
Among other interface prob-
lems, contact bounce compli-

cates the connection of mechanical
contacts or any noisy digital input sig-
nal to a microcontroller. Although
designers have proposed a variety of
hardware and software approaches
that address the problems that contact
bounce poses, no one has yet claimed
a definitive and predictably stable
approach. (For a sampling of ap-
proaches, see references 1 through 10.)
The usual hardware approach to elim-
inating contact bounce comprises an
RC filter followed by a Schmitt trigger
(Figure 1). You can extend the filter’s
effectiveness simply by increasing the
RC time constant at the expense of
increased response time.

Software-debouncing methods usu-
ally include 1-bit processing, which
involves twice reading the contact’s
input state with a fixed delay between
the two readings. You can also imple-
ment a state machine or launch an
input signal through a shift register and
wait for three or four register-output
states that haven’t changed. The low
efficacy of 1-bit processing approaches

stems from designers’ erroneous as-
sumptions that seemingly simple
debouncing tasks can tolerate equally
simple software. However, a detailed
study of many types of contacts reveals
a range of complex and sometimes
unexpected behaviors. This Design
Idea documents a more comprehensive
method that can easily handle all
mechanical contact interfacing to
microcomputers.

The debouncing method applies full
8-bit-processing and digital-filtering
techniques to digital inputs. Using as
few as 20 assembly-language instruc-
tions that execute in 19 machine cycles
on an ATmega8 microcontroller, the
method produces a robust debouncing
action (see Listing 1 at the Web ver-
sion of this Design Idea at www.
edn.com/edn050707di1).

The software closely simulates the
hardware circuit in Figure 1 by using a
first-order, recursive, digital lowpass fil-
ter followed by a software Schmitt trig-
ger. In contrast to 1-bit software de-
bouncers that generally do not apply
processing to inputs, this debounc-
ing algorithm is effective because it

“remembers” past input transitions and
assigns a “weight” to each transition
depending on how long ago it
occurred. Furthermore, you can alter
the filter’s settings on the fly to meet
changing conditions by modifying its
thresholds and hence its execution
time, or time constant, from the main
program. The basic recursion algorithm
comprises present output value�
(1/4)�input value�(3/4)�previous out-
put value, or, YNEW�(1/4)�XNEW�(3/4)
�YOLD.

To avoid register overflow and insta-
bility, the value of YOLD and XNEW must
be less than 1, which for an 8-bit micro-
processor translates to values of less
than 256 for XNEW and YOLD. Conse-
quently, the input (1/4�XNEW) to the fil-
ter is either 0 or 63. You then apply the
output value, YNEW, to the software
Schmitt trigger. The trigger uses the fol-
lowing algorithm: If YNEW�hi, and
flag�0, then flag�1, and out�1. If
(YNEW�lo, and flag�1, then flag�0,
and out�0.

Hardware Schmitt triggers typically
have fixed thresholds of one-third and
two-thirds of the power-supply voltage.
However, the software allows widening
these thresholds and thus increasing
the filter’s time constant. In operation,
a timer-interrupt routine should exe-
cute the debouncing program every 4
to 5 msec. Becausee one time constant
equals the period of one interrupt, using
thresholds of 15 and 240 causes the rou-
tine’s output to “trigger” after 11 inter-
rupts, or 44 to 55 msec, which ade-

READERS SOLVE DESIGN PROBLEMS

Contact-debouncing algorithm
emulates Schmitt trigger
Elio Mazzocca, Technical Consultant, Adelaide, South Australia

EDITED BY BRAD THOMPSON
AND FRAN GRANVILLE

�

designideas

Figure 1 A basic switch-contact debouncer consists of an RC network fol-
lowed by a Schmitt-trigger circuit.

JULY 7, 2005 | EDN 85

DIs Inside
88 Inexpensive peak detector
requires few components

94 Free program designs and
analyzes passive and active
filters

R1
10k R2

220k

S1

C1
220 nF

OUT
IC1

5V

ELECTROMECHANICAL
SWITCH CONTACTS

edn050701di.qxd 6/22/2005 3:01 PM Page 85

quately processes most switches’ con-
tact bounce.

You can easily modify the main filter
coefficient to provide different filtering-
time constants. For particularly trou-
blesome contact bounce, you can use
the following recursion formula, which
requires 16 time constants to trigger the
software Schmitt routine. YNEW�(1/16)
�XNEW�(15/16)�YOLD. You can imple-
ment this algorithm with only eight
assembly-language instructions, where-
as the Schmitt-trigger routine requires
12 instructions. When you combine
both of these routines, the software
Schmitt trigger updates bit 0 of a reg-
ister, which the main program loop
should continuously check to ascertain
the contact’s status. As an alternative,
you can activate a software interrupt to
signal a contact’s status change. To do
so in the AVR architecture, you write
to that port bit that functions as an
external interrupt input.

Always avoid connection of mech-
anical contacts to interrupt inputs
unless the contacts undergo hardware
debouncing. Otherwise, the contacts
may bounce dozens of times, unneces-
sarily consuming processor-machine
cycles. The software routine reads the
inputs only every 4 msec and thus
imposes additional filtering on the
inputs. Simulation and practical testing
have confirmed that the debouncing
algorithm behaves as expected, pro-
ducing clean output transitions when
enduring noisy contacts. When you
program the assembly-language source
code accompanying this Design Idea
into an Atmel Atmega8, the code turns
on an output LED connected to Port_B
bit 0 when Port_D bit 0 of the micro-
controller goes to ground.

A simulated input waveform
(pind0) and its corresponding output
log file (portb0.log, both available at
the Web version of this Design Idea at
www.edn.com/050707di1,) illustrate
the filter’s excellent debouncing capa-
bilities. Beginning with a key closure at
10 msec, the stimulus loads into the
AVR Studio integrated development
environment. After multiple input
transitions, the output-log file shows a
single output transition occurring at

55.333 msec. The software effectively
filters out the three input pulses start-
ing at 56.1 msec (figures 2 and 3).EDN

R E F E R E N C E S
Hills, Paul, “A Mercury switch

filter,” http://homepages.which.net/~

paul.hills/Circuits/MercurySwitch
Filter/MercurySwitchFilter.html,
August 2001.

Baker, Bonnie, “The debounce
debacle,” EDN, Oct 28, 2004, pg 26,
www.edn.com/article/CA472833.

Ganssle, Jack, “My favorite hard-

designideas

Figure 3 The debouncing-software routine signals that the contacts have closed
only after bouncing ceases.

86 EDN | JULY 7, 2005

��
��

0
0

10 20 30 40 50 60 70 80 90 100

5

TIME (mSEC)

VOLTAGE
(V)

Figure 2 Switch contacts first close at 10 msec and then bounce erratically for
more than 50 msec before reaching a stable closed condition.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

TIME (mSEC)

VOLTAGE
(V)

1

2

3

edn050701di.qxd 6/22/2005 2:49 PM Page 86

Requiring no rectifier diodes,
the positive peak-detector cir-

cuits in figures 1 and 2 exploit the
open-drain output of a Texas Instru-
ments TLC372 fast comparator, IC1.
Both versions of the detector are sim-
ple and inexpensive and provide a
buffered, low-impedance output at
VOUT. In addition, the TLC372’s high
typical input impedance of 1012� elim-
inates any need for an input buffer
stage. As Figure 1 shows, the detector’s
output voltage at the output of op amp
IC2A applies a feedback signal for the
comparator and acts as a reference level
for comparison with the input signal’s
amplitude. Upon first application of
input signal VIN, the voltage on the
hold capacitor, C1, is 0V, and VOUT is
also 0V.

When the input signal goes more
positive than the output voltage, the
comparator’s internal output MOSFET
turns on and sinks current through R1.
Provided that R2 is relatively large,
charging current flows into C1 from
IC2A’s output. Over several cycles of the
input signal, the charge on C1 builds up,
and VOUT rises to the point at which it
slightly exceeds the peak level of VIN.
For as long as VOUT is slightly greater
than VIN, IC1’s output MOSFET
remains off, and C1 receives no addi-
tional packets of charge.

As a consequence, the charge stored
on C1 starts to dissipate as the capaci-
tor discharges through R2 and through
the bias-current path into IC2A’s
inverting input. VOUT gradually falls
until it is just below the peak level of
VIN. The next positive peak of VIN trips
comparator IC1, which pulls current
through R1, “topping up” the charge on
C1. This process produces a dc level at
VOUT that closely approximates the pos-
itive peak level of the input waveform.
The values of R1, R2, and C1 determine

the ripple voltage present on VOUT.
IC2A’s inverting input is held at vir-

tual ground potential, so whenever
IC1’s output MOSFET turns on, the
voltage across R1 approximately equals
the negative-supply-rail voltage, �VS.
Therefore, using a small value of R1
injects a relatively large pulse of current
into C1, thus allowing the circuit to
respond quickly to a sudden increase in
input-signal amplitude—that is, a
“fast-attack” response. However, if the
value of R1 is too small, the positive-
going ripple on VOUT becomes excessive
and can lead to bursts of oscillation
around peak values of VIN.

For a given value of R2, the value of
C1 determines the circuit’s “delay time.”

ware debouncers,” Embedded Systems
Programming, June 16, 2004, www.
embedded.com/showArticle.jhtml?
articleID=22100235.

Ganssle, Jack, “The secret life of
switches,” Embedded Systems Program-
ming, March 18, 2004, http://embed
ded.com/showArticle.jhtml?article
ID=18400810.

Smewing, Alan, “Icc-avr keypad-
debounce code,” http://dragonsgate.

net/pipermail/icc-avr/2004-March/
003376.html, March 4, 2004.

“Switch debouncing,” www.mite
du.freeserve.co.uk/Design/debounce.
htm.

Matic, Nebojsa, The PIC Microcon-
troller, www.mikroelektronika.co.yu/
english/product/books/PICbook/
7_03chapter.htm.

Ganssle, Jack, “Smoothing digital
inputs,” Embedded Systems Program-

ming, October 1992, www.ganssle.
com/articles/adbounce.htm.

Ganssle, Jack, “My favorite software
debouncers,” Embedded Systems Pro-
gramming, June 16, 2004, www.
embedded.com/shared/printable
Article.jhtml?articleID=22100235.

“Switch bounce and other dirty lit-
tle secrets,” Maxim, www.maxim-ic.
com/an287, September 2000.

Inexpensive peak detector requires
few components
Anthony H Smith, Scitech, Bedfordshire, England

designideas

�

Figure 1 The dual-power-supply-voltage version of this positive peak detector
requires only two active devices: a comparator and a dual operational amplifier.

88 EDN | JULY 7, 2005

_

+
_

+

_

+

2

3
4

1 2

1

73
4

8

8

IC1
½TLC372 IC2A

½LM358
IC2B

R1
100k

R2
1M

VOUT

R3
100kVIN

VS 5V NOMINAL

�VS �5V NOMINAL

C1
1 �F

C2
100 nF

VOUT

+

5

6

(continued on pg 92)

4

5

6

7

8

9

10

edn050701di.qxd 6/22/2005 2:49 PM Page 88

