
f f A T U R f

ie's
•

u
•

m1

Bytes are fairly easy to cope with. Bits are decidedly nastier.
In this installment of the C saga, we'll look at
how the bit manipulation facilities of C work.

Bytes are, of course, composed of
bits. Most dogs can tell you this if

they're suitably inspired. However,
whereas the relationship of bytes to the
universe is a fairly obvious one, that of their
component bits is not. Working with data
at the bit level is tricky. It's not something
which BASIC gives you any facilities at all
for, and, as such, you may not have tried to
do it.

Bitwise manipulation is a tremen
dously useful tool for all sorts of program
applications, but it's very nearly essential
for dealing with DOS, which ... being basi
cally an assembly language environment...
casually flings its bits around with wild
abandon.

This month we're going to get a hand
le on how C copes with bits. Needless to
30

STEVE RIMMER
say, more punctuation is in the offmg.

CScapes
Most of the bytes you encounter on the
street have eight bits in 'em. While basic
arithmetic operators do not allow you to
manipulate these directly, they all affect
the bits.

Under C on the PC, the char data
type is effectively a byte. An int is a word,
or two bytes, and Cis very flexible in inter
changing these two. Allowing that a is a
char variable, if we say a = 255, all the bits
in a will be set, that is, they'll all be one. It's
a lot easier to see this in hex notation, ac
tually. Let's say a = Oxff.

The hex number FF consists of two
nybbles, each of which is F, or sixteen. A
nybble is four bits wide. This is how the

bits in a nybble work.

DecimalHexBinary
()()()()()()

110001
220010
330011
440100
550101
660110
770111
881000
991001
10A1010
11B1011
12C1100
13D1101
14E1110
15Fllll

E& TT September 1989

Techie'sGuidetoC Programming, Part9
As you can see, the sixteen permuta

tions of a nybble involve all the possible bit
patterns. As long as you can remember
the bit patterns for the sixteen hex digits
from zero through F, you can work out the
bit pattern for a byte shown in
hexadecimal notation.

Now, there are some basic bit
manipulation techniques which C offers
us, and they prove to be very useful Let's
start with the simple binary operators.

The most commonly used bitwise
operator under Cis the AND operator, &.
To begin with, you have to be careful not
to confuse it with the logical AND
operator, &&. If we say something like

if(a = = 6 && cat = = dead) •M

we are using the logical operator. The
bitwise operator is different.

Let's consider the result of six AND
three. The kids'll tell you that it's nine. In
fact, it's two. No amount of head scratch
ing will work out how that came to pass,
however, unless you understand bitwise
arithmetic.

If you AND two numbers together,
the resulting number will be one in which
any bits common to the two numbers are
set. As such, six, which has the bit pattern
0110 and three, which has the bit pattern
001~ AND together to form the bit pat
tern 0010, or two.

Under C would say something like
this:

a= 6&3;

The AND operator is very often used
for masking off unwanted bits. For ex
ample, if you use the biosequip function of
Turbo C, you'll be able to tell all sorts of
useful things about the hardware that your
program is running on. One of these very
useful things is the type of video card
being used The video card type is held in
the fourth and fifth bits of the integer
returned by this function. The other bits
hold other information, which we aren't
concerned with here. Let's start by doing
this:

a = biosequipO & 0x0030;

The number being ANDed with the
biosequip value masks off all but the fourth
and fifth bits. Check out the bit table
above if you aren't sure why this is.

Here's what the two remaining bits
mean.

32

Bits45
OOUnused (EGA)
0140 Column CGA
1080 Column CGA
llHercules card

If a is 0x0030, that is, if both bits are
set, it's a Here card If it's 0x0010 or 0x0001
it's a CGA card. If it's OxOOOO ..• no bits
set... it's unused or an EGA card.

More Bits
The next most common bitwise operator is
OR, which is handled under C by the I
symbol Again, there's a logical OR, II,
which should not be confused with its bit
wise cousin.

If you OR two numbers together, the
resulting number will have its bits set
where set bits existed in either of the two
source numbers. Thus, six OR three
would be seven ... that's 0110 OR 0011,
which gives you 0111. InC, we would say

a= 613;

The XOR, or "exclusive OR",
operator toggles bits. It's handled by the
"' symbol If we XOR a number with a
second number, any set bits which are
common to the two will be toggled in the
first number. As such, six XOR three gives
us four ... that's 0110 XOR 0011. The
second bit in the second number toggles
the second bit in the first, leaving us with
0100.

The XOR operator is useful in doing
bit mapped graphics, among other thin~,
although, as most C compiler packages
come with graphics libraries, you'll
probably never have to use it for this. It's
also good for dealing with the machine
language interface which C provides for
the PC. We'll be looking at this in a future
installment of this series.

Finally, there's the NOT operator,
handled by the tilde character. That's one
of these, - . This simply inverts all the bits
in its destination. For example, the result
of NOT 1 is Oxfe. You might write that as:

In addition to manipulating bits, C
lets you change their positions within a
byte by shifting. Shifting involves moving all
the bits in a byte to the right or the left by a
defined number of positions. The shift
operators, < to shift left and > to shift
right, work like this:

a= 1 < 2;

In this case, we have shifted the num
ber one, 0001 in binary, left by two posi
tions, making it 0100, or four. If we did
this:

a= a> 2;

it would be one again.
Shifting an integer to the left by one

place is equivalent to multiplying it by two.
Shifting it to the left by two places multi
plies it by four, and so on. This is a good
thing to know, as multiplication takes an
awful lot longer than bit shifting. Some
compilers automatically substitute bit shift
operating where they can be used in place
of multiplication when they're optimizing
your code, but there are a lot of cases
wherein this doesn't happen unless you
make it happen.

Shifting bits right is equivalent to
division in the same way.

But is it Useful?
There are all sorts of practical uses for bit
wise operations under C. Let's start with a
simple example.

We're going to write a game here. I
don't exactly know what the object of it is ...
it's kind of irrelevant... but it's played on a
sixteen by sixteen grid with pennies. Ac
tually, pennies are too small... we'll use
loonies, which aren't worth a whole lot
more. In this game, any square on the
board can be occupied by a loonie or it
can be blank. We need a way of storing the
condition of each square in memory.

This would be the obvious way.

chargame_board[16] [16];

This would create an array of chars,
with one char per square on the board. If a
square is occupied, its corresponding ele
ment in the array would be non-zero.

This approach is easy, but that array
sucks back a quarter of a kilobyte. More to
the point, seven eighths of it is redundant.
We're using eight bits per element for a bi
nary condition... only one bit is really
needed

Here's a better approach using a bit
wise approach.

unsigned int game_ board [16];

This requires thirty two bytes. If the
game calls for the board to be initially
empty, we would initialize this array as fol
lows.

for(i=O;i;+ +i) game_board[i] =0;

E& TT September 1989

Now, let's see how we would place a
loonie on the board, that is, how we would
set a bit in this array. We'll allow that each
int in this array represents a vertical row
on the board, and the bit position repre
sents the horizontal position in that row.
We want to place a loonie on square six of
row twelve. Note that both the row and
column numbers start at zero. 'Ibis how
it's done.

game_board[12] I= (1 < 6);

The notation " I =" may be a bit con
fusing. The above line is equivalent to this:

game_board[12] = game_board[12]
I (1 < 6);

What we've done here is to create a
"mas~" which represents the bit position
in the twelfth element of the array
equivalent to the sixth place across. This is
easy to see ... we've just taken one, which is
the first bit set, and marched it across by
six places. We then OR it with the integer

in question. If the position had already
been filled by a previous loonie, nothing
would happen. However, as the bit is
unset... since we initialized the array to
zero ... the OR operation sets the bit to
one.

Suppose our game called for toggling
the status of the squares on the board,
such that if one loonie was placed atop
another both were removed from the
board. We could do this with the XOR
operator, like this:

game_ board[12] " = (1 < 6);

Finally, we could test the status of any
element in the array with the AND
operator.

if(game_board[12] & (1 < 6)) -·

This might be a bit obtuse at first. If
the bit in question was set, ANDing the in
teger with our mask would result in an in
teger with one bit set. 'Ibis would make it
non-zero, and the condition would be true.

If the bit was not set, any other bits in the
integer would be masked off, and the
result would be zero. The condition would
be false. Note that here, we do not actually
affect the contents of the array
game _board, but only copy its contents out
and manipulate them. In fact, C creates
temporary variables to do this in, but we
never see them.

Binary Breakdance
In practice, situations which call for bitwise
manipulation occur quite frequently in
programriUng. If you're used to writing in
BASIC, you'll probably have encountered
these and dealt with them in the sorts of
convoluted ways that BASIC imposes on
its users. C lets you get right down there
and meddle with the bits, which is a great
deal more flexible.

Assembly language is even more
prone to using bitwise approaches to
things. When we get into the assembly lan
guage interface in C, you'll find bitwise
operators flung all over creation. •

THE BRUNELLE Since 1972
Commaqder When AccurcoJ Counts. ..
-Af-sERtEs~ You Can Count On Us!

Model4070
$212.00 FSTI

4 112 DIGIT PUSH BUTION DMM
High accuracy readings in the
laboratory or in the field at a price
you can afford .. 05% basic
accuracy, transistor test function,
UL 1244 type test leads, overload
protection on all ranges, audio
and visual continuity tests.
Ranges:
0-1 OOOVdc resistance
0-750 VAC 0-20m'
0-10Adc
0-10A Ac

3 112 DIGIT PUSH BUTTON
CAPACITANCE METER
Unique, easy to use dig~al
capac~ance meter, making
measurements a breeze. 31/2
dig~al display, tough ABS case,
input protection, 200 Hr typical
battery life.
Ranges:
1-200PF
0-2NF
0-20NF
0-200NF

2·2uF
0-20UF

0-200uF
0-2000uF

Model408lB
$99.50 FSTI

Model3020
$32A.OO FSTI

3 112 DIGIT PUSH BUTION DMM
The Job-proven dig~al mukimeter.
Housed in shocked resistant ABS
plastic, safety design was a prime
consideration. UL 1244 type test
leads; electronic protection to 500
VAC!dc, resistance. Normal and
low power OHM ranges; 1 OA
ac/dc range; transistor test
function.
Ranges:
0-10flOV DC 0-10ADC
0.750V AC 0-20M •
0-10 MC Diode Test

FUNCTION GENERATOR
• 7 ranges 02Hz • 2MHz
• Square, triangle, sfnewave and
TTL pulse output
• Inversion feature
• VCFinput
• Duty cycle control
• Vanable/llxed attenuators
• Rugged cabinet ~h tik
adjustable handle

Model4040 3 112 DIGIT ROTARY SWITCH DMM
$155.00 FSTI o 34 ranges

• Bui~~n 20MHz logic probe
• Frequency counter function
• Capacitance measurement to 20UF
• Diode test
• Dust proof and rugged case
• 2 year warranty
• Many other features

35MHz DUAL TRACE
OSCU.OSCOPE
• Optimal sens~iv~
• Delayed triggering sweep
• X-Y or X·Y·Z operation
• Wide frequency bandwidth
• Complete ~h X1/X10 probes

Gall for pricing ~ may be the best
call you've ever made!

• Call collect to place your order 1-819-563-9096
• Visa, certified cheque, postal money order, purchase orders accepted by
approved accounts.
• All products carry a 2 year liberal warranty. • Taxes extra if applicable

Y9tl'(}e, ttieL! Ute~. Ngw ~ tke. &uti
BRUNELLE INSTRUMENTS INC.

• For local service call us for your nearest distributor.
• We also repair and calibrate most other mfgs test equipment panel
meter, Modification center for: Beede, CEW.
• New service center for : Logical devices.
• Send for our newest catalogue: Power supplies, generators, etc.

E& TT September 1989 Circle No. 18 on Reader Service Card

73 GODIN -SOUTH,
ST-ELlE D'ORFORD, QC JOB 2SO

Tel: 1-819-563-9096
FAX: 1-819-569-1408

33

