
f [A T U R E

•
I

Thismonthwe'regoingtofindsomepracticalusesfor
all thefileaccessfacilitleswe've been investigating in

the previous two installmentsofthisser1es.
We're go1ng to see how a database manager operates.

The better you understand disk file ac
cess, the less mysterious a lot of

programs will probably become for you.
Several broad classes of applications
software rely on forms of file manipula
tion, and many others seem to do the im
possible because their authors thought of
clever ways to make files work.

The word processor I'm using to
write this article, for example, will edit a
file which is larger than the memory in the
computer it's running on. It does this by
using what has come to be called ''virtual
memory''. It keeps the current part of the
me in a small memory buffer and ''spills''
the rest of it on and off the disk as is re
quired.

It may seem difficult to think of
memory and disk space as being similar
quantities, but in many respects they are.
24

STEVE RIMMER

Using the file management facilities
we've discussed thus far, it's possible to
seek around in a me in the same way that
we might use pointers to access areas of
memory. Of course, moving data in and
out of a me is a lot slower than equivalent
memory operations ... software which uses
virtual memory techniques must do so
with some forethought, lest it slow to a
crawl every time it goes toalteritsdata.

A "stock" PC compatible computer
can only address 640 kilobytes of useful
system memory. The rest of its one
megabyte address space is tied up with
various memory mapped oddities like the
screen buffer and the system BIOS. When
you load DOS and a sizeable application
program into that available memory, you
might well find that all you have is a few
hundred kilobytes left. If the application

program in question deals with large
amounts of data, it will probably find itself
a bit cramped.

Loss of Memory
The picture in Figure 1 is a black and white
version of a public domain "GIF" image.
GIF images are full colour computer
graphicswhichcan bedisplayedona VGA
monitor. This one is 800 by 600 pixels
across. Each pixel requires one byte.lf you
whip out your pocket calculator you '11 dis
cover that this picture requires 480,000
bytesofmemorytostoreit.

A program which was confronted
with the task of doing something with this
picture might be faced with a problem.
Unless the program was very tiny in
deed ... and hence dido 't do very much ... it
would tie up enough system memory to

E&TTDecember1989

make allocating a buffer big enough to
store the picture impossible.

The designer of the program in ques
tion would thus have several options. One
of them would be to use extended or ex
panded memory, preferably the former, as
it's faster. Extended memory allows users
of AT and 386 computers to put up to 16
megabytes of additional memory in their
computers, memory which is useless for
running programs in, but is good for stor
ing data. This is the sort of applications
whichextendedmemoryisidealfor.

Unfortunately, in writing commer
cial software which relies on extended
memory, one is immediately making
one's software inaccessible to users of
straight PC compatibles ... which can't
support extended memory ... as well as to
AT and 386 users who don't happen to
have any extended memory installed in
their machines.

There is a second option. Rather than
writing the decoded GIF image to
memory ... of which there isn't enough ...
we could write it to a big disk file. If the
program in question wanted to print the
picture to a laser printer, for example, it
could then retrieve the lines of the picture
oneatatime,makingthememoryrequire
ments for the process pretty tame.

The process for locating the lines
would be simple, and you can probably
see how it's going to work if you recall last
month's discussion of files and seeking.
Allowing that the picture is x bytes wide
and that we want to read line n into a buff
er, b, we would do this. We'llassume that
fpisa handle to the file with the image data
in it.

fseek(fp,(Iong)x * (Iong)n,SEEK _SET);
fread(b,l,x,fp);

Thefreadfunction is used to read raw
data into a buffer.

The reason for casting both the size
variables to long will be discussed in a mo
ment.

With this arrangement, the only
memory requirements of the application
software in question would be a buffer six
hundred bytes long to hold one line of the
image at a time.

This l\pproach has two principal
drawbacks. The first is that it assumes that
its users will have about half a megabyte
of disk space available to hold the big tem
porary image file. In reality, it assumes
there will be this much hard drive space on
hand ... virtual memory is too slow to think
about on floppies. The other drawback is
that even with a hard drive this will be a lot

E& 1TDecember1989

Figure 1. An 800 by 600 GIF graphics file, used in the text to illustrate how memory
copes with extra-large files.

slower than using memory would have
been.

On the other hand, it's better than not
working a tall.

Commercial software which uses lots
of memory usually has a multiple option
approach to it. If a program needs a big
buffer, it might start by checking for suffi
cient regular DOS memory. If that fails, it
will check for the presence of extended
memory, using that if it's available. Final
ly, it will try using a disk file. Programs
such as Microsoft Windows do a lot of vir
tual memory operations to create the il
lusion of having unlimited amounts of
memory for applications.

Shift That Data
Adatabasemanagerisaverysimplesortof
virtual memory task, one which is easy to
understand. A database is simply a collec
tion of structs, inC terms, written to a file.
However, the file can be of any size so the
database manager cannot assume that it
can simply read it into memory and work
on it there. Itmustdeal with its data as vir
tualmemory.

A mailing list is a good example of a
typical data base. Each name and address
on the list can be thought of as one record.
Each record contains severalfields. We

might represent a record in C language
terms like this.

typedefstruct {
charfirst name[25];
char last -name[25];
char street address[37];
charappt[l6];
charcity[16];
charprovince[3];
charpostcode[8];
}MY_RECORD;

This struct occupies one hundred and
thirty bytes. You can write this into a C
language program very conveniently with
the expression

sizeof(MY _RECORD);

This expression would return 130.
We could declare a variable of the

type MY _RECORD andfillitlike this.
MY_ RECORDr;
strcpy(r.first_ name," Augustus");
strcpy(r Jast _ name,"Robes");
strcpy(r .street_ address," 14 Dead Pharaoh
Parkway");
strcpy(r.appt,"61/4");
strcpy(r .city,"Bentfoot");
strcpy(r.province,"ON");
strcpy(r.postcode,"L4T4AS");

Having done this, the variable r is
loaded up with all this data. C would like
us to treat this as a MY _RECORD vari-

25

Techie's Guide to C Programming, Part 12

Figure2. Yet another graphicsfile.

able, but as we all know it's really just a
one hundred and thirty byte chunk of
memory with all this data placed in it at
strategic locations.

Under C, as you will recall, variables
of one type may be cast to variables of
another providing that their base types are
somewhat compatible. What this really
means is that in this one particular case
you'll be telling your C compiler that you
want to break the type checking rules it has
set up but that you're doing it explicitly
and you take the responsibility for any
consequences which might result from
your action. We may, for example, cast a
variable of the type MY _RECORD to a
char buffer because we know full well that
that's allrreally is.

This rather obtuse expression il
lustratesthesyntaxforthiscast.

(char*)&r;

Here is a simple bit of C code which
will create a database file called
MYFILE.DATandwritetheaboverecord
into it as the frrstrecord. We'll assume that
r, above, has been declared and filled with
data.

FILEfp;

if((fp=fopen("MYFILE.DAT" ,"wb")) !=
NULL){
fwrite((char
*)&r,l,slzeof(MY RECORD),fp);
fclose(fp); -
}elseputs("Can'tcreatethefile");

There's a lot of strange stuff going on
inhere.
26

The first line of code ... the one which
opens the file ... should be familiar to you.
The second one is a bit complex, and may
not be.

The fwrite function, like the fread
function mentioned above, is used to deal
with blocks of raw data which move in and
out of files. It's usually used with files
which have been opened in binary mode,
as this one has. Notice the "wb" argument
tofopen.

There are four arguments to fwrite.
The frrst one is a pointer to the char buffer
which is to be written from. In this case,
wedon'thaverealacharbuffer ... we have
asyntheticonecastfromaMY _RECORD
variable, as discussed a moment ago. You
will note that the casting syntax is the
same.

We could have handled this a bit more
readably by doing something like this.

char*p;

p=(char*)&r;
fwrite(p,l,sizeof(MY _ RECORD),fp);

In this case wehaveexplicitlycastrto
the char variable p and then written the
data from the pointer rather from the buff
er which it points to. The results are exact
ly the same ... this approach might be a bit
easier to understand, although it uses one
more line of code than is really required.

The second argument to fwrite repre
sents the size of the objects being written
in bytes. The third represents the number
of objects to write. In this case we have
told fwrite that the objects are one byte

long and there are one hundred and thirty
of them, this being the size of a
MY RECORD struct. We could have
reversed these arguments, that is, we
could have toldfwrite to write one object
which is one hundred and thirty bytes long
instead of one hundred and thirty objects
which are one byte long.

The last argument tofwrite is the file
pointer for the file being written to.

If the write is successful, fwrite will
return the number of objects which have
been written, the value one hundred and
thirty in this ·case. If something goes
wrong, such as the disk proving to be full
before the entire struct could be written to
it,fwrite will return the actual number of
byteswhichmadeitintothefile.

You would check for errors infwrite
with the following code.

if(fwrite((char *)&r
,l,slzeof(MY RECORD),
fp)=sizeof(MY _RECORD)){
puts("Writtenok");
}elseputs("Writeerror");

Bigger Files
Let's now suppose thatMYFILE.DA Thas
acquired the entire mailing list of
Publisher's Clearinghouse. It's many
hundreds of thousand of records long,
teeming with people who don't want to be
there even though they may already have
wonmillionsofdollars,cars,tripsandsub
scriptions to trashy magazines. Each of
these hapless souls is represented by one
record structured as a MY _RECORD
variable.

The folks at Publisher's Clearin
ghouse have discovered that Augustus
Robes, famed Egyptologist and sample
datum, sought to fool them by giving them
the wrong post code. For the past four
years all his junk mail has been winding up
in a home for retired cat skinners in
Thunder Bay. Swearing under their
breath, they find Mr. Robes' record num
ber from one of his old mailing labels and
set about changing his post code.

One may assume that Publisher's
Clearinghouse has a very sophisticated
database manager to do this sort of thing,
but the process would work pretty much
like this. We'll allow that the record which
stores Augustus Robes' information is
record 10967.

To begin with, we need a function to
read records from the file. All of the infor
mation about Augustus Robes is correct
except for his post code, and we do not
wish to have to enter everything anew. As
such, we would use this function.

E&1TDecember1989

read record(fp,record number,r)
FILE*fp; -
unsignedintrecord number;
MY RECORD*r;- .
{ -
fseek(fp,
(long)sizeof(MY RECORD)*
(long)record number,SEEK SET);
fread((char - -
*)r,l,sizeof(MY _RECO RD),fp);
}

There are a few important things to say
about this function. First off, it allows for no
error checking, which it would do in a real
world application. Second, you will notice
that the syntax for the cast infread is a bit
different. You would fetch the record in
question by using this function as follows.

MY _RECORDr;

read _record(fp,10967 ,&r);

As you will recall from several
months back, structs cannot be passed by
value, only by location. We pass a pointer
to the struct r rather than r itself. As such,
having used the & operator in passing the
thing, we need not use it in the cast within
the function. The variable r withing the
function is not a MY _RECORD variable
but aMY _RECORD pointer.

Finally, note that we cast each of the
numbers being multiplied together to long
before performing the calculation. This is
a subtle but very important point. If you
multiply 10967 by 130 as long integers,
you will get the correct result, 1,425,710.
This is the position in the file where
Augustus Robes' record begins.
However, if you multiply them together as
straight ints and then cast the result to
long, the result will be 49,475. This hap
pens because the result of the calculation
will be limited to sixteen bits.

In the real world, one might assume
that Publisher's Clearinghouse has so
many records in its database that it must
use long integers to express their record
numbers.

Having executed read record,
above, thervariable will have all of the in
formation about Augustus Robes, includ
ing his erroneous post code. We would
change this one item,

strcpy(r.post_ code,"L9G 1Q4");

and then write the record back to the
file. The function to do this looks pretty
much like the one to read it.

write record(fp,record number ,r)
FILE*fp; -
unsignedintrecord number;
MY RECORD*r;-
{ -
fseek(fp,

E&TTDecember1989

(long)slzeof(MY RECORD)*
(long)record number,SEEK SET);
fwrite((char- -
*)r,l,sizeof(MY _ RECORD),fp);
}

It would be called in much the same
way too.

write _record(fp,10967 ,&r);

These two functions are the basis of
any fixed field database manager, that is,
of any program which treats its data
records as hard wited structs. You can
apply them to all sorts of database applica
tions. For example, suppose that the
Publisher's Clearinghouse people found
out that Augustus Robes had fooled them
but they did not know which record his
data was kept in. They could do something
like this to find him. We'll allow that the
variable max record holds the number of
the lastrecordin the file.

MY RECORDr;
inti;
for(i::O;iax record;++i){
read _record(fp,i,&r);
if(strcmp(r.first _name," Augustus")==O
&&

MULTI-FUNCTION

Counters
GREAT FEATURES & PRICE!
HCF·100
Compact, lightweight 10 Hz to 1 00 MHz
counter with four function performances.
Features eight digit LED display, low
power consumption circuit with functions
for frequency, period, totalize $259_
and self check.
Plus $10 for shipping & handling.

HCF·1000

strcmp(r.last name,"Robes")==0){
printf("Therecordnumberof%s %sis
%d\n",
r.first _ name,r .last_ name,!);
break;
}
}

Record Time
Obviously, the examples in this article
havebeenabitsimplistic.Ifyougotowrite
a database manager of your own using
them you will want to add some error trap
ping and, more important, a user interface.
Intherealworldonewouldnotwriteacus
tom Cprogram every time there was a need
to locate a specific record.

The database manager illustrates a
fundamental use of disk files as a way to
handle large amounts of structured data. A
database manager is really just a slightly
more complex version of the picture file
we discussed at the beginning of this fea
lure. However, it points up a simple rule of
data files. As long as the data is structured
in some predictable way, you can handle it
as a series of fixed records and, as such, ac
cess it fairly quickly.

Range 1 0 Hz to 1 GHz with 8-digit LED
display, frequency, period, totalize $495_
and self check functions.
Plus $10 for shipping & handling.

AUDIO
GENERATOR
Five frequency ranges
10 MHz · 1 MHz, low
distortion factor and six
range output attenuator:
0, 1 0, 20, 30, 40 and 50
dB. 110 VAG power
supply.
MODEL GAG·808B

$259.
Plus $10 for shipping & handling.

RF GENERATOR
SUPER VALUE!
Features frequency range from 1 00 KHz
to 150 MHz and up to 450 MHz on
harmonics, internal/external AM
modulation, frequency monitor output,
high/low switch and fine adjustable
output control.
MODEL GRG·450
Plus $10 for shipping & handling.

$259.

~ KBrfrELECTRONICS
~ 1428 Speers Road, Oakville, Ontario L6L 5M1
~ Tel.: (416) 847·8688 Fax: (416} 847-8598

''ORDER BY PHONE OR
MAIL. CREDIT CARD.
MONEY ORDER, CERT.
CHEQUE OR C.O.D.
ONTARIO RESIDENTS
ADD 8 % P.S. T . ..

Circle No. 15on Reader Service Card

