(I_{\rm C}/I_{\rm D}) \times 100\%|$$
 $I_{\rm B} = 0$

where I_C is the phototransistor's collector current, and I_D is the LED's forward current. The transfer function of

the voltage-to-current converter is expressed by:

$$I_{\rm D} = E_{\rm i}/100$$

and the transfer function of the current-to-voltage converter is:

$$E_{\rm o} = I_{\rm C} R_{\rm FB}$$

The coupler's transfer efficiency can now be written as:

efficiency =
$$(100E_o/E_iR_{FB}) \times 100\%$$

For the circuit to provide direct reading, a ganged switch is used to control both voltage E_i and resistance $R_{\rm FB}$. The product of E_i and $R_{\rm FB}$ is always 100, regardless of switch position. The transfer efficiency, therefore, simply becomes $E_o \times 100\%$ —so that a 1-volt output indicates an efficiency of 100%.

A similar relationship exists for phototransistor h_{FE} , which is defined as:

$$h_{\rm FE} = \left| \; I_{\rm C}/I_{\rm B} \; \right|_{I_{\rm D} = 0}$$

where I_B is the phototransistor's base current. In terms of the transfer functions of the test circuit, phototransistor h_{FE} can be written as:

$$h_{\rm FE} = E_0(10^5)/E_{\rm i}R_{\rm FB}$$

Since the product of E_i and $R_{\rm FB}$ is 100, then $h_{\rm FE}$ equals 1,000 E_i —so that a 1-V output corresponds to an $h_{\rm FE}$ of 1,000.

If you use general-purpose 741-type op amps in the test circuit, you will be able to measure transfer efficiency to about 300% and h_{FE} to about 3,000.

Optical coupler checkout. This test circuit, together with a voltmeter, provides a direct readout of the current-transfer efficiency of an optical coupler. The $h_{\rm FE}$ of the coupler's phototransistor can also be measured. Amplifier A_1 and the transistor operate as voltage-to-current converters, while amplifier A_2 is a current-to-voltage converter. A ganged switch acts as a range control for the test current.