
I 

II 

f f A l U R f 

This month we're going to get a bit less dignified about 
C and discuss some of the dirty tricks ones has to play 

on the PC to make it work out right. 

I nits most perfect and useless state, C is a 
pure language. It can't play music, it 

can't print in red text and it can't draw bar 
graphs. All it can do is process. It takes 
data in through a mysterious channel and 
sends data out through an equally 
mysterious channel and knows nothing of 
the world beyond its door. 

This is Con a mainframe. Anyone who 
tried to get away with selling a C compiler 
like this for the IBM PC would be hooted 
out of the known universe, of course. 

In order to make C into a language 
which is actually good for something, the 
designers of PC-based compilers for it al
ways wind up adding huge collections of 
functions which relate specifically to the 

· PC's peculiar hardware. These handle 
things like fast screen updating, sound and 
graphics as well as a dedicated interface to 
the PC's operating system and BIOS. 

It's useful to know how to make these 
things work because, while they represent 
the cheapest, nastiest, most reprehensible 
and ill-behaved aspects of C program
ming, they are essential to writing 
programs which actually work. 

This month we're going to look at 
some dirty tricks. Some of these things are 
specific to Turbo C, but you'll fmd nearly 
identical functions in most other popular 
PC based C compilers. 

Vas lstDOS? 
There are two levels of machine specific 

50 

SHVf RIMMfR 
dirty tricks under C. The low level tricks 
give you access to the machine's guts. The 
high level tricks let you do hardware 
specific things, such as graphics. We'll deal 
with the low level things here. 

The lowest software level of the PC is 
its BIOS. This is the firmware which starts 
up the computer and makes it do simple 
tasks, such as fetching a keyboard charac
ter or printing a byte to the screen. 

The PC's BIOS is not very bright and 
extremely slow, and for this reason very few 
applications have to deal with it directly. 
There are occasions, however, wherein only 
the BIOS can help you. C on the PC 
provides an interface directly to the BIOS. 

The BIOS provides a number of 
groups of functions, all of which are gotten 
at through software interrupts. These are 
roughly grouped together by interrupt 
number. It isn't really necessary to know 
how interrupts work or even what they do, 
so long as you know what the BIOS is up 
to and what numbers to put in the ap
propriate places to make it do its thing. 

In order to make the BIOS get up 
and dance, from any language which sup
ports calling it, you will need a listing of its 
entry points. The best one of these which 
I've encountered to date is IBM ROM 
BIOS by Ray Duncan, published by 
Microsoft. Read through it carefully and 
computers will never trouble you again -
your eyes will be too shot to see them. 

The most useful BIOS function is lOH, 

which deals with the screen. Ordinarily you 
will not want to use this to print characters to 
the screen because it's too slow. However, 
there are several areas in which it can be of 
considerable use. It can position the cursor 
on the screen and it can scroll or clear win
dows exceedingly quickly. 

Lefs look at a simple problem. One of 
the few reliable ways to make the cursor of 
the PC disappear from within a program is 
to put it on line 26 of the screen. Astute 
readers will note that there is no line 26 on a 
25-line screen, which is why the cursor can't 
be seen when it's down there. This works 
well, except that the screen position func
tions found in most C compilers, usually 
gotaxy, won't allow you to pass them illegal 
values. 

In this case, we have to use the BIOS to 
move the cursor to line 26. This is ac
complished with BIOS calllOH, function 2. 

In machine language, this would be 
done with the following bit of code. 

MOVAH,OFH 
INTlOH 
MOVAH,02 
MOVDX,lAOOH 
INTlOH 

Hands up everyone who made any 
sense of this at all. 

The first rule of low level calls to the 
PC's guts is that they're never even marginal
ly intellig~ble without a bit of inside informa
tion. 

E& TT July 1989 



Techie's Guide to C Programming, Part 7 
The definition of the cursor mover call 

of the BIOS says that the AH register has to 
contain the number 2, since this is BIOS 
function 2. This accounts for the line MOV 
AH,02. The DH register is to contain the 
vertical position and the DL register the 
horizontal position. These two registers can 
be combined into the DX register. The 
horizontal position will be :zero. The vertical 
position will be 26. In hexadecimal, 26 is rep
resented by the number lAH. Hence, we 
MOVD:X,lAOOH. 

The BH register is supposed to hold 
the video page number. The CGA card, 
for example, actually has four pages of 
video memory. In order to fmd out which 
of these is in use at the moment, we have 
to use a second BIOS call before we get to 
the first one. Function OFH returns the 
page number in the BH register of the 
processor,just where we want it. 

Let's see how this is done in C. It's a 
bit easier. 

HideCursorO 
{ 
union REGS r; 

r .x.ax = OxOIDO; 
int86(0x10,&r,&r); 

r .x.ax = 0x0200; 
r .x.dx = OxlaOO; 
int86(0x100,&r,&r); 
} 

I said it was a bit simpler - not blind
ingly clear. 

C provides us with a function called 
int86, which simply executes software in
terrupts. Its first argument is the number 
of the interrupt we want executed, as 
found in the ROM BIOS book or in some 
other suitable list. Its second and third ar
guments are pointers to a peculiar kind of 
struct called a "union". The REGS union 
is defined in the DOS.H file of your com
piler. It just holds the values of all the im
portant machine registers. The second ar
gument is the registers going into the call 
and the third one is the registers coming 
out. It's allowable to return the registers in 
the same REGS variable as they start in, 
as we've done here. 

W e'lllook at the notation of unions in 
greater detail later on in this series. For 
now, you can apply this approach to 
having your C program throw any 
software interrupt you have a need of. 

H ere's a slightly more involved ex
ample of a BIOS call. This routine scrolls a 
window on the screen up by a defined 

52 

number of lines. If the number of lines is 
zero, the window is blanked. We'll assume 
that the screen text is in white on black 
text, which has a screen attribute of 07H. 
We'll discuss this in a future episode too. 

ScrollUp(left,top,right,bot-
tom,how _much); 

int left,top,right,bottom,how _much; 
{ 
union REGS r; 

r .x.ax = 0x0600h +how_ much; 
r .x.bx = 0x0700; 
r .x.cx = (top* 256) + left; 
r .x.dx = (bottom * 256) + right; 
int86(0x10,&r,&r); 
} 

Working backwards, the defmition 
for this interrupt !ells us that its function 
number is 6. The function number always 
goes in the AH register, or the upper byte 
of the AX register. The AL register, or the 
lower byte of the AX register, contains the 
number of lines to scroll up by or :zero to 
clear the window. The BH register con
tains the screen attribute for the window, 
seven in this case. 

The CL and CH registers contain the 
horizontal and vertical co-ordinates for the 
upper left comer of the window. The DL 
and DH registers contain the co-ordinates 
for the lower right corner. 

Snakes and Ladders 
As you will have noted, printing to the 
screen of a PC in the "correct" way, which 
involves using several interrupt calls strung 
together, is tediously slow. The way which 
most applications manage it is to locate the 
memory where the screen display lives and 
poke the requisite screen text right into the 
buffer. 

This is cheating, of course, but it 
works very well. Most C compilers feature 
high speed screen printing which is a lot 
more elegant than what we're going to 
look at here. However, being able to treat 
the screen just like another chunk of 
memory has its uses. 

In order to do high speed screen ac
cess from C, we have to be able to fmd the 
screen and figure out which locations cor
respond to which characters. R egrettably, 
the screen memory move's around 
depending on what sort of display card is 
in memory. CGA, EGA and VGA cards 
place it at segment B800H. H ercules cards 
put it at segment BOOOH. 

A segment is just part of a memory 
address, as we'll see. 

In order to find out where the screen 
memory is, we have to find out what sort of 
card is in the computer our program is run
ning on. We can do this with a BIOS call. 

ScreenSegmentO 
{ 
union REGS r; 

int86(0xll,&r,&r); 

if((r.x.ax & OxOOcO) 
return(OxbOOO); 

else retum(Oxb800); 
} 

OxOOcO) 

This uses a different BIOS call, inter
rupt llH. This interrupt returns a word in 
the AX register with bits that indicate 
whether there's a math coprocessor in the 
machine, how many floppy drives are on line 
and what the video card type is. In essence, it 
reads the configuration DIP switches. If bits 
four and five are both set, we have a 
monochrome or a Hercules card. If they 
aren't, it must be one of the other cards. 

Now, here's where we start getting 
tricky. In the large model of Turbo C, and 
any other C compiler for the PC, we can 
create a pointer which points anywhere in 
memory. The function for doing this is 
MK_FP, for "make far pointer". This bit 
of code will always point to the beginning 
of the screen buffer. 

char*p; 
int s _segment; 

s_segment = ScreenSegmentO; 
p = MK_FP(s_segment,O); 

If we now say *p = 'A', the very first 
character in the upper left comer of the 
screen will become the letter A This is the 
location specified by the screen segment and 
an offset of :zero, that is, the very first byte in 
the segment which defines the screen 
memory. 

On the PC's screen, the odd num
bered bytes in memory hold the charac
ters. The even numbered bytes hold the 
attributes for those characters, which 
defme what colours they are, or whether 
they're flashing, inverse or underlined on a 
H erccard. 

This will draw a line of the letter A 
across the top of the screen. It assumes that 
the previous stuff has all been done. 

inti; 

for(i = O;hi;i+ = 2) p[i] = 'A'; 

E& TT July 1989 



There are 160 bytes in an 80-line 
screen, and we want to address every odd 
one. This code will make all the A's in the 
last line flash in inverse text. 

for(i=O;ia;i+ =2) p[i+l] =OxiD; 

The attribute OxfO is black text flash
ing on a white background,. quite 
remarkably hard on the eyes, actually. 

Finally, this function will print a string 
s at the location (.x;y) on the screen using 
this rather tricky screen interface. 

printxy(s,x,y) 
char*s; 
int x,y; 
{ 
char*p; 
kcint offset; 

offset + = (160 * y) + (2 * x); 
p= MK_FP(ScreenSegment(),of

fset); 

while(*s) { 
*p+ + =*s+ +; 
*p+ + =Ox07; 
} 
} 

To use this function we would do this: 
printxy(l0,20,'There once was a her

mit named Dave"); 

This call would print the string ten 
characters in from the left on line 20. 

There are a lot of holes in this func
tion, of course. First off, if you have a 
colour card in your computer, you'll fmd 
that executing this creates a blast of snow 
on your screen for an ipstant. This is be
cause the colour card is a bit dim witted, 
and it clashes with the processor if data is 
jammed into its buffer at the wrong times. 
In order to avoid this, we would have to 
write a fairly complex routine in assembly 
language which reads some of the registers 
of the card's controller chip and waited 
until it was just the right moment to access 
the buffer. Colour cards being rather an
tediluvian, it hardly seems worth the effort. 

More fundamental problems with this 
function include its inability to do any 
screen control at all. It carmot respond 
properly to carriage returns, line feeds, 
tabs and so on. You might want to try ad
ding these features to it once you under
stand what it's up to. 

Regularly Scheduled Program 
It might well be argued that the subjects 

E& TT July 1989 

How the character byte and the attribute byte would look like inmem01y. 

we've looked at this month are a bit ad
vanced, and might well have been better 
dealt with later on. In theory this is true ... in 
reality, you invariably have to get at the guts 
of your PC sooner or later. Once you get 
started, you'll find yourself exploring all 
marmer of dirty tricks. There are those 
programmers who are of the opinion that 

the PC itself is a dirty trick, something 
which IBM created in retaliation for one of 
those long forgotten antitrust suits which 
were always snapping at its corporate 
heels. 

In this light it seems somehow ap
propriate that a few dirty tricks should live 
on in every program that runs on it. • 

{ pH~ p.f\ ·. 'f3.. ·. flvf~ : Pt"G4,s 

0 . Gcj.Jfo Us . ~ 
~o · · .;itfc 

~\<..\ ·. ~~ TEST INSTRUMENTS 0 : t"Jc(j 
AND 

EDUCATIONAL KITS 

New Test Equipment and Electronic Kit catalogue available 
through your Electronic Distributor, or contact: 

COWAN DIVISION 
R.P. ELECTRONIC COMPONENTS LTD. 
2113 WEST 4TH AVENUE 
VANCOUVER, B.C. CANADA V6K 1 N7 
TEL: (604) 738-2944 FAX: (604) 738·3002 

Circle No. 33 on Reader Service Card 53 




