
f [A l U R [

This month w~'ll continue to de!ve into the mysteries of high level file
access and, 1n the fullness oft1me, to wholly ap~reciate how weird

and powerful it can be. Time has a lot of fullness.

Last month we got into the basics of
file handling under C. It might have

seemed a bit nasty then, but high level file
access is actually very easy to use once you
get used to it. Most of the difficulties that
programmers new to C have with it stems
from their prior involvement with
BASIC'sfileroutines.

BASIC conditions one to believe that
nothing associated with disk files can real
lybeeasy.

High level file access under C has a
numberofverypowerfulfeatures,aswe'll
see. It can make accessing disk files no
more complex than accessing your
keyboard and screen.

In fact, as far as C is concerned, all
these functions are basically the same.

Illusion and Reality
In an ideal computer, everything external
to the processor would either be a data
source or a data sink, or both. The screen
would be a data sink-data goes to it. The
keyboard would be a data source, that is,
data ~casionally comes from it. Garbage
occas10nally comes from it too- it's a bit
hardware dependant in this respect. Con
sider well that you are the hardware it's
dependant on.

Disk files can be both data sources
and data sinks.

Under C, we have the option of treat
ing data in this way if we want to by using
"streamed" data handling. The standard
24

STEVE RIMMER

file input and output channels of DOS
have been designed to fit nicely into this
model. Not surprisingly, most of the ap
plications which Microsoft, the creators of
MS-DOS, write, are done in C.

Last month we looked at file handling
using file pointers. This month we're
going to expand on that and see how the
concepts of file handling can work with
most forms of data which moves in and out
of the computer.

When a C language program starts
up, it automatically opens five files. These
are given names, and are available to any
programmer who chooses to use them.
This is how they're defined under C.

stdin
stdout
stderr
stdaux
stdprn

Now, the use of these thingsmightnot
be completely obvious. The problem with
them is that they're so elegantly simple
that they defy immediate understanding.

It's so zen-like as to make your karma
green.

Consider the following program. This
will read in a disk file called WOM
BAT.DOC and display it on the screen as
it'sread.

FILE*fp;

if((fp=fopen("WOMBAT.DOC" ,"ra")) !=
NULL){
while(putch(fgetc(fp)) !=EOF);
fclose(fp);
}elseputs("WOMBAT.DOCain'tthere");

The principal behind this program
should be fairly clear if the cat didn't eat
your copy of last month's ETT before you
read it.

Each of the five mystery words pre
viously mentioned acts just like the file
pointer in the above example, except that
each one is tied to a particular device,
rather than to a disk file. Consider the fol
lowingprogram.

if((fp=fopen("WOMBAT.DOC" ,"ra")) !=
NULL){
while(fputc(fgetc(fp),stdout) !=EO F);
fclose(fp);
}elseputs("WOMBAT.DOCain'tthere");

What this is really doing is to copy the
file WOMBAT.DOCintothemysteryfile
pointer called stdout. For reasons too
warped for mere mortals to get their heads
around, everything written to the file
pointer stdoutwillappearon the screen.

Here's a variation on this program.

if((fp=fopen("WOMBAT.DOC" ,"ra")) !=
NULL){
while(fputc(fgetc(fp),stdprn) !=EOF);
fclose(fp);
}elseputs("WOMBAT.DOCain'tthere");

E& TT November 1989

The only thing that's changed here is
the name of the destination of the data read
in from WOMBAT.DOC. Instead of going
to stdout, the screen, it's going to stdprn,
which is usually connected to the printer
port LPTl. This little program, then, will
printthecontentsofWOMBAT.OOC.

Consider this third variation.

FILE *fp,*destination;

puts("HitPtoprintWOMBAT.DOC,any
other");
puts("keytoviewit");
if(getchO=='P') destination= stdpm;
else destination =stdout;

if((fp=fopen("WOMBAT.DOC" ,"ra")) !=
NULL){
while(fputc(fgetc(fp),destination)!= EO F);
fclose(fp);
}elseputs("WOMBAT.DOCain'tthere");

In this example, we've created a file
pointer and sent the data from the file to it.
The file pointer can be the printer or the
screen, depending on whether we want to
view or print the file. Alternately, the file
pointer could really point to an open file. If
you have a program which prints to the
printer through stdprn, this is an easy way to
implement a print to disk function -just
assign the file pointer the value of stdprn in
steadofthatofanopendiskfllewithfopen.

Using this model for data handling, it
might be a bit easier to understand how to
deal with streamed file input and output. Al
lowing thatfp is a file pointer to an open file
and that stdout is the pseudo-pointer for the
screen, you will observe that writing a
character to the screen is handled like this:

fputc(' A' ,stdout);

while writing a character to the file is
handled like this:

fputc(' A' ,fp);

The screen and the file behave more or
less the same way. In both cases, the newly
written byte will appear immediately after
the most recently written byte. This will be
at the cursor position on the screen and at
the end of the file as it has been written to
date for the disk file. If you think of a disk
file as being simply a series of bytes, as the
screen is, you should have no problem un
derstanding how C deals with files.

More File Modes
Filescandothingswhichthescreencannot,
andtheanalogydoesstarttofallapartaftera
while. For example, You can "seek" in a
E& TT November 1989

file. The seeking mechanism under C al
lows you to define where in the file the next
byte, or bytes, will be written to or read
from. Allowing that we have a file of one
kilobyte in length. If we open it to read and
begin to read in bytes with the fgetc func
tion, the bytes will be drawn from the begin
ning of the file. If we wanted to read from
the five hundredth byte on, we would have
to read in and throw away a lot of data,
which is inefficient and very slow.

The fseek function allows us to posi
tion the file position pointer, that is, where
the bytes will be read from, anywhere in
the file at any time.lf the opened file has a
pointer fp, we can position its file position
pointer to the five hundredth byte like this:

fseek(fp,SOOL,SEEK _SET);

The first argument to this function is
obviously the file pointer. The second one
is the number of bytes in from the head of
the file- note, however, that we must
make it along value. Since files can be big
ger than sixty-four kilobytes, anything
which specifies a location within a file
must do so in long numbers. Finally, the
last argument must tell fseek whether
SOOL reflects the position relative to the
start of the file, the end of the file or the
current file position. Three constants are
defined to reflect this-SEEK_SET tells
fseek to position the file's position pointer
relative to the start of the file. We'll deal
with theothermodesatalatertime.

If we read a byte from the file with
fgetc after executing the above command,
we should see the five hundredth byte
returned. If we write to the file, assuming
that the file has been opened for both read
ing and writing, the first byte we write will
overwrite byte five hundred.

If you have a file which has been
opened for both reading and writing you
must do an fseek if you switch between
these two functions.

There's another function which
works nicely with fseek. The fte ll function
returns a long integer which specifies how
far into the file next byte will be read from
or written to. In other words, it returns the
file position pointer. You can use this for
all sorts of things. For example, this bit of
code will return the size of the file which
has been opened with the file pointer fp.

fseek(fp,OL,SEEK END);
size=ftell(fp); -

The variable size must be a long in
teger. The constant SEEK_END tells

fseek to seek to the end of the file, or to as
many bytes from the end as are specified
by the second argument to fseek.

Having seeked to the end of the file,
of course, the file position pointer might
not be where you want it to be if you had
plans to read data from the file. You could,
of course, use fseek to return to the start of
the file, but C also provides a shorthand
version of this function. You can just

rewind(fp);

This returns the file position pointer
of fp to the beginning of the file.

Cooking with Rabbits
When you open a file using fopen, the
secondargumentspecifiesthemode,aswe
discussed last month. This can be either bi
nary mode, which means that bytes are
read as bytes,or' 'cooked'' mode, in which
case they mostly are. The cooked mode is
used when you're wanttoreadASCII files
as ASCII.

When C wants to represent the end of a
line, it uses the '\n' characters, that is, the
"newline" character. When you are using
the streamed file functions with a file op
ened in the cooked mode, any instances of
carriage return line feed pairs will be con
verted to the newline character in the way
in, and newlines will be converted to car
riage returns and line feeds on the way out.
In the binary mode, no conversion is per
formed.

In order to open a file for reading in
cooked mode, you would do this:

fopen("FROGFILE.DOC" ,"ra");

To open a file in binary mode you
would do this:

fopen("FROGFILE.BIN" ,"rb");

There are several consequences of
using cooked mode. For one thing, the num
bers returned by ftell may not really reflect
the file as you see it from your program, as
newline characters are one byte which a
carriage return line feed pair is two charac
ters long. Likewise, usingfseek might not
place the file position pointer where you
think. Cooked mode is usually used with
text files, wherein these two functions don't
applyforthemostpart.

Despite the added need for caution in
using cooked mode, it can make using text
files with C agreatdealeasier. We'llleama
bit more about how it works in the next in
stallmentofthisseries.

25

I I

