
6 September & October 2017 www.elektormagazine.com

ES
P

32
Ubuntu is the preferred operating system at Espressif, and the
actions described in this article are intended to be performed
under Ubuntu 14.04 LTS. If you use Windows instead, you can
obtain more information at [2]. And if you are an Apple user,
you should consult [3].

The manufacturer provides the toolchain in the form of a binary
package. Several auxiliary programs are necessary for using

the toolchain; they can be downloaded and installed with the
following command:

sudo apt-get install git wget make libncurses-dev
flex bison gperf python python-serial

A helpful tip in this regard: apt-get install does not mind
if some of the tools are already present on the target system

ESP32 for Power Users
Native programming
By Tam Hanna (Slovakia)

In the previous issue of Elektor we showed how easy it is to program the powerful ESP32 in the Arduino IDE
[1]. However, if you want to utilize the full functionality of this microcontroller with integrated WLAN and
Bluetooth, you have to use the native ESP IoT Development Framework (IDF). Working with the various
command line tools can be intimidating for beginners or developers without a Linux background, so this
article aims to show you how it’s done.

www.elektormagazine.com September & October 2017 7

#include “freertos/FreeRTOS.h”
#include “esp_system.h”
#include “esp_event.h”
#include “esp_event_loop.h”
#include “nvs_flash.h”
#include “driver/gpio.h”
#include <driver/dac.h>

For the event loop of the RTOS we need an event handler,
although in our case it always returns “OK” and does not affect
execution of the code:

esp_err_t event_handler(void *ctx, system_event_t
*event) {

 return ESP_OK;
}

That is followed directly by the function app_main, which is called
when the microcontroller program starts. First it initializes the
external flash memory and registers the event handler:

void app_main(void) {
 nvs_flash_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_

handler, NULL));

Next we can port the code used in the previous article of this
series. The documentation at [7] shows that only one method
is necessary:

 while (true) {
 for(int i=0;i<255;i++){
 dac_out_voltage(DAC_CHANNEL_1, i);
 }
 }
}

Find the board
In the Arduino IDE we would be finished at this point: just click
and run, and let the digital storage scope do its job. But with
the command line tools a bit of manual effort is necessary.
The first task is to find the ESP32 board. Unix puts the serial
port of the ESP32 Thing module we are using (see [1])
somewhere under /dev. To make it easier to find the target
device, it is a good idea to check the content of the kernel
log after plugging in the device. There is a sort of ring buffer
which the Linux kernel populates with various information
during system operation.

(see the parameters); they are simply skipped without any
comment.
If you work with a 64-bit operating system, you should download
the file at [4]. Those of you with a 32-bit system can find a
suitable file at [5], although it is not very well supported.

If you download the file in Firefox, the content is automatically
placed in the Downloads folder. Execute the following series
of commands to extract the content to the esp subfolder and
make it ready for use:

tamhan@TAMHAN14:~$ mkdir -p ~/esp

tamhan@TAMHAN14:~$ cd ~/esp

tamhan@TAMHAN14:~/esp$ tar -xzf ~/Downloads/xtensa-
esp32-elf-linux64-1.22.0-61-gab8375a-5.2.0.tar.gz

For those of you with a Unix background, a brief explanation
of the tilde character is appropriate here. It is a single symbol
which represents the path to the home directory of the currently
logged-in user, in order to avoid problems with typos.
The ESP32 toolchain expects the variable PATH to contain a
particular directory. This can be achieved by entering the export
command. You should bear in mind that this command is only
effective as long as the current console window remains open:

tamhan@TAMHAN14:~$ export PATH=$PATH:$HOME/esp/
xtensa-esp32-elf/bin

Last but not least, you have to download the support library
from GitHub. Note that the following command must be issued
in the home directory of the ESP toolchain:

tamhan@TAMHAN14:~/esp$ git clone --recursive https://
github.com/espressif/esp-idf.git

Your first project
If you want to create a new project, you should first visit GitHub
to see what is already available. The processor manufacturer
provides a template which can be downloaded as follows:

tamhan@TAMHAN14:~/esp$ git clone https://github.com/
espressif/esp-idf-template.git elektor1

The clone command takes as a parameter the name of the
folder where the project structure should be set up.
For now we can ignore the various make files in that folder and
concentrate on the file main.c located in a folder with the same
name. Espressif equips it with a relatively complex skeleton,
but we don’t want to use that skeleton here. Instead, we want
to output the sawtooth waveform described in the previous
article, so we first have to delete the content of main.c (all
code examples can be downloaded at [6]).

As usual, the first thing we have to do is to include several
header files which provide the API. Here you can see that one
of these header files points to the FreeRTOS real-time operating
system, which Espressif uses in various places:

Make what?

The command line tool make has become more or
less standard in the Unix world for automation of build
processes (compilation, linking, etc.). The instruction
files used to control the compilation process are called
make files.

8 September & October 2017 www.elektormagazine.com

tamhan@TAMHAN14:~/esp/nmgsample1$ ls -l /dev/ttyUSB0

crw-rw---- 1 root dialout 188, 0 feb 26 22:58 /dev/
ttyUSB0

Under Unix this is usually called dialout. Next we have to add
our user account to this group in order to obtain the access
permissions:

root@TAMHAN14:~/esp/nmgsample1# sudo adduser tamhan
dialout

Adding user `tamhan’ to group `dialout’ ...

Adding user tamhan to group dialout

Done.

root@TAMHAN14:~/esp/nmgsample1# sudo reboot

Unix updates the access permissions during a restart. If you
want to avoid constantly prefixing your commands with sudo,
you should restart your workstation at this point.

Menuconfig
Now let’s look at the process of configuring the execution
environment. For this we employ the frequently used make tool,
which is responsible for processing compilation instructions.
Since manual editing of make files is a tedious task, there is
also a more or less standardized editing tool called menuconfig.
Menuconfig is used not only in the ESP IDF, but also for compiling
kernels and operating systems – for example, OpenWRT.
The menuconfig variant of the ESP IDF expects a variable
named IDF_PATH which points to the directory containing the
main part of the library. The call therefore looks like this:

tamhan@TAMHAN14:~/esp/elektor1$ export IDF_PATH=~/
esp/esp-idf

The command shown here redirects the output of dmesg in
the grep tool, which looks for the string located in the output
of the FTDI driver and only displays the relevant lines:

tamhan@TAMHAN14:~/esp$ dmesg | grep ‘FTDI USB Serial
Device converter now attached’

[4.817153] usb 1-1.6: FTDI USB Serial Device
converter now attached to ttyUSB0

What matters here is the value which shows where the new
device has been placed in the device tree. In our case this is
ttyUSB0, so the path is /dev/ttyUSB0.

Access to serial devices is normally limited to the superuser, so
we need to give our Linux user account permission to access
this port. For this we must first determine which user group the
device belongs to. That can be done with a special variant of
the ls command, which outputs additional information about
a directory or a queried component:

Figure 1. The start screen of make menuconfig is ready for entries.

Figure 2. The ESP IDF is slower here than the Arduino IDE. Figure 3. Changing to Release mode does not help very much.

www.elektormagazine.com September & October 2017 9

the first compilation, but not during subsequent compilations,
so they run raster.

Running...
We connected a storage oscilloscope to pin 25 of the ESP32,
yielding the result shown in Figure 2 – which is not especially
satisfactory. Apparently the native version of the code is
significantly slower than the Arduino version described in the
previous article.

We therefore went back to menuconfig to adjust various
settings. First we set the Optimization Level parameter to
Release and then deployed the program again after saving
the change. The reward for this was approximately 10% more
speed (Figure 3). This shows that a native API is not necessarily
faster than the Arduino API.

The next thing we tried was to disable the event loop running
in the background. To do so, we commented out a line in the
app_main code:

void app_main(void) {
 nvs_flash_init();

 //ESP_ERROR_CHECK(esp_event_loop_init(event_
handler, NULL));

That also raised the speed, although the increase was only
slight (see Figure 4). Despite all our efforts, we were not able
to reach a speed level comparable to that attained with the
Arduino sketch. The reason for this is the real-time operating
system, which performs several time-consuming synchronization
operations each time before it writes data to the registers
responsible for the output.

Bluetooth
The next task is to establish a wireless link to a smartphone.
The most important new feature of the ESP32 is the Bluetooth
transceiver, which we now want to get up and running. First we
had to activate the Bluetooth module of the microcontroller. To
do so, we opened make menuconfig and went to the heading
Component Config. We activated Bluetooth by pressing the Y
key (an activated option is indicated by an asterisk between
two square brackets ([*]). Then we saved the configuration.
Several dozen additional files were compiled during the next
compilation round.

Espressif relies on the Bluedroid stack. If you have a lot of
previous experience with Android, you will probably be familiar
with some of these methods. For the rest, we provide a brief
introduction here. Before plunging into the details, we would
like to make a general remark: When working with complex
software systems (which definitely includes real-time operating
systems such as FreeRTOS), it is very advisable to not write
your own software completely from scratch (starting with a
clean sheet). Instead, you should find a demo program or
sample code which implements a similar function, examine
its structure, and copy or adapt individual code segments or
routines step by step.

tamhan@TAMHAN14:~/esp/elektor1$ make menuconfig

As in the previously mentioned case with the variable PATH, the
export instruction is only valid as long as the terminal window
to which it applies remains open.
Don’t be surprised when compiler messages appear on the
screen during the processing of make menuconfig – some parts
of the tool are compiled directly before it is used. The actual
user interaction is via the cursor keys, along with the Enter
key to confirm the selected options (Figure 1).
The first important setting is located under Serial flasher config
→ Default serial port. There you should enter the previously
determined port ID in order to link the tool chain to the ESP32
connected to the PC. Don’t forget to save the configuration
with the Save command after entering your settings.

After you are finished with the configuration, you have to
download the firmware to the microcontroller. Here again you
use make for this, but with different command parameters:

tamhan@TAMHAN14:~/esp/elektor1$ make flash

GENCONFIG

CC src/bootloader_flash.o

. . .

Wrote 16384 bytes at 0x00008000 in 1.4 seconds (91.0
kbit/s)...

Hash of data verified.

Leaving...
Hard resetting...

Note that the output of the command depends on the specific
operating state. The entire library must be fully processed during

Figure 4. Disabling the FreeRTOS event loop also does not make the code
significantly faster.

10 September & October 2017 www.elektormagazine.com

#include “bta_api.h”
#include “esp_gap_ble_api.h”
#include “esp_gatts_api.h”
#include “esp_bt_defs.h”
#include “esp_bt_main.h”
#include “esp_bt_main.h”
#include “sdkconfig.h”

Add some handlers
Bluetooth LE is intended to be a low-power communication
system, but using synchronous methods and polling negates
this advantage by increasing the load on the main processor.
For this reason it is not surprising that the Bluetooth stack
has a fully asynchronous structure and requires registration
of event handlers.

The gap_event_handler looks after the events of the
GAP protocol. Its main task is to send packets called
“advertisements” which inform other hardware that the device
concerned is present. Calling esp_ble_gap_start_advertising
also instructs the stack to start a new advertising cycle:

static void gap_event_handler(esp_gap_ble_cb_event_t
event, esp_ble_gap_cb_param_t *param)

{

 switch (event) {

 case ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT:
 esp_ble_gap_start_advertising(&test_adv_

params);
 break;

 case ESP_GAP_BLE_ADV_DATA_RAW_SET_COMPLETE_EVT:
 esp_ble_gap_start_advertising(&test_adv_

params);
 break;

The various parameters of the advertising command are
supplied in the form of an esp_ble_adv_params_t structure,
for which the settings can be copied directly from the template:

static esp_ble_adv_params_t test_adv_params = {
 .adv_int_min = 0x20,
 .adv_int_max = 0x40,
 .adv_type = ADV_TYPE_IND,
 .own_addr_type = BLE_ADDR_TYPE_PUBLIC,
 .channel_map = ADV_CHNL_ALL,
 .adv_filter_policy =

ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY,
};

It’s interesting to note that the stack requires prior inclusion
of the file string.h, which is done as follows:

#include <string.h>

The entry point of our program (without the error logging
code) looks like this:

void app_main() {
 esp_err_t ret;
 esp_bt_controller_config_t bt_cfg =

BT_CONTROLLER_INIT_CONFIG_DEFAULT();
 ret = esp_bt_controller_init(&bt_cfg);

 . . .

First we call the function esp_bt_controller_init, which is
responsible for initializing the overall Bluetooth subsystem. The
object to be configured is handled by a macro, which returns a
standard implementation of the Bluetooth structure.

The next step is to define the operating mode of the Bluetooth
microcontroller. Here we use “BTDM” in order to activate
both Bluetooth LE and Bluetooth Classic. Next we call two
housekeeping functions which allocate memory and processing
time to the Bluetooth stack:

 ret = esp_bt_controller_enable(ESP_BT_MODE_BTDM);

 . . .

 ret = esp_bluedroid_init();

 . . .

 ret = esp_bluedroid_enable();

 . . .

The Bluetooth LE implementation of the ESP32 operates very
asynchronously. We therefore register two event handlers which
are responsible for the GATT and GAP events [8]. Finally, we
register an additional application for the GATT protocol, which
can be used later to hold attributes:

 esp_ble_gatts_register_callback(gatts_event_
handler);

 esp_ble_gap_register_callback(gap_event_handler);

 esp_ble_gatts_app_register(0); //App-ID 0
 return;
}

In order to use the Bluetooth API, we must additionally include
a group of headers. It’s a mystery to the author why Espressif
does not provide a catch-all file containing all of the necessary
headers:

#include “esp_system.h”
#include “esp_log.h”
#include “nvs_flash.h”
#include “bt.h”

www.elektormagazine.com September & October 2017 11

service_handle;
 char_uuid.len = ESP_UUID_LEN_16;
 char_uuid.uuid.uuid16 = 0xFF01;
 esp_ble_gatts_start_service(service_

handle);
 esp_ble_gatts_add_char(service_handle,

&char_uuid,
 ESP_GATT_PERM_READ |

ESP_GATT_PERM_WRITE,
 ESP_GATT_CHAR_PROP_BIT_

READ |
 ESP_GATT_CHAR_PROP_BIT_

WRITE |
 ESP_GATT_CHAR_PROP_BIT_

NOTIFY,
 &gatts_demo_char1_val,

NULL);
 break;

Read requests addressed to the characteristic are answered
by using the function esp_ble_gatts_send_response, which
receives a bit string containing the data to be sent back to the
requesting party.

 case ESP_GATTS_READ_EVT: {
 esp_gatt_rsp_t rsp;
 memset(&rsp, 0, sizeof(esp_gatt_rsp_t));
 rsp.attr_value.handle = param->read.

handle;
 rsp.attr_value.len = 4;
 rsp.attr_value.value[0] = 0xde;
 rsp.attr_value.value[1] = 0xed;
 rsp.attr_value.value[2] = 0xbe;
 rsp.attr_value.value[3] = 0xef;
 esp_ble_gatts_send_response(gatts_if,

param->read.conn_id, param->read.trans_id, ESP_
GATT_OK, &rsp);

 }
 break;
ESP_GATTS_ADD_CHAR_EVT is responsible for the actual creation of

Next we have to declare memory areas where the Bluetooth
stack can store temporary data. There is also a structure of type
esp_attr_value_t which describes the attribute to be created:

#define GATTS_DEMO_CHAR_VAL_LEN_MAX 0x40

uint8_t char1_str[] = {0x11,0x22,0x33};

esp_attr_value_t gatts_demo_char1_val =
{
 .attr_max_len = GATTS_DEMO_CHAR_VAL_LEN_MAX,
 .attr_len = sizeof(char1_str),
 .attr_value = char1_str,
};

Bluetooth LE identifies devices and counterparts by their
numeric IDs (UUIDs), which are globally unique and therefore
typically very long. The Bluetooth API provides the type esp_
bt_uuid_t to help developers cope with these UUIDs:

esp_gatt_srvc_id_t service_id;
uint16_t service_handle;
esp_bt_uuid_t descr_uuid;
esp_bt_uuid_t char_uuid;

If you have been paying close attention so far, you may be
wondering why two characteristics are necessary for the
implementation of our simple service. In addition to the actual
characteristic, here we create a descriptor which provides
information about the data contained in the characteristic.
The actual event handler is then responsible for responding
to the various events occurring in Bluetooth LE. We therefore
restrict the complexity here to the implementation of a read-
only characteristic, which leads to the following code:

static void gatts_event_handler(esp_gatts_cb_event_t
event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_
param_t *param)

{
 switch (event) {

 case ESP_GATTS_REG_EVT:
 ESP_LOGI(GATTS_TAG, “REGISTER_APP_EVT, status

%d, app_id %d\n”, param->reg.status, param->reg.
app_id);

 service_id.is_primary = true;
 service_id.id.inst_id = 0x00;
 service_id.id.uuid.len = ESP_UUID_LEN_16;
 service_id.id.uuid.uuid.uuid16 =

GATTS_SERVICE_UUID_TEST_A;
 esp_ble_gap_set_device_name(“ElektorTest”);

Here ESP_GATTS_REG_EVT is responsible for registering a new
characteristic with the stack; the Service ID parameter is
populated during processing. CREATE_EVT is called when the
body has been generated and is ready for configuration:

 case ESP_GATTS_CREATE_EVT:
 service_handle = param->create.

Is your Bluetooth library current?

Espressif has significantly revised their Bluetooth
API several times in recent months. If the example
described in this article does not work, you should
update your IDF installation. The easiest way to do this
is to delete the libraries and download them again. After
downloading, don’t forget to call make menuconfig again
to update the configuration, and then save the new file.

More Bluetooth examples

Espressif offers numerous examples for the various
Bluetooth operating modes. More information is
available at [10].

12 September & October 2017 www.elektormagazine.com

Summary
Even though the performance of the ESP IDF API cannot keep
pace with the Arduino API in some areas, you have to work with
the IDF if you want to take advantage of the full functionality of
the ESP32. If you have previous experience with other 32-bit
microcontrollers, you generally should not find it difficult to
learn how to use the API.

(160457-I)

the characteristic, which was previously instantiated by calling
the method esp_ble_gatts_add_char:

 case ESP_GATTS_ADD_CHAR_EVT: {
 uint16_t length = 0;
 const uint8_t *prf_char;
 //gl_profile_tab[PROFILE_A_APP_ID].char_

handle = param->add_char.attr_handle;
 descr_uuid.len = ESP_UUID_LEN_16;
 descr_uuid.uuid.uuid16 =

ESP_GATT_UUID_CHAR_CLIENT_CONFIG;
 esp_ble_gatts_get_attr_value(param->add_

char.attr_handle, &length, &prf_char);
 esp_ble_gatts_add_char_descr(service_

handle, &descr_uuid, ESP_GATT_PERM_READ | ESP_
GATT_PERM_WRITE, NULL, NULL);

 }
 break;

Finally, we have to restart the advertising process after the link
between the device and the data source is broken, in order to
be visible to other potential clients:

 case ESP_GATTS_DISCONNECT_EVT:
 esp_ble_gap_start_advertising(&test_adv_

params);
 break;

 default:
 break;
 }
}

There is not enough space here to go into the details of the
interaction with the smartphone, but Figure 5 shows how
the created characteristic appears in the Nordic BLE app. The
program, which is available for download in the Play Store at
[9], acts as a sort of scanner which analyzes the contents of
Bluetooth LE devices and enables interaction with them.

Figure 5. The Bluetooth characteristic created by the ESP32 is ready for
access.

Web links

[1] www.elektormagazine.com/160454

[2] https://esp-idf.readthedocs.io/en/latest/get-started/windows-setup.html

[3] https://esp-idf.readthedocs.io/en/latest/get-started/macos-setup.html

[4] https://dl.espressif.com/dl/xtensa-esp32-elf-linux64-1.22.0-61-gab8375a-5.2.0.tar.gz

[5] https://dl.espressif.com/dl/xtensa-esp32-elf-linux32-1.22.0-61-gab8375a-5.2.0.tar.gz

[6] www.elektormagazine.com/160457

[7] http://esp-idf.readthedocs.io/en/latest/api-reference/peripherals/dac.html

[8] https://en.wikipedia.org/wiki/List_of_Bluetooth_profiles

[9] https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en

[10] https://github.com/espressif/esp-idf/tree/07b61d5/examples/bluetooth

