
f f A T U R f

File operations under C look extremely complex. This is
exacerbated by there being at least three ways to do everything.
In this installment we'lllool< at sorting out some of the confusion.

If you're new to C programming ... and
especiallyifyou'vetriedsimilartasksin

BASIC ... you'll know that writing
programs which involve disk file opera
tions is a bit tricky. Actually, the disk file
stuff is dead easy ... it's just the way that
most programming languages make you
access them that can get a bit hairy.

Unfortunately, the disk me opera
tionsavailabletoaCprogrammerarepret
ty numerous, and it's by no means obvious
which functions are intended to be used in
which applications. If you've perused
your compiler's reference manual, you've
probably come away with a head full of
me pointers, file numbers, long offsets
and relative seeking.

It's almost enough to send one back to
BASIC. Almost.

The first thing that's important to
realize about me handling in C is that you
can ignore at least two thirds of the avail
able facilities offered by your compiler.
For reasons we'll get to, there's a lot of
redundancy in there. If we start with the
remaining file operations, things will start
to work a bitmoreseamlessly.
E& TT October 1989

STEVE RIMMER

Handling the Handles
The profusion of file services under C
stems from two causes ... or possibly three.
Thefirstoneishistorical.Earlymicrocom
puter C compilers were not always able to
implement higher level me handling, even
though the definition of C called for it. As
such, they provided oftentimes pretty
crude low level, block oriented file func
tions. Later compilers, wishing to remain
compatible with their forebears, main
tained some semblance of these functions
along with the newer, more useful func
tions. As such, multiple levels of me func
tions came to be.

The more prominent cause, however,
has to do with the way DOS on the PC likes
to handle files. In a sense, it's quite power
ful at this, especially in relation to earlier
operating systems. C provides us with
varying levels of access to this power,
depending on what we're up to at the mo
ment.

The simplest form of me access is
sector access. One saw this sort of thing
happen a lot under CP/M, the eight bit
precursor to MS-DOS. A disk file is really

made up of what are called "allocation
blocks'', or, in a still simpler sense, disk
sectors. As such, using sector based file
access, one is able to read or write specific
sectors of a file. A sector was one hundred
and twenty eight bytes under CP/M ... it's
of varying size under MS-OOS, but no
DOS based C compiler with any pride at
all would ever expect its users to work
with files this way.

Using sector access, if you wanted to
read a specific byte from a me, you would
figure out which sector that byte resided in
like this

sector_ number= byte_ number /sec
tor_slze;

andthenreadthatsectorintoabuffer.Next,
you'd figure out how many bytes into the
sector buffer the one you wanted was.

offset= byte_ number% sector_ size;

The byte you wanted would be

the_ byte=sector _ butfer[otfset];

33

Techie's Guide to C Programming, Part 10
As I said, you won't have to do this on

a PC.
What C does offer us on a PC ... some

what akin to this but with rather more
flexibility ... is block access. In this access
procedure, you really get to deal with DOS
as DOS deals with its files. It allows you to
readorwritefromanypointinafile,andto
deal with blocks of any size. This is often
referred to as "low level" file access.

Low level file access is handled by
the following functions under C.

opentoestabllshalinktothetileinquestion
readtoreadin blocksofdata
writetowriteoutblocksofdata
lseektoposltion the file pointer
close to close the file

Some of this might not be completely
clear just yet ... don't worry about it for the
moment.

Handling files in this way is great if
you want to read and write large blocks of
data, because low level file access is fast.
For example, this function will save the
entire text screen of a PC into a file called
SCREEN.TXT. The file will be four
thousand bytes long.

save screenO
{ -
char*p;
inthandle;

if((hand-
le=Open("SCREEN.TXT",O CREAT))
!=-1)){ -
p=MK _ FP(Oxb800,0);
write(handle,p,4000);
close(handle);
}elseputs("Errorcreatingfile");
}

In this example, theMK FP function
is used to synthesize a pointer which
points to the base of the screen buffer ...
don't worry about how this works for the
moment. We'll assume that the video card
in question is a CGA card and that the text
screen happens to be on page zero.

The open function returns a number
called a file handle, or -1 if the file
couldn't be created for some reason. The
argument O_CREAT tells open to create
the file in question. In fact, these argu
ments are quite complex ... we'll look at
them properly later on in this series.

A file handle is actually a number
which serves as an index into a series of
me pointers. We'll see what a file pointer
is shortly.

The write function writes the con
tents of the screen buffer to the file whose
34

handle is passed to it. The close function
tidies up the file and releases the handle,
that is, it severs the link with the file and
makes the handle available for future use.

We're actually going to get into this
level of file access in greater detail in a
coming issue, because it's not all that use
ful for most of the things you're likely to
want to write immediately. Its drawback is
that it's great for dealing with large
blocks, but quite sloppy if you wantto read
or write a single byte. You can do it... just
read in a block that's only a byte long ... but
the efficiency oflow level file access kind
of up and vanishes when you do this.

Streams and Rivers
The other options for file access under Cis
"high level" file handling, which is the
really powerful way to handle files. This
allowsyoutodealwiththeminthewaythat
most programs want to, that is, on a single
byte level. However, high level file access
is flexible ... you can use both byte by byte
access and block access in the same file.

The functions which do high level file
access all have the letter "f" in front of
them. The equivalents of the low level
functions, above, areas follows.

fopen to establish a link to the tile in question
freadtoreadinblocksofdata
jWritetowriteout blocks of data
fseekto position theme pointer
fclosetoclosetherrte

Therearealsotwootherswe'lllookathere.

.fPutctowriteasinglebytetotherlleinques
tion
fgetc to get a single byte from theme in ques
tion

In order to deal with a file, we have to
start by opening it. This does several
things. If the file is to be read, opening it
makes sure that it actually exists. If it's to
be written to, opening it creates the file. If
it's to be appended ... its current contents
read and possibly altered... opening it
makes sure that you're allowed to do this,
that is, that the file is no tread only.

Opening a file using high level access
also establishes a pointer to a structure of
the type FILE. The structure itself is put
somewhere by the file management
routines of C ... you will never create FILE
variables in your programs, just pointers to
them. This is what's actually in a FILE
variable.

typedefstruct {
short level; /*rllllemptylevelofbutTer*/

unsigned flags; /*Filestatusflags */
char fd; /*Filedescriptor */
unsignedchar hold; /*Ungetccharifno
butTer*/
short bsize; /*Buffersize */
unsigned char *buffer;/* Data transfer
buffer*/
unsigned char *curp; I* Currentactive
pointer*/
unsigned istemp; /*Temporaryrllein
dicator*/
short token; /*Usedforvaliditycheck
ing*/
} F1LE;

None of this need mean a thing to you.
Not only will you never have to create one
of these variable ... you'll also never have
to use any of the members that a FILE
pointer points to. We simply pass these
things around, oblivious to what they real
ly do. The high level file routines do all the
work.

Here is an example of the use of the
fopen function. In this case, we are going
to open a text file to be read.

F1LE*fp;

fp=fopen("WOMBAT.TXT" ,"ra");
if(fp ==NULL) puts(" File notfound");

Actually, the correct... convoluted ...
way of writing this would be

if((fp=fopen("WOMBAT .TXT" ,"ra")) !=
NULL){
/*dosomething*/
}elseputs("Filenotfound");

Both versions do the same thing.
The fopen function returns a pointer

to a FILE structure which C has created
behind our backs. If the pointer points to
NULL... location zero... the file didn't
open for some reason. Whenfopen suc
cessfully opens a file, the FILE variable
will have its fields filled in by fopen, al
though as we saw, we never deal with
them and needn't care what gets put in
them.

The first argument to fopen is the
name of the file. This could be a complete
DOS path if we wanted it to be, as in

fp =fopen("D:\TEXTF1LE\ WOM
BAT.TXT" ,"ra");

The second argument is a bit more in
volved. It tells fopen what the file mode
will be.

The first character of the argument
can be ''r'' if the file is to be opened for
reading. In this case, any attempt to write

E& TT October 1989

to the file would fail. It could be "w", in
which case you could write to the file, but
not read from it. Ifjopenisasked to open a
file for writing, it destroys the existing
contents of the file if there's already a file
with the name in question on your disk.
Finally, the first character could be ''a'',
for appending, in which case you could
both read from and write to the file.

The second character can either be
"a" or "b". The "b" option is called bi
naryrrwde,anditmeansthatdatamovesin
andoutofthefileunchanged. The "a" op
tion is often referred to as cooked rrwde.
It's especially designed for text applica
tions. It means that carriage returns and
line feeds are handled in a way which is
convenientandeasytoworkwith under C.

There are more options available for
fopen, but we'll look at them a little later
on.

Having established a pointer to a file
structure with jopen, we can proceed to
use the file. This code would read in the
contents of a text file and display them on
the screen.

while((putchar(fgetc(fp)) !=EO F);

You'll want to look at this carefully for a
moment. Whatit'sreally saying is this.

intc=O;

while(c !=EO F){
c=fgetc(fp);
putchar(c);
}

Left to its own devices, thefgetcfunc
tion simply keeps returning bytes from the
opened file until the file has all been read,
at which time it returns theconstantEOF.

It's important to understand thatfgetc
returns an int, even though it's really only
getting chars from the file. The upper byte
of the int will usually be empty. However,
when the end of the file is reached, the int
will contain -1, that is, Oxffff. This is
how we differentiate between an EOF and
a legitimate byte which contains Oxff.

This can cause a lot of problems if you
aren't careful. For example, you might
lookattheabovebitofcodewithoutthink
ing and decide that the variable "c" really
only needs to be a char. If you do this, c
will never equal EOF, since EOF is a six
teen bit value and c can only hold eight,
being a char. As such, this code will never
know when it's reached the end of the file,
and it will loop forever.

Whenwe'redonewithafile, we must
close it, as before. This is done by saying

E& TT October 1989

fclose(fp);

Closing a file which has been opened
for high level file access does a number of
things. It frees up the FILE structure for
future use. It also flushes DOS's internal
file buffers.

Flushing a file buffer really only mat
ters if you've been writing to the file in
question. However, it illustrates how high
level file access really works. If you write
one byte to a file with fputc, your program
does not send that byte directly to the disk.
It would be extremely inefficient to have
to wake up the disk drive, seek around on
the disk for a while, find the appropriate
sector, read it in, place the byte in question
and write it back out every time you call
fputc.

Instead, the byte is added to a buffer.
When the buffer gets full, a whole block of
data is written to the disk. The buffer is
then emptied, and subsequent calls to
fputc continue to flow into the buffer.

If you close the file, any unwritten
bytes in the buffer are written out to the
disk. If you fail to do this, everything since
the last automatic block write will be lost.

In a large program, it's important to
remember to close your files when you're
done with them. This flushes the file buf
fers in question. It also frees up FILE
structures. If you try to open too many
files, fopen will start returning NULL
pointers, even though the files you've
asked to be opened are valid and should
present no problems.

The Circular File
We'll be continuing to look at file access
under C next month. However, you might
wanttohavealookatthispracticalapplica
tion of the file functions we've seen today.
This program converts WordStar files to
plain text files using high level ftle func
tions. Actually, the only difference be
tween a WordS tar file and a text file is that
the former has some of its characters stored
with their high bits set. If we AND all the
characters in the file with Ox7f ... recall the
discussion of bit manipulation from last
month ... theresultwill be clean text.

main(argc,argv)
intargc;
char*argvO;
{
FILE *source,*dest;
intc;

if((source=fopen(argv[l],"rb")) !=NULL)
{
if((dest=fopen(argv[2],"wb")) !=NULL) {

whlle((e=fgetc(source)) !=EO F)
fputc(c&Ox7t);
fclose(dest);
}elseprintf("Can'topen %sasdestina
tion\n" ,argv[2]);
fclose(source);
}elseprintf("Can'topen %sas
source\n" ,argv[l]);
}

This program uses command linear
guments, which we haven't formally
looked at yet. However, you can probably
see how they work. Assuming that it was
called UNWS.C ... leaving you with
UNWS .EXE after it is compiled ... you
would convert WOMBAT.WS into
WOMBAT.TXTlikethis.

UNWSWOMBAT.WSWOMBAT.TXT

In practice, we could make this into a
better WordStar converter with a few
more lines of code, but this serves toil
lustrate just how flexible high level ftle ac
cesscanbe.

Next month we'll see some of the
other things it can balance on its nose. •

SVI
99 Scarsdale Road, Don Mills,

Ontario, M3B 2R4 (416) 445-2340
Monday to Friday 8:00 to 4:30
(Minutes from 401 and DVP)

35

