
f f A T U R E

Techies' GuidetoC
Part17

This month we'll look at the potentially contentious ...
and confusing ... issue of time as it appears in the C language.

Human beings have evolved a fairly
simple system of dealing with the

time. One can simply look at a watch or ask
someone and move on to greater things.
Computers have clocks, but no watches.
As such, they have come to use a rather
more complex system of timekeeping.

In asking for the correct time, we
make all sorts of assumptions which a
computer cannot. It's unspoken that one
usually wants the correct time for the cur­
rent time zone, and with whatever
daylight savings time adjustments as are
in use at the moment added to it. Likewise,
the date is usually given in terms of the
popular Gregorian calendar, as opposed
to, say, the less frequently used Mayan
one. These are all things that computers
need to be told.

In addition to these purely human
concerns, computers have a few of their
own. For example, our system of dates
refers to the number of years between the
arbitrary year one and now. Considering
that the middle ages saw a fairly sparse use
of personal computers, most computer
operating systems have seen fit to place
the beginning of time at some rather more
contemporary point. Computer time and
dates are calculated as a number of
seconds relative to an arbitrary start of the
universe. Naturally, this start time varies
between systems, as we'll see.

The format of the time and date
values for computers vary a lot too. If you
plan to work with files or other things
having time and date stamps from varying
systems, this will probably cause your
brain to hurt after a while.

This month, let's see how the sands of
time can be comprehended by your C
programs without getting to your disk
drives and voiding your system warrantee.
These examples pertain to Borland's
Turbo C implementation, although they

34

Steve Rimmer
should work with minor fiddling under
most PC based C compilers.

Double Time
On a PC under C, time is figured as being
the number of seconds from January 1,
1970 GMT and the present. As this will be a
fairly large number ... there are about thir­
ty-one million seconds in a year ... time is
stored in long integers.

Under C, the time and the date are
derived from this single long integer. The
easiest way to have this long integer
passed to your program is like this.

longt;

time(&t);

There are a few things to note about
this. First of all, you must include the
time.h header in any program you want to
work with time functions in. Secondly,
note that for reasons which ar'en 't terribly

· obvious, the time function does not usual­
ly return a long integer, but rather stores
the time value in a long integer whose ad­
dress is passed to it.

You can actually make it return a long
value instead if you use it like this.

t=time(NULL);

This number, while containing the
exact time, is not in a terribly useful form.
~ere are numerous C functions to change
thts, although the one you use will no
doubt require a bit of forethought. Several
of them seem to have identical uses.

The easiest way to see what time it is
involves the ctime function. This bit of
code illustrates its use.

longt;

time(&t);
printf(ctime(&t));

The result of this call would be some­
thing like

Mon Apr0212:03:331991

Now, there are a number of important
things to note about the string returned by
ctime. The first is that you must have the
time .h header in your program so that your
compiler will know that ctime does, in­
deed,returnapointertoastringratherthan
an integer. Secondly, the string it returns is
always exactly twenty-six characters
long. The twenty-fifth of these will be a
newline character, which is often incon­
venient.

You might want to dispense with this.

longt;
charb[26);

time(&t);
strcpy(b,ctime(&t));
b[24)::0;

The ctime function will work with
two global variables which are present
whenever the time.h header is present in
your program. You should set timezone to
represent the number of seconds between
GMT and your local time zone. Eastern
standard time is five hours removed from
GMT,sowewouldsettimezonelikethis.

timezone=5*3600;

The value 3600 is sixty minutes mul­
tiplied by sixty seconds. Note that you
don't have to declare timezone explicit­
! y ... it is provided for you by the compiler.

You can also adjust for daylight
savings time if you like. Set daylight to a

E&lTMay1990

non-zero value if you're presently using
day light savings time.

Now, bear in mind that the time func­
tion retrieves the time from your PC' s
clock. If you have set the clock in your
computer to local time, you won't want to
use the timezone and daylight values.
They're only used if you keep the clock in
your system setto GMT, in which case the
displayed time can reflect the geographi­
cal location of the computer using your
program.

If you write a program which requires
that its time be adjusted by its users to
reflect their displacement from GMT,
you'll be interested in a function called
tzset. When it's called, it searches the DOS
environment for an environment variable
called 1Z and, if it discovers one, adjusts
the timezone and daylight values accord­
ingly.

To make this work, you must start at
the DOS prompt and type in a SET com­
mand for the 1Z variable. You can add this
to your AUTOEXEC.BAT file if you
want to make it permanent. Type the fol­
lowing:

SETTZ=ESTSEDT

This is a fairly complex string. The
first three characters represent the local
time zone, in this case EST for Eastern
Standard time. The number represents the
number of hours between GMT and the
local time zone. This would be 5 or +5 for
Eastern Standard Time, 8 or +8 for Pacific
time or -1 for the time in France, for ex­
ample. Finally, the last three characters
are optional, and represent the daylight
savings time zone code ... you'd only in­
cludeEDT, in this case, if daylight savings
time were in effect. This would cause the
daylight variable to be set to a non-zero
value.

By using an environment variable
rather than hard coding these values into
your program, you make it possible for
your users to adjust the time zone values
externally. All you have to do is to make
sure your place the tzset function early in
your program, before any time calcula­
tionsoccur.

Bear in mind that most people do not
set their system clocks to GMT. This
doesn't really matter, however. If you call
tzset and it fails to find an environment
string called 1Z, it will do nothing. Thus,
you can have your program work with the
time zone values if your users want it this
way ... all they have to do is to install the TZ

E&TIMay1990

environment variable ... or with a system
clock set to local time.

Other Clocks
There are a number of other time related
functions available under C. The gmtime
will fetch the system time, but it stores it in
a struct rather than in a long integer. This is
thestruct.

structtm{
inttm sec;
inttm -min;
inttm-hour;
inttm-mday;
inttm-mon;
inttm:Jear;
inttm wday;
inttm:Jday;
inttm isdst;
}; -

This allows you to work conveniently
with the individual elements of the time
and date without having to figure out how
many seconds have elapsed since the
dawn of computer time.

You can also get the time and date
values separately in their own structs. The
time struct looks like this.

structtime{
unsigned chart! min; /*Minutes*/
unsigned chart!-hour; I* Hours *I
unsignedchartC hund;/* Hundredths of
seconds*/ -
unsigned chart! sec; I* Seconds*/
}; -

This is the date struct.

structdate{
int da Jear;/*Year-1980*/
char da_day; /*Dayofthemonth*/
charda mon;/*Month(l=Jan)*/
}; -

Note that as these structs pertain
specifically to the DOS structure of time
and date, they are defined in the dos.h
headerratherthanintime.h

There are specific functions which
use these structures. The gettime and get­
date functions will load the appropriate
structure with the system date. These ttime
and setdate functions will set the system
time based on the contents of the struc­
tures passed to them.

As I mentioned at the beginning of
this feature, there are numerous incom­
patible time and date formats about.
We've had a look at time as seen by a PC,
but if you encounter files from a Macin­
tosh, for example, you'll find that they're

date stamped using a wholly different for­
mat. Time on the Mac starts in 1904.

In order to convert a Macintosh long
integer time value into a PC long integer
time value, you must subtract a constant
from it. That constant is:

#define mac2pc _date 2082830400L

Assuming that t contained a Macin­
tosh format date stamp, this would display
thecorrecttimeofthatdatestamponaPC.

t+=mac2pc_date;
puts(ctime(&t));

Well, almost. There are a few catches
here. If the date stamp from the Mac repre­
sents a date prior to January 1, 1970, the
ctime function will return something
meaningless. Granted, there were no
Macintoshes before 1970, but this does
not mean that Mac users might not have
set their clocks incorrectly, or just
changed the date stamps on their files.
Secondly, a long integer on a Macintosh is
storeddifferentlythanitisonaPC.

The Macintosh is based on a
Motorola microprocessor, while a PC is
based on an Intel chip. Motorola stores its
multiple byte numbers with the bytes in
the reverse order to that of Intel. Thus, if t
is a raw Macintosh date stamp, you must
send it through the following function
before you can do anything with it.

longmotr2intel(l)
long I;
{
return(((I& OxfiOOOOOOL) > 24) +
((I & OxOOffOOOOL) > 8) +
((I & OxooootTOOL) <8) +
((I& OxOOOOOOffL) < 24));
}

This works both ways, of course. It
will also transform an Intel style long in­
teger into a Motorola style long integer,
the one being simply the compliment of
the other.

The unfortunate thing about time and
date values ... on any computer ... is that
they've evolved gradually over time, and
every new variation has been added to the
previous accretion of formats to ensure
backwards compatibility. As such, there
arealotofways to tell the time on a PC.

If you 'reinterestedin properly under­
standing how the time functions work
under C, you might want to warm up your
compiler and try a few of the ones we've
discussed herein. They do take a bit of get­
ting used to .•

35

