
-~

Electronics & Technology Today FEATURE 15

CLan~age
Pro~arn~ing for

Te es •

Vectors are one of the more mysterious elements of PC ·
architecture, and one that most programmers happily leave

alone. There are, however, a number of fairly risk -free
applications of vectors and the mutation thereof under C.

D own at the very bottom of
memory in the dungeon of
every PC there lives the vec
tor table. It's a typical dun

geon dweller, dark and brooking, full of
menace ... unfathomable. If you venture
down to low memory without all the
right spells it will probably bring the
whole castle down on top of you.

The low memory vector table of a PC
is a list of addresses of important basic
functions in your computer. 1l1is in
cludes things like the BIOS code that
decodes your keyboard, the DOS INT
21H handler that handles files and
memory allocation, hardware serial
port handlers and the cOde that tells you
there has just been a memory parity
error and all your work for the past six
hours has been lost.

1l1e mechanism of the interrupt vec
tor table is intimately tied up with that
of the 8086 series processors that drive
PCs. When the processor executes an
INT instruction, what it actually does is
to make a sort of indirect far call to
where the appropriate entry in the inter
rupt vector 'table points.

by Steve Rimmer

As a far call requires two words to
address it... four bytes ... the processor
would find the entry for INT 21H by
multiplying 33... that's 21H in
decimal ... by four and leaping to the
address pointed to by the two words at
0000:0084H.
' All of this seems very low level, and
probably should not concern programs
written in higher level languages such
as C. However, being able to success
fully meddle with interrupt vectors can
be exceedingly useful. You can get
around many of the nastier omissions
and holes in the architecture of your
system, as well as tapping a few hitherto
untapped resources.

No tricks, exercise or unpleasant
machine language are required.

Crashing Out
If you hold down the control key and hit
the break key while a program is run
ning, the BIOS of your computer will
print '"C" on your screen and issue an
INT 23H instruction. 1l1e vector for this
interrupt norn1ally points back into
DOS, which will tern1inate the program

in question and return you to the com
mand line.

There are all sorts of instances in
which you may not wish to have this
facility available to the users of your
programs. For one thing, it's not all that
professional to have your progran1s
crash back to DOS just because some
one hits the wrong combination of keys.
In addition, if your program uses ex
tended or expanded memory, crashing
out like this may leave some memory
handles dangling and blocks of extra
memory tmrecoverable until you reboot
your machine.

The way to get around this problem is
to replace the normal vector for INT
23H with one that points to code that
you've written. Turbo C has a dedicated
function for this, called ctrlbrk.

Here's a typical replacement control
break handler.

int myBreak (void)
{

got oxy (1 , 1) ;
print f. ("Leave the cont r ol
break key alone") ;

16

return (1);

We would replace the default control
break handler with this one as follows.

int myBreak () ;
ctrlbrk(myBreak);

There are a number of fiddly details to
consider in this process. The first is that
the value returned by myBreak is im
portant. If it returns zero, your program
will do whatever is in your control
break handler and then return to DOS.
If it returns a non-zero value, your pro
gram will resume where it was when the
control break key was belted.

Unfortunately, redirecting the con
trol break vector doesn't stop DOS
from printing ""C" wherever the cursor
happens to be when control break is hit.
If you're writing a program with a for
matted screen you probably won't want
the default system cursor anyway. You
can get rid of it with this function.

hideCursor ()
{

union REGS r;

r.x.ax=OxOfOO;
int86(0x10,&r,&r);

r.x.ax=Ox0200;
r.x.dx=Ox1a00;
int86(0x10,& r ,& r);

This simply sets the cursor onto the
line directly below the last line of your
screen and keeps it there. If DOS
decides to print "11C," it will go un
detected. Unfortunately, so will any
thing else your system decides to print.

In most cases, it's very important that
you not alter interrupt vectors and leave
them altered when you leave a program.
This could result in an interrupt which
happens after your program has ter
minated causing the processor to leap
into the middle of a word processing
document, for example, and trying to
execute the text of your monthly report.

In the case of the control break vector
this is not actually a problem... the
original vector will be restored for you
when your program returns to DOS.
We' lllook at how to capture and restore
other vectors momentarily.

Abort, Retry~
Disintegrate
One of the most difficult things to trap
for in a complicated program is a user
attempting to access- a floppy disk
which is still in its sleeve five inches
immediately to the right of the disk
drive it's supposed to be in. The usual
resUlt of trying to do this is to have DOS
tell you that things are not working out,
and ask you if you'd like to abort, retry
and so on.

If you select "abort," you'll return to
DOS.

If a disk drive runs into trouble ac
cessing a disk, it complains about it by
throwing interrupt 24H. This is usually
hooked to the code that prints the
"abort, retry, ignore" message. How
ever, as with all interrupt vectors, you
can redirect it to something which is a
bit less catastrophic.

The ideal situation would be to test
the drive you wish to access before you
go to do so. If it's door is open, you
could prompt the user of your program
to put a disk in it... rudely, if you're of a
mind to.

This process is a bit more involved
than the control break handler is be
cause while Turbo C does have the
functions to do it, it isn't all that helpful
in showing you how to use them.

To begin with, you cannot leave the
INT 24H vector dangling when you
aren't specifically testing for an open
drive ... it should always point to the
DOS INT 24H handler when you don't
have a specific interest in its activities.
As such, when you want to test for the
status of a drive, you must fetch the old
vector and store it somewhere, do what
you want to do and then restore the
original vector before you move on to
better things.

Having saved the old vector, you can
point the INT 24 H vector to a safe bit of
code which need not print anything
nasty to the screen.

Here's the code to test a potential
disk drive before you go to actu'\llY
access it. The argument passed to it is
the number of the drive you want to
test... zero for drive A, 'one for drive B
and so on. What it actually does is to
shanghai the INT 24 H vector to point to
our own handler, which in tum will set
the value of diskErr accordingly if a
disk error transpires.

Electronics & Technology Today

It will return zero if the drive is acces
sible.

Having set everything up, the func
tion forces a drive access by attempting
to open a file on the test drive. It doesn't
actually matter whether the file exists or
not.

You will notice that rather exotic
looking declaration for oldHardErr.
This is how you would create a pointer
to an interrupt vector. It will tum up
again.

int diskErr;
char linebuf [81] ;

testDisk(n)
int n;

void interrupt
(*oldHarderr) () ;

FILE *fp;
charb[32];

oldHarder r =ge t vect (Ox24);
harderr(diskErrorHandler);
diskErr=O;
getcwd(linebuf,BO);
sprintf(b," %c :\\TEMP.DAT",
n+' A') ;
if((fp=fope n(b ,"r")) !=
NULL) fc l ose (f p);
setvect(Ox24,oldHarderr);
return(diskErr);

#pragma warn -par
int
diskEr r orHandle r(errva l, ax,
bp, si)

int errval, a x , bp, s i;

if (ax >=0) {
diskErr=1;
r e storeDir (line buf);
}

hardretn(2);

r estor eDir(s)
c har *s ;

strupr (s);
if (isalpha (s [0]) &&

s [1]==':')
setdisk(s [O]-' A');

chd ir(s);

Electronics & Technology Today

A Bit of Music
The clock tick interrupt, INT lCH, is
among the most useful of PC interrupt

·vectors for performing sneaky tasks.
It's actually run by the PC's hardware.
Eighteen times a second it gets called
by one of the timer chips. Normally it
just points directly to an IRET ... a return
from interrupt instruction... up in the
BIOS, and as such does nothing. How
ever, you can hook it to do all sorts of
interesting things.

The most common use of the INT
lCH vector is to drive a screen clock.
Resident programs that display the time
in the upper right comer of your screen
do so by attaching themselves to this
vector.

You can make all sorts of inde
pendent background processes work in
your programs with surprisingly little
effort if you know how to manipulate
this useful vector. In the following ex
ample we'll check out a function which
can play random music in the back
ground of any C program, seemingly
without any intervention save for set
ting it loose.

This is not a terribly practical ap
plication of the clock tick vector ... the
music will drive you to madness fairly
shortly ... but it illustrates the process.

void interrupt beNoisy () ; I*
little music function* I

main(argc,argv)
int argc;
char *argv [] ;

void interrupt
(*oldTimer) ();
inti,r=O;

I* save the old timer
interrupt *I
oldTimer=getvect(Ox1c);
/* set the clock tick to play
tunes *I
setve ct(Ox1c,beNoisy);

/***your program's guts go
here*** I
getch () ; I* something to
pause for a while* I

I* undo the clock tick *I
setvect(Ox1c,oldTimer);

I* make sure the sound is
_off*/
nosound ();

I* this is an interrupt
driven noisemaker. it's
called

by the hardware about 18
times a second* I

void interrupt beNoisy ()
{

static int scale[7]=
{220,247,261,294,330,
349,392) ;
static int count, soundon;

if (soundon && count> 1)
count=O;
nosound();
soundon=O;
)

else if (! soundon && count
> 2) {

count=O;
sound(scale [rand() %7] *
(rand() %5));
soundon=1;

++count;

This bit of code illustrates Turbo C's
functions for dealing with interrupt vec
tors it has not specifically planned for.
The getvect function returns the current
interrupt vector and the setvect function
replaces the current vector with one of
your own devising. Because interrupts
can happen unexpectedly, make sure
you don't go changing their vectors
until you're certain your handler is ini
tialized and ready to handle something.
As an example of this, if you exchange
the order of the setvect and nosound
functions at the end of the main func
tion ofthis little program, the sound will
continue to drone on once in a while, as
a timer rick interrupt can occur in be
tween the two calls.

The actual handler, beNoisy, uses the
· Turbo C sound function to play tunes. It

randomly selects note values from the
equally tempered C scale at the top of
the function. That's the key ofC, not the
C language in this case.

Because the handler will be called
eighteen times a second ... it's actually

17

18.2, but this doesn't matter for our
applications... you can count up the
number of calls to the handler function
to measure time. Thus, if you wanted
the note to change one a second, you
would increment count, in this case, and
do something when it reaches
eighteen ... resetting count to zero in the
process.

Interruptus
There are numerous other applications
for Turbo C's interrupt manipulation
functions. In last month's Computing
Now, for example, we looked at a way
to write an interrupt driven high speed
serial port handler using them.

While you should not go meddling
with system interrupts without first un
derstanding what they do, the ability to
redirect them can give your programs a
whole new set of resources. You'll
probably want a few good books on
system interrupts to fully understand
what they're about. 0

AMAZING
SCIENTIFIC & ELECTRONIC

PRODUCTS
LASERS AND SCIENTIFIC DEVICES

VRL2K 3mw Vis Red Laser Diode System Kit $159.50
LLIS1K Laser Beam"Bounce" Listener Kit $199.50
LHC2K Visible Simulated 3 Color Laser Kit $44.50
LC7 40 Watt Burning Cutting Laser Plans $20.00
RUB4 Hi Powered Pulsed Drilling laser Plans $20.00
LGU40 1to 2mw HeNe Vis Red Laser Gun Assembled $1g9.00
LLS1 Laser Lite Show- 3 Methods Plans $20.00
SD5K See in the Dark Kit $299.50
EML1K Electromagnetic Coil Gun Kit $69.50
MCP1 Hi Velocity Coil Gun Plans. $15.00
LEV1 Levitating Device Plans $10.00
EH1 Electronic Hypnotism Techniques Plans $10.00

HIGH VOLTAGE AND PLASMA DISPLAY DEVICES
HVM7K 75,000 Volt DC Variable Output Lab Source Kit $149.50
IOG3K ton Ray Gun Kit, project energy without wires $69.50
NIG9K 12V/115 VAC Hi Out Neg ton Generator Kit $34.50
EMA1K Telekinetic Enhancer/Electric Man Assembled $99.50
LG5K Lightning Display Globe Kit $54.50
BTC1K Worlds Smallest Testa Coil Kit $49.50
BTC3K 250KV Table Top Testa Coil Kit $249.50
BTC5 1.5 Million Volts Testa Coil Plans $20.00
JL3 Jacobs Ladder - 3 Models Plans $15.00
GRA1 Anti Gravity Generator Plans $10.00
PFS20 Plasma Fire Saber Assembled $69.50
DPL20 Dancing Plasma to Music and Sounds Assembled $79.50

SECURITY AND PROTECTION DEVICES
ITM10 100,000 Volt Intimidator up to 20' Assembled $129.50
IPG70 Invisible Pain Field Blast Wave Gen Assembled $74.50
PSP4K Phasor Sonic Blast Wave Pistol Kit $59.50
LIST10 lnlinity Xmtr, Listen in Via Phone Assembled $19g.5o
TAT30 Automatic Tel Recording Device Assembled $24.50
VWPM7K 3 Mi. FM Auto Tel Transmitter Kit $49.50
FMV1 K 3 Mi. FM Voice Transmitter Kit $39.50
HOD1 K Homing/Tracking Beeper Transmitter Kit $49.50

EASY ORDERING PROCEDURETOLL FREE 1·800·221-1705
or 24 HRS ON 1-603-673-4730 or FAX IT TO 1-603-672-5406

VISA, MC, CHECK, MO IN US FUNDS. INCLUDE 10% SHIPPING. ORDERS
$100.00 & UP ONLY ADO $10.00. CATALOG $1.00 OR FREE WITH ORDER.

INFORMATION UNLIMITED
P.O BOX 716, OEPT. ET2, AMHERST, NH 03031

Circle Reader Service Card No. 15

