
Electronics & Technology Today

This month we'lllook at
the rational and a bit of the

thought processes in
translating a procedure

into a C program ... as well
as a rather interesting bit

of code.

Steve Rimmer

Programming is an art form,
and like all art forms it must be
approached with a certain
amount of discipline, lest it be

come chaotic. Art only looks undis-
ciplined to people who don't under
stand it.

TI1e process of translating an idea
into a working program is to a large
extent intuition wrapped around a core
of programming expertise and some
rules which can be applied to program
ming projects in general. While you
may never have to consider the creation
of a program with quite this degree of
abstract philosophy, the philosophy
remains none the less.

It's all very zen-like.
TI1is month we're going to take a rule

and a desired function and walk through
the steps involved in creating a program
to make it all happen. Some are purely
programming steps, but many are
decisions based on an intuitive under
standing of how programs should work
and how users will apply them.

Visa Madness
This month's program is a small utility
which will ascertain whether a credit
card number is, in fact, valid. It's based
on a somewhat unknown property of

21

• m1
•
leS

credit card numbers, that is, that they
are self checking. The first digit of a
credit card number tells one what kind
of credit card the number belongs to.
The last digit is a checksum. The inter
vening digits, which are unique to each
individual card, can be run through a
calculation which will spit out the
checksum if all is well.

You might want to scrape the pocket
lint off your plastic and see if all this
makes sense to your cards.

The easiest thing to check by eye is
the card type digit, the first one. This
will by five for a MasterCard, four for a
Visa card and three for an American
Express card.

Credit card numbers are based on the
concept of a checksum, something you
might not have encountered before. In
its simplest incarnation, a checksum is
·a value which is derived by adding
together all the bytes in a block of data.
If you store the data and store the check
sum separately, you can subsequently
make sure that the data hasn't been
mangled by adding up the bytes again
and seeing if the result still equals the
checksum.

Obviously a checksum is not infal
lible. If one byte were to be decre
mented by one and another byte incre
mented by one, the checksum value
would remain unchanged even though
the data did not. However, for practical
purposes a checksum provides a
moderate level of data integrity with a
tiny penalty in computer time. Check
sums are quick and easy to calculate.

A checksum rarely consists of a true
sum of the data it checks. Most check
sums have an inherent modulus value
imposed by the size of the object used
to hold the checksum. For' example, if

you add all the bytes in a text file
together and use a char to hold the run
ning checksum, you will get a unique
eight bit value with 256 possible states.
All the bits beyond eight will be thrown
away. This is a pretty decent checksum
for most purposes.

The checksum used by credit card
numbers is handled with a modulus of
ten, as credit card digits can only have
values from zero through nine.

The formula for working out a credit
card checksum is a bit complex,
presumably to make it difficult to fake
in one's head. Each digit in the string
has a position number, zero being the
first, one the next one and so on. Digit
zero is the card type digit, but it's in
cluded in the checksum calculation.
The last digit in the string is the check
sum, and is not.

The calculation is different depend
ing on whether the length of the string
is odd or even.

If the string length is odd, start with
the last digit to be checked in the string
and count backwards through the string.
For each digit, if the position of the digit
in the string is odd multiply the value of
the digit by two and add it to the running
checksum. Otherwise, just add it to the
checksum as it is. The checksum will
always be worked to modulo ten.

If the string length is even, the even
numbered string position values are
multiplied by two.

Practical Plastic
The intent, in writing a credit card
checking program, should be to make it
practical to use in applications where
credit cards tum up a lot, such as in a
store. We'll allow that the computers in
most stores are pretty simple ... and pret-

22

ty slow. We'll also allow that fancy
graphics, a graphical user interface,
complex instructions and so on will
probably not go over well in a situation
wherein someone must check a lot of
numbers in a hurry, probably with
someone waiting for their bill.

This is one of those situatiqns in
which a command line utility is probab
ly ideal. Actually, a resident, pop-up
program might be better still, but it's
beyond the scope of this article to dis
cuss how to write one.

I called the program which does this
function PLASTIC.C, the resulting ex
ecutable file from which got renamed to
PL.EXE. The idea was to be able to type
something like

PL 3999-999999-99000

and have it come back saying that this
was a valid American Express number.
In fact, it wouldn't do so in this case
because this is not a valid number.
Make sure you keep those valid plastic
numbers you are aware of to yourself.

1l1e credit card number is actually
just a string of text, and it's desirable to
treat it as such, rather than as a number.
However, because the calculation of the
checksum is dependant upon the posi
tion of the digits in the string, non- digit
characters such as the dashes which
separate the segments of the number on
a credit card can't be allowed to inter
fere with the works.

You could just insist that the argu
ment to the program be typed with noth
ing but numbers, but this would make

/*

the result hard to check by eye, espe
cially because it would look different
from the number as it's displayed on a
credit card. It's better to create an inter
nal version of the. argument which has
been cleaned up for the calculation.

Cleaning up the string is pretty easy,
actually. Simply scan through the
source string and copy to a destination
string only those characters which are
digits. The isdigit macro is helpful in
this. You can see such a function in the
source code accompanying this article.

There is another function which we'll
find useful in performing the checksum
calculations. Bearing in mind that it's
frequently necessary to know whether a
number is odd or even, we might do
well to create a function that works this
out. A number is odd if it can't be
divided evenly by two, and if such a
number is expressed in binary form, it
will be found to have its first bit set no
matter what the value of the complete
number is. Thus, if the number is n, (n
& 1) will be true if the number is odd.

You can write this into a function,

odd(n)
int n;

{
return (n & 1) ;

}

or you can make the compiler handle
the calculation for you each time it oc
curs by using it as a macro.

#define odd (n) (n & 1)

Electronics & Technology Today

In the first case, your code will be
minutely slower because your program
will actually have to go and call the odd
function each time it's needed. In the
second case it will be faster but minute
ly larger because the actual code to do
the calculation will appear multiple
times throughout your program.

In the case of the credit card program
the difference doesn't matter, but you
should think about the differences be
tween using functions and macros in
more involved progran1ming projects.
when you want to trade off size and
speed.

Having done all this preliminary jug
gling, you can write the actual function
to do the calculations pretty simply, as
shown in the complete source for
PLASTIC.C.

Don't Leave Home
Without It
The dreadful temptation in doing little
programs like this one is to embellish
them into unusability. Add a couple of
sound effects, flashing error messages,
some graphics and pretty soon no one
will use your code.

It's a good rule of thumb to assume
that most people don't have colour
monitors, don't listen to the sounds
their computers make if, in fact, they
can actually hear them over the ambient
noise and wouldn't know what to do
with a mouse short of tying an anchovy
to it and taking it home to serve as an
ersatz cat toy. 0

credit card number check program
copyright (c) 1990 Alc he my Mindworks Inc.
de rive d from a Pas cal program by Daniel J.

char b [128];
inti;

cprintf ("\r\nAlchemy Mindworks"
"Inc. credit card verification"
"program ve rsion 1 . 0\r\n") ;

Ka rnes
*I

#include "stdio.h"
#include "ctype.h"

#define MASTERCARD
#define VISA '4'
#de fine AMEX ' 3 '

main(a r gc, argv)
int argc;
char *argv [l ;

{

'5'

}

if (argc>1) {
for(i=1 ;i<argc;++i) {
cleanString(b,argv[i]);
cprintf ("Card %-30. 30s- ", argv [i]) ;
verify(b);
cprintf("\r\n");

}
} else cprintf ("\r\ni need one or more"

"credit card numbers to verify") ;

Cont 'd. next page

Electronics & Technology Today

Cont'd.frompreviouspage

verify(s)
char *s;

{
int i,len,x=O,y=O,v=O;

if(strlen(s) < 12) v=O;
else {
len= strlen (s) ;
if (odd (len)) {
for (i= (len-2) ; i>=O ;-i) {
if(odd(i)) y=((s[i]-'0') *2);
elsey=(s[i]-'0');
if (y>=1 0) y= ((y-1 0) +1) ;
x+=y;

}
}
else {
for(i=(len-2) ;i>=O;-i) {
if (odd (i)) y= (s [i] - '0 ') ;
elsey=((s[i]-'0')*2);
if (y >= 1 0) y= ((y-1 0) +1) ;
x+=y;

}

}
}
x= (1 0- (x% 1 0)) ;
if(x==10) x=O;
if(x==(s[strlen(s)-1]-'0')) v=s[O];
else v=O;

switch (v) {
case VISA:

AMAZING
SCIENTIFIC & ELECTRONIC

PRODUCTS
51000
12000
12000
12000
S\500
12000

saoo
SI!OO

51000
$1000
S1Q.OO

Q ...UI.CIUIIUII
..... UITll- IHFNTY XMTR ~ nN plOW 1nes -
...J ft11- IIMSa.f-ffL08lASI~GENfAATORP•50
CDITII'It- 1()().CXX)Ioi).IINTiollliiiORuP1020" 1!1950
:E Ialli- AIJDWlCnLEP!OERfC!RJINGO£Vw::f R•50
......... -~sac:~P!Sn. 511950
en-·- AU- 21S'VMJCD.ORE0Nf(JI STICK P<50 en U1U21- ~TO WW VIS8.f FlO- LASER GUN $19950
!C IU. - 100.00 MTT IUSTi R [)(ffNSf WIHO Sll9 50

EAIY Clllllllll.a P'IIOCliiUM · lll.L fRff 1 ~Z21· 1 1tr;
1J1 24 HRS CJI 1-411)0.C7JO 1J1 ~ II 10 1~-5411

~ IC OlEO!. IIIIIUSF\JClS.IC.LOE .,_Sifl'I«< <RlERS
$111100 & uP <N.Y All> S1QOO C"AAi.OG S1 OOIJI FilE£ WITI4 <RlER

cprintf ("verifies as a Visa card.") ;
break;

case MASTERCARD:
cprintf ("verifies as a MasterCard.") ;
break; •

case AMEX:

23

cprintf ("verifies as an American Express
card.");

break;
default:
cprintf ("is not a good credit card

number . ") ;

}
}

break;

odd (n) I* return true if n is an odd number
*I
int n;

{

}

if (n & Ox0001) return (1) ;
else return (0) ;

cleanString(dest,source)
char *dest, *source;

{
while(*source) {
if(isdigit(*source)) *dest++=*source;
++source;

}
*dest=O;

}

DMMs, Counters, Generators

DM-4500 4.5 Digit DMM $475
TRMS, 0.03% Accuracy, Full DMM, Bench Style

RFC-1000 1GHz COUNTER $475
'Reciprocal, Multi-Function, 8-Digit Bench Counter

FG-2000 2MHz GENERATOR $475
Sine/Square{Triangle Sweep & Function Generator

Great Quality at Great Prices!
2 Year Warranty with 30 day Money-Back Guarantee.

Special Offer! Get any 3 for just $1,199! Visa accepted .
To order today, call ... ___,...._
..,_.... .._._ ...-- .._._ -------------............. ----~~
---~-

(416) 238-3543
(416) 238-1377 (FAX)

Circle No. 6 on ReaderSeiViceCard

