
f [A l U R f

This month we'lllook at a complex function for getting input. More than simply a prompt
and a prayer, thisgetstringfunction asks for characters in style.

There are a number of functions
which are common to many of the

sorts of programs which get written in
C. Trolling for DOS files, something we
considered a few months ago, is cer
tainly one of them. The simple task of
asking a user for in input string is
another.

If you've perused the documentation
for your C compiler, you'll probably
know that the standard C library provides
a function for getting a string, either from
the console ... in this case the keyboard ... or
from a file. This function is, predictably, a
bit crude. There are a number of ways to
improve on it, of which the one we 'lllook
at this month is probably the most elegant.

In most cases, the user interface of a
program occupies well over three quarters

8

Steve Rimmer

of the programming effort involved and of
the resultant code. Getting string input
elegantly, then, is something worth doing.

Stringing it Out
The simple get string function provided
with C is called gets. Its operation is pretty
uninvolved ... you pass it a pointer to a
string and it waits for input. Everything
typed by the user of your program will
wind up in the string until the first time a
carriage return comes down the pipe.

If you wanted to, you could easily
write a function to do this.

gets(s)
char*s;
{
while((*p++=putchar(getch())) !=

13);
*p=O;
}

Note that the function putchar ...
another denizen of the C library ... prints
the character passed to it to the screen and
then returns the character, allowing us to
devise this rather elegant structure.

There are a number of problems with
this function. To begin with, it allows your
users to enter anything they like into your
string, whether or not it's what you had in
mind. They can enter more data than
you've allowed for in allocating the string
passed to gets, in which case they'll
probably manage to trash the stack of your
program and do something nasty. Final
ly ... and perhaps more important from the

E&TTApr111990

point of view of being elegant and civi
lized ... this function provides no editing
facilities.

If you've used DOS for a while and
have installed one of the extended com
mand line editors ... DOSEDIT or some
thing similar ... you'll probably appreciate
how primitive a simple function like this
can be in real life. If someone types a long
string into it and discovers that there's a
typo at the beginning of the string, there's
no way to back up and fix the problem. We
can improve on this slightly by adding a
backspace facility to it.

gets(s)
char*s;
{
intc,i=O;

do {
c=getchO;
if(c==8&&i 0) {
--i;
putchar(8);
putchar(32);
putchar(8);
} elsep[i++]=putchar(c);
} while(c != 13);
p[i]=O;
}

There are a few things you'll want to
know in order to make sense of this. The
ASCII value for the backspace key is
eight,andifyouprintcharactereighttothe
screen the cursor will backspace by one
position. If you print eight, followed by
thirty-two ... a space ... followed by eight
again, the cursor will back up, erase the
most recent character and then back up
again.

This function does allow you to back
space and fix your errors, but it means
retyping a whole line if you discover that
there's an error at the beginning.

The Better Gets
A gets function which allowed for editing
of inputted lines, something like what
BASIC and DOSEDITimplement, would
be a great improvement over this. Unfor
tunately, such a function is a bit of a pig to
write.Beingabletoinserttextintothemid
dle of a string, manage extended editing
keys and so on are all a bit demanding of
your code.

You might want to consider the
program accompanying this article to get a
feel for the magnitude of the task. This is, I
think, the ultimate get string function. It
allows for full line editing ... having typed

E& TT Aprll1990

something you can cursor back through
the line to insert, delete or change charac
ters. It also allows your program specify a
default string to be edited, trashed or ac
cepted by your users.

In order to avoid confusion with the
stock gets function, we'll call this one
get _string. It'scalledas

get_string(p,dflt,n);

where p is the buffer where your got
ten string will go, dflt is the string you'd
like to appear when the function is first
called and n is the maximum number of
characters the gotten string can contain.

In many cases you won't want a
default string, in which case you can just
pass an empty string for this argument,
that is, two double quote marks with noth
ing between them.

The basic structure of this rather im
mense function is essentially the same as
that of the simple gets function, although it
checks for a lot more characters. One of
the important things about this function is
that it uses GetKey, rather than getch, to
get keyboard characters. This is done be
cause getch can only return stock ASCII
characters, while many of the editing
functions, such as the cursor mover keys,
are handled by some of the extended keys
of the PC keyboard. This is handled a bit
oddly ... if you call getch and it returns
zero, there's the scan code of an extended
key waiting in the keyboard buffer, in
which case you should call getch a second
time to retrieve it. This is essentially what
GetKeydoes.

There are a few other ancillary func
tions involved in this code, such as the
ones which change the size of the cursor.
These use INT lOH BIOS calls, some
thing we haven't really discussed as yet.
You can look up what they do in a PC
hardware manual if you like, you you can
just trust' em for the time being.

One of the interesting things about
this enormous string getting function is
that it does all its editing without actually
positioning the cursor. It moves around
solely by using nondestructive back
spaces to move left and overprinting the
existing string data to move right. This
means thatitdoesn'tcare ... orevenactual-
1 y know ... where it's located on the screen.
There's a considerable amount of juggling
involvedinmakingitdoitsstuff.

A thorough explanation of each of the
cases involved in this function is beyond
the scope of this article, and is probably
unnecessary. If you've been following

this series for the past few months, you can
probably "read" C well enough to be able
to walk your way through this code pretty
easily. There's nothing in the least bit
mysterious about how it works or what it
does.

The complete string get function fol
lows.

*I

#define BS Ox08
#define CR OxOd
#define ESC Ox 1 b
#define BLNK '_'

GetKeyO
{
intc;

c=getchO;
if(!(c&Ox00ff))c=getch0«8;
return(c);
}

hidecursorO
{
unionREGSr;

r.x.ax=OxOfOO;
int86(0x10,&r,&r);

r.x.ax=Ox0200;
r.x.dx=Ox1a00;
int86(0x10,&r,&r);
}

getst(size,deflt,buffer) /* get a string

intsize;
char* deflt, *buffer;
{
char*p;
int i,l,c,cursor=O,insert=O;

*buffer=O;
if((p=malloc(size+1)) !=NULL) {
small_cursorO;
for(c=O;c<size;++c) putch(BLNK);
for(c=O;c<size;++e) putch(BS);

do {
1= strlen(buffer);
if(*(deflt}== 0) c = GetKeyQ;
elsec = *deflt++;
switch(c) {
case DEL:
if(cursor<l) {
memcpy(p,buffer,cursor);

memcpy(p+cursor,buffer+eur
sor+ 1,(1-cursor)+ 1);

strcpy(buffer ,p);
i=printf("%s%c" ,buffer+eur

sor,BLNK);

continuedonpage34 9

continued from page 9

while(i) {
putch(BS);

Techie's Guide to C
}

--i;
}
}
break;
caseiNS:
if(insert) {
insert=O;
small_cursor();
}
else {
insert= 1;
big_ cursor();
}
break;
case HOME:
while(cursor) {
putch(BS);
--cursor;
}
break;
case END:
while(cursor<l) {
putch(*(buffer+cursor));
++cursor;
}
break;
caseCURSOR_RIGHT:
if(cursor<l) {
putch(*(buffer+cursor));
++Cursor;
}
break;
caseCURSOR_LEFf:
if(cursor) {
putch(BS);
--cursor;
}
break;
caseBS:
if(cursor= 1) {
if(l) {
--1;
--cursor;
*(buffer+l)=O;
putch(BS);
putch(BLNK);
putch(BS);
}
}
elseif(cursor<l&&cursor>O) {
--cursor;
memcpy(p,buffer,cursor);

memcpy(p+cursor,buffer+cur
sor+ 1,(1-cursor)+ 1);

strcpy(buffer ,p);
i=printf("%c%s%c" ,BS,buff

er+cursor,BLNK)-1;
while(i) {
putch(BS);
--i;

34

*I

}
break;
case ESC:
while(cursor< 1) {
putch(*(buffer+cursor));
++cursor;
}
while(l--) {
putch(BS);
putch(BLNK);
putch(BS);
}
cursor=O;
*buffer=O;
break;
default:
if(c>=Ox20&&c<=Ox7f) {
if(cursor==l&&l<size) {
*(buffer+l++)=c;
*(buffer+ 1) = 0;
putch(c);
++cursor;
}
elseif(cursor<l) {
if(!insert) {
*(buffer+ cursor++)= c;
putch(c);
}

elseif(l<size) {
memcpy(p,buffer,cursor);
*(p+cursor)= c;
memcpy(p+eursor+ 1,
buffer+cursor,(l-cursor)+ 1);
strcpy(buffer,p);
i=printf("%s" ,buffer+cursor)-1;
while(i --) putch(BS);
++Cursor;
}
}
}
break;
}
} while(c !=CR);

free(p);
small_ cursor();
return(strlen(buffer));
} elsereturn(-1);
}

big_ cursor() /* make the cursor big

{
unionREGSr;

r.h.ah= 15;
int86(0x10,&r,&r);

r.h.ah= 1;
r.h.c1=7;
r.h.ch=3;
int86(0x10,&r,&r);

small_cursor() /* make the cursor
small*/

{
union REGS r;

r.h.ah= 15;
int86(0x10,&r,&r);
r.h.ah= 1;
r.h.cl=6;
r.h.ch=S;
int86(0x10,&r,&r);
}

-

T
e
e
e

E&TTApr111990

