
projects embedded c programming

22 elektor - 6/2009

C is a genuine general-purpose programming language
(there are over 400 different languages for computer sys-
tems). C is a small, compact language, which is not all that
difficult to learn. These days C is used mostly in embed-
ded microcontroller applications. This means devices that
contain a microcontroller doing one specific task, such as
a coffee maker (compare that to the processor in a PC
which runs a variety of programs). The Java language is
also quite frequently used for this, but it places much higher
demands on the hardware, specifically in terms of speed
and memory.
One or more C compilers are available for virtually every
commercially available processor. An international standard

for C has been established: ANSI-C (end of 1988). There
are standard library functions, function declarations and
definitions. You can really only learn C++ once you know
C. As a little known fact, C evolved from the language B.
Windows and Unix operating systems are typically written
in C or C++. The C language is close to the hardware on
which the program will run. The C program lines are con-
verted by the C compiler into assembly language: this lan-
guage is the closest to the hardware: the (micro)controller

(see Figure 1).
Nowadays, programming in assembly language is usually
only done if the code needs to be extremely compact or
run very quickly. Every family of processors, such as those
made by Atmel, Microchip and Texas Instruments (TI) has
their own unique instruction set and you have to know all
the registers and memory locations really well and write
much more code yourself, such as for tasks like multiplica-
tion or division.

Processor
For this course we chose the MSP430 family made by TI.
These are powerful 16-bit processors which are eminently
suitable for battery-powered applications such as measuring
instruments and intelligent sensors. The specific processor
that we use here is the MSP430F2012. Here are a few of
its salient features:

• Power supply voltage from 1.8 to 3.6 V

• Internal clock up to 16 MHz

• A 32 kHz watch crystal can be connected directly

• 2 timers which can be used for
accurate timing measurement or pulse generation.

• 2 Kbyte flash memory for code and the storage of
parameters (non-volatile)

• 128 bytes of RAM for variables

• 10-bit A/D-converter at up to 200 ksamples per second

• USI (universal serial interface),
can be used for SPI and I2C

Getting started with embedded C
Part 1: IAR Embedded Workbench
and flashing LED
A.J. (Bert) Korthof (The Netherlands)

This is the first instalment of a three-part series which will introduce the fundamentals of
programming a microcontroller in C. You can immediately try all the examples using the
MSP430 hardware, which is also described in this issue, in combination with a PC or laptop
which has a USB interface. The software we’ve used is available as a free download. In this
way you will learn step by step how you can use the higher programming language C in all
kinds of electronics projects.

Java Basic

Instruction
set

Object
code

C
Higher

programming
language

Assembly

Code example:

081041-11

Machine
language

a&=b

0110100111...

LD R1,a
LD R2,b
AND R1,R2
ST a,R1

Figure 1.
The instructions of a higher

programming language
are converted into

machine language that the
processor can understand.

236/2009 - elektor

The amount of memory available for your own programs
is quite small, but you will be surprised how many useful
programs (such as interfacing with sensors, controlling sim-
ple machines (state machine) data conversion, counters,
security applications, etc.) can be made to fit in this small
space. The C compiler used here is supplied by IAR and
converts code efficiently into machine language. Just about
anything that is possible in C you can learn using this com-
piler. In addition, you can use the same software for the
bigger and more powerful processors from the MSP430
family as well!

Hardware and software
This first article describes the organisation of the develop-
ment environment for programming in embedded C, so that
you can easily begin writing your own simple programs
and debug them in real time or single step by executing
the code in the microcontroller on the Elektor PCB, number
080558-2. The board contains, of course, a microcontroller
to run the code and also several examples of sensors (push
buttons) and actuators (LEDs, 7-segment display, buzzer),
see Figure 2.
For the development environment we use the IAR Work-
bench KickStart software, which is supplied by TI accom-
panying the eZ430 USB stick.

Making a start with C
We cannot cover an entire book worth of C in these three
articles, but there are already plenty of C books and very
good courses are available on the Internet (see [1] and
[2]).
The C language is not all that difficult to learn, there are
only 32 keywords (Table 1), C simply does not know any
more words — compare that to English or any other nor-
mal language.

Getting started with embedded C

Table 1. The standard version of ANSI-C
has only 32 keywords.

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

Figure 2.
The experimenting
board contains several
sensors and actuators for
interaction with the user.

projects embedded c programming

24 elektor - 6/2009

Here we cover the details that are specific to our hardware
and software, details which are not in a C book because
the C language is universal! We learn the basic rules for
C programs which can run on an ordinary PC. To do this
we use the standard header file: #include “stdio.h”, which
contains the definition for the commands printf and scanf.
This is used to define the standard input and output chan-
nels for the hardware that is used.
A standard C program consists of declarations of variables
and functions. The function main() must always exist. This
contains the statements that are carried out sequentially,
one after the other. Main begins with a left brace and ends
with a right brace. Every statement is terminated with a
semicolon (;).

The names of variables can be chosen freely, but in the C
language we have to indicate clearly what type it is, for
example the variable i: unsigned int i.
To the MSP430 processor this means an integer in the
range from 0 to 65535, the processor by default works
with 16-bit numbers.

All text between /* and */ is treated as a comment by the
compiler. We can also add comments after //.
We obviously do not have a microprocessor board to
which we can connect a printer or keyboard (this requires
a much more powerful processor). However, we can ‘print’
by showing numbers on the display and scan the state of
the push buttons (read).

Each of the port pins of this processor can be individually
configured as either an input or an output. We can con-
nect logic-level signals (0 or 3.3 V) to an input, for example
using a switch. You cannot do this to an output of course!
(Take note: you can get a high current when you connect an
output pin set to a High level, to 0 V through a switch!)
For safety, the default values of the bits in the port pin direc-

tion registers are cleared, so that the ports are initially con-
figured as inputs!

First program
Our first little C program will drive four LEDs. When we
look at the schematic in the construction article we can
see that the LEDs are connected in different ways via resis-
tors to microcontroller port P1! To turn the red LEDs on, the
microcontroller has to put a logic High level (power supply
voltage, 3.3 V) on port pins P1.1 and P1.2. This is called
active High. To turn the green LEDs on, port pins P1.3 and
P1.4 have to be made Low (0 V), because a pull-up resis-
tor is used here. These are therefore active Low. As a pro-
grammer we have to keep these things in mind. To prevent
time-consuming mistakes in the code the ‘software guy’ will
therefore also have to be familiar with the hardware.
Launch the IAR Workbench, incorporating the C compiler,
simulator and debugger. Then create a new workspace for
a new project which contains the C statements in a text file
which you call BlinkingLeds.c, so that the C compiler can

recognise this as a C program.
In addition you have to tell the
compiler which hardware this
program will run on. Because
this requires going through a
number of steps and the selec-
tion of various options, we have
described this process in some
detail in a supplementary article
Getting started with IAR Work-
bench which is available free
from the Elektor website.
We will assume that you have
done all this and have opened
the file BlinkingLeds.c and have
linked it to your project, as can
be seen in Figure 3.
The program (the source code)
is compiled (translated into
machine code) by clicking on:

At the bottom of the window we
can see that there are no C lan-
guage errors in the code and
how much code and data mem-
ory we have used. Although
there are no syntax errors in the
program, the C compiler can-

not, of course, tell us whether the program operates as it
should! This we have to check for ourselves!
In the code we can see words such as BIT1 (binary for 0
... 010), P1OUT (outputs of port 1) and WDTCTL (control
register for the watchdog timer, this will reset the processor
if the program gets stuck). The definitions for these words
are in the header file msp430x20x2.h. This also contains
all the features of the processor that we are using, such as
the addresses of the ports, memory size, special registers
for the timers, clock generator, etc.
With the statement P1DIR = 30 (=2+4+8+16) the correct
bits in the port direction register are set High so that the port
pins for the four LEDs (P1.1 through P1.4) are set to outputs.
A port pin which is configured as an output can supply up
to about 5 mA, sufficient to drive an LED directly!

Figure 3.
The file BlinkingLeds.c is

linked to the project in IAR
Embedded Workbench.

256/2009 - elektor

With the instruction P1OUT = 255 (binary 11111111) we
make all eight bits of port 1 High. Only the port pins to
which the LEDs are connected will go High. The other pins do
not go High because they are not configured as outputs.

Structure of the BlinkingLeds program
As already noted, the statements between the braces of the
‘main’ function are executed sequentially. If this were the
only option then our program would be very long. In C we
can also make program loops and program jumps: with the
statement while(condition = true) all the code between the
braces is repeated until the condition is no longer true. Here
we use while(1), were 1 means ‘true’ (0 means ‘false’). The
while-loop is therefore repeated forever (or until the power
supply is disconnected or the reset pin of the processor is
activated). In addition we also see a for(…,…,…) loop, with
which we let the processor count from 0 to 65535 (this is
the largest positive number that we can represent with 16
bits; 216–1). This loop is added twice to create a software
delay of about 2×0.5 seconds, so that we can clearly see
that the LEDs are flashing. For this we declared the vari-
ables i and j, where j is a temporary variable, the memory
location of which is available to be reused for other vari-
ables (this reduces the amount of the — limited — RAM
that is used).
After this brief explanation we continue with IAR Work-
bench to ‘flash’ the program into the microcontroller by
clicking on C-Spy:

We assume that the board is connected to the USB port
via the MSP-eZ430 USB interface board and all settings
are configured according to the document: Getting started
with IAR Workbench.
We now arrive in the debug mode and can manually run
through the program step by step and watch the values of
the variables at the same time (Figure 4).
We can open a Watch window by selecting Watch in
the View menu and adding the variables ‘i’ and ‘j’ in the
dashed rectangles.
You can experiment for yourself with Single-step-mode, the
RUN mode (we can now see the red and green LEDs flash!),
Break (the next statement which is ready to be executed is
shown in green) and stop using a reset.
Running through the for-loop in single-step mode gives little
information and will take a very long time. We can change
the variables ‘i’ and ‘j’ in the Watch window by clicking on
their value and typing 65534, for example... and with only
a few more steps we’re out of the loop!

Masking of bits
The C language can do many things, but we cannot, for
example, directly change a single bit to logic High (1) or
Low (0)! For example, using the statement
P1OUT = BIT1; (or P1OUT = 2;) we can make the second
bit High, the red LED D1 will turn on, but this will cause the
other port pins to be Low! This could result in other impor-
tant actuators such as an alarm or motor to be turned off
or even on. We can solve this annoying problem by the
masking of bits: If P1OUT has the value, for example, of
01...101 and we only want to make BIT1 High and leave
the other bits unchanged then we first use a logical-OR func-
tion with 00...010 and send the result to the port pins. With
the OR function all bits remain the same, except BIT1 which

goes from 0 to 1 (if it was already 1 then it remains 1).
In the C language we can indicate these two operations as
follows: P1OUT (new value) = P1OUT (old value) | BIT1 (
| is in C the bit-wise OR function). The C language is well-
known for its concise notation, so it can therefore also be
written shorter: P1OUT |= BIT1.
Another example of this compact notation: i++ means: read
the value of i from its memory location, add 1 and write
the result to the original location (the original value is there-
fore lost).
The OR function is necessary for setting a bit (making it
High). For resetting (0) we require the AND function (bit-
wise AND; in C the symbol for this is &). Say we want to
make the third bit Low. We need to make a mask with the
inverse of 00...0100 and use this in an AND function. the
bit-wise operator for inversion is the ~. The short notation
therefore becomes: P1OUT &= ~BIT2.
Example: P1OUT = 01010101. We want to reset the last
bit only. Use a mask that is the inverse of 00000001 (this
is 11111110) and use this number in a logic AND func-
tion with the old value of the port: 01010101 & 11111110
= 01010100.
Finally an interesting exercise: Change the program Blink-
ingLeds.c so that you obtain a running light where each of
the LEDs turn on one after the other. Don’t forget the for-loop
to obtain a delay, otherwise the LEDs will change every few
microseconds and it will appear that they are all on at the
same time, because of the persistence of our eyes.
Try it for yourself!!

The example program BlinkingLeds.c can be downloaded
from the web page belonging with this article (www.ele-
ktor.com/081041) filed under number 081041-11. The
supplement Getting started with IAR Workbench can also
be found here, filed under number 081041-W.

(081041-I)

About the Author
Bert Korthof is a Lecturer in the department of Automotive Tech-
nology/Electrical Engineering at Rotterdam University.

Internet Links
[1] www.lysator.liu.se/c/bwk-tutor.html

[2] www.cprogramming.com/tutorial/c/lesson1.html

Figure 4.
In de debug-mode we can
run through the program
step by step and at the
same time examine the
values of variables.

