
COBOL PROGRAMMING (Part 5)
R. Ramaswamy and T. V. Krishnamurthy

Wc have said that to get a full picture of the structure of a

Cobol program we have to make frequent excursions to the
three major divisions, namely, the environment division,

the data division and the procedure division. Now it is time
for us to look into some details in the data division.

Data dlvlalon
Any operational instruction given in the procedure divi¬

sion invariably refers to some data. Unless all the data have
been completely described in the data division, they cannot
be used in the procedure division. When one describes a

data in the data division, immediately space is allocated in
the computer memory as per the data description. Cobol
requires prior allocation of memory space for all the data
items and working areas. In Fortran, if we write

X = A + B
immediately a storage X is created in the memory and the
value obtained by adding A and B is stored in the memory.
In Cobol the above operational instruction is written in the
procedure division as

COMPUTE X = A + B
or ADD A B GIVING X

When it is written as above, the storage X is not created in
the memory as in Fortran. The notations X, A and B must

have been previously defined in the data division and the

storage must have been reserved already. In summary, we
can say that every data name that occurs in the procedure

division must have been described in the data division
earlier. So it is clear why the data division precedes the

procedure division in a Cobol program.
We have said that any manipulation of data in the proce¬

dure division can take place only if the data space has been

reserved in the data division and the relevant data entered
there. This means that the computer cannot be instructed
to read the data directly into the working area from the
punched cards for manipulation purposes. First of all the
input data must be written in the memory in the allocated
space and then they must be taken to the working area.
After processing, the output data cannot be directly trans¬
ferred from the working area to the printer. The output
data must be transferred to an allocated space in the mem¬
ory and then transferred to the printer from the memory. In

Fortran data can be directly read into the working area and
the output directly taken to the printer from the working
area. This is called ‘load and go processing.’ Cobol is not
intended for such ‘load and go processing.’ So Cobol for¬
malisms are more elaborate than Fortran.

This is the fifth part of a serial being published regularly since January

1978.

Data structure
When we have a large number of data belonging to a

particular group, we can give each data a different name to
distinguish them. A convenient practice is to give a com¬
mon name for the group and distinguish the different data
by using different subscripts to the common name. For
example, A(l), A(2), A(3), .A(n) represent the
data names in an array or group called A. This group
contains ‘n’ data names. Data names can also be rep¬
resented by using double subscripts such as A(l, 1),
A(l, 2), A(l, 3) etc. This is how we do in Fortran. Mere
representation of data in one-dimensional or in two-
dimensional arrays do not tell us anything about the rela¬
tionship between the different data items. Each element of
the array has an independent status and has no hierarchial
structure in that array. In business and commercial prob¬
lems, we need to know the structural relationship between
the different data items for effective processing. Cobol
language provides for this facility by establishing a hierar¬
chial structure for data. We call this organisation of data in
Cobol as Cobol File or simply a File.

The name file signifies almost the same meaning as the
file maintained in any organisation. Suppose one wants to
prepare the pay cheque for all the employees in a firm, the
cashier gets the necessary data from a file called the payroll
file. The payroll file contains information about each emp¬
loyee, his status, basic salary, different allowances, differ¬
ent deductions etc. The information relating to each emp¬
loyee is called a record. The collection of such records is a

Cobol file. For example, there may be a data record for
each employee called by some name, say. Employee-pay-
record written on each page of a ledger. This record may
give the employee number, name, daily wages, days
worked, allowances, deductions etc, somewhat as shown
below:

Pag*-l Pag*-2 Page-3

Employee No.
Name
Status
Daily Wages .
Days Worked.
Allowances
Deducations .

Each page of the ledger can contain details about an

employee, as shown above. Each page will constitute a
record. The collection of related records constitutes a file.
The ledger book is equivalent to a file. The details in each
record are also related items called data items. Hence a

MAY 1978 49

record is a collection of related data items.
The records in a file are usually organised so that any

individual record may be retrieved. Hence they are ar¬
ranged in sequence, based on some key item in the records.
For example, the employee number can be a key item for
identification of personal records and they can be arranged
in an ascending order . The records can also be arranged in
an alphabetic order of names.

Just as we can have different ledgers for keeping the
different records, we can have different files for keeping the
different records, say stock inventory, medical records,
insurance policy etc. A collection of files is called the data
base. The purpose of file organisation is to get the approp¬
riate information at the appropriate time with minimum of
time delay from the volumes of files. The Cobol data base
organisation with its hierarchial structure of data is able to
achieve this task very efficiently.

Data simply means recorded information. Consider an
employee record containing information like his name, sex,
marital status and address. Then we say that the employee
record is a group item containing a number of data items.
Take the data item relating to the sex. This data item
cannot be further subdivided. We call such data items as
elementary data items. Consider the data item relating to
the address. This can be further subdivided into data items
which give the name of the city, street, house number etc.
We call the data item, address, as a group data item. We can
consider the relationship between the group data and its
consitutents by a structure somewhat as shown below:

DATA BASE Uvel No

FILE-1 FILE 2 FILE-3 FILE-4
PAYROLL

EMPLOYEE TAX DEDUCTION
RECORD RECORD RECORD

HOUSE STREET
NUMBER NAME

The hierarchy of the different data are represented by
certain numbers called the level numbers. The deeper the
data item,the higher is the level number assigned.

The file is the broadest category of data and is assigned
the highest level in the hierarchy. It is given the name FD to
set it apart from the other organisational levels. Records,
the next broadest category, are always assigned the level
number 01. Data groups and elements within records may
be assigned any level number from 02 to 49. Data elements
independent of one another should be assigned the same
level number. Elements belonging to a group should be

assigned a level number larger than that assigned to the
group name. In terms of the above description the level

numbers of the different data items in the data structure
diagram are written as follows:

FD FILE-1
01 EMPLOYEE-RECORD

02 NAME
03 FIRST
03 MIDDLE
03 LAST

02 SECURITY NUMBER

02 SEX
02 MARITAL STATUS

02 ADDRESS
03 STREET

04 HOUSE NUMBER

04 STREET NAME

03 CITY
03 STATE
03 COUNTRY

The structure of data with the level concept enables the
programmer to refer to individual elementary item or
group item by name. Whenever a.01 level record is refer¬
red, all the items within the record are immediately availa¬

ble. This is a great advantage for input and output.

Special level numbers
In addition to the level numbers in the range 01 to 49 for

representing data structure, there are two special level
numbers 77 and 88. Data elements which do not belong to
any data organisation or the so-called independent data
elements are assigned the level number 77. These data
elements occur at the working storage area and they are not
further subdivided. The level number 77 is written in the

A-margin. Certain conditionals may require a value to be
assigned to each possible alternative and that each alterna¬

tive be given a name in the data division. When this occurs,

the condition names are given the special level number 88.

The meaning of the two levels will become clear when we
consider an actual program using them.

Cobol data aymbola
Cobol data are of three types, namely, alphabetic,

numeric and alphanumeric. The data fields belonging to the
above data classes are described symbolically by the letters
A, 9 and X respectively.

Numarlc data
When the data is numeric, each digit is represented by

the letter 9, so that an item of four digits would be described
HS

PICTURE 9999
or PIC 9999

It is not necessary to write a string of 9’s, and the same can

50 ELECTRONICS FOR YOU

be written in a compact form as

PIC 9(4)

Any four-digit number will be described by the above
picture clause. For example, PIC 9(4) can reprcsen'. a
number 2345 or 3456 or 5678, and so on. If there are less
than four digits in the number, the number is stored in the
memory as 0023, in case the number happens to be 23. If
the number is signed, the letter * S' is put before the leading
‘9’ which defines the numeric field. For example, the caluse

PIC S9(4)

can represent a number-2345. The 'S' character is said to
indicate the position of an assumed sign. ‘Assumed’ means
that the indicator sign ‘S’ is not written as part of the field
and is not therefore counted in the length of the data item.
The definition of a four character signed numeric data item

would therefore appear as
PIC S9(4)

The use of assumed sign does not affect the positive num¬
bers. For example, the value 2345 stored at a field de¬
scribed by the clause PIC S9(4) will be stored only as 2345.

A decimal point is indicated by the letter V at the
appropriate place. The ‘V character also indicates the
position of an assumed decimal point. A number 23.45 will
be punched in the card as 2345 but the location of the
decimal point is indicated to the computer by the picture
clause written as

PIC 99V99

It must be noted that a numerical field can contain only
the digits 0 to 9. Blanks are not numeric characters. When
punching data on cards, one should be careful to zero-fill a
field with leading zeros, otherwise one may be in for sur¬
prising results. Thus in a field of six positions, the numeric
234 should be punched as 000234.

For punched card data that are to be processed by use of
a Cobol program, any negative number is so identified by

punching the negative sign over the rightmost digit by

multipunching. This means that when you punch the right¬
most digit, you depress the MULTIPUNCH key and punch
both the desired digit and'—■’ sign in the same card column.
This corroborates that the sign does not take up an extra

position in computer memory.
The following exaples show how the different numbers

are stored in the memory against the different descriptions.

Description

PIC S9999V99
PIC S9999V99
PIC S9(4)V99
PIC 9(6)
PIC S9(6)V999

Numeric Represented
value in storage as

167.89 016789
- 1234.56 123456

- 0.10 000010
3456 003456

-234.178 000234178

Assumed sign and decimal point indicators are used for
representing the input data which are to be used for further
computation. But for outpudng the results the actual signs

and decimal points should be present, i.e. the output data
must be edited for better presentation. Editing of data may
involve suppression of zeros, insertion of comma, sign and
decimal points. It the editing symbols ate used in the input
data which are to be used for manipulation, the computer

will give error message.

Editing of data
Data items that will be printed need editing so that they

will be more meaningful. Editing is generally required for
numerical data. Sometimes editing is done for al¬
phanumeric data also For this purpose, additional signs
and symbols ate tequired. 7, , B... 1, ,$ are some of the
edit symbols and signs that are used in Cobol.

Z edit symbol
The Z character is used for suppressing zeros in leading

positions in a numeric field. The letter Z is placed in posi¬
tions where zeros are to be replaced by blank spaces. The
following examples will illustrate the use of Z edit symbol.

Actual Item Picture Printed as
04567 Z9999 4567
00567 ZZ999 567

Suppose we insert more number of Z characters than
there are leading zeros, we say the Z character is floated.
Floating Z will not affect any other numeral, nor will it
suppress zeros which are in significant positions. The fol¬
lowing examples will illustrate the use of float ingZ picture.

Actual Item Picture Printed as

04567 ZZZZ9 4567
040067 ZZZZZ9 40067
00000067 ZZZZZZZZ 67
00670 ZZZZZ. 670
4567 ZZZ9 4567

Note: Z must never be preceded by a 9, B or 0 (zero) in the
picture.

Period (.) edit symbol
We have said that the use of V in the picture description

indicates the presence of assumed decimal point in the
data. Such data can be used only for computational pur¬
poses. If such data have to be displayed or printed, the
actual deciipal point must be indicated after the letter V. If
we write the picture without the decimal point we will get

an erroneous result. For example, if we give a picture
999V99 for outputting a value 12.32, we will get the print¬
out as 01232. But if we give the format as 999V.79 the
value will he printed as 012.32. If we give the picture
ZZZ9V.99, we will get the printout as 12.32 Hence in a

numeric field where the decimal fraction is to be disting¬

uished from integers, the period is inserted in the approp¬
riate place after the position of the assumed decimal point
indicated by the letter V.

It may be noted that the (.) sign inserted takes one

51 MAY 1978

location and so it must be counted for finding the field
width, even though the letter V is not counted for field. If
we don’t put the V operator in front of the decimal point,
the printed result will be erroneous. For example, if we give
a picture 99.99 for printing a value 12.32, the result will be
00.12. This appears somewhat surprising. But this is so,
because, as per the picture clause there is no fractional part
in the number in the absence of any decimal point operator
*V\ The period does not signify the position of a decimal
point, but only that a period has to be inserted after the first
two characters. Looking at the contents, as no reference to
the fractional part is made, the computer will treat the
value as integer 0012 (total 5 characters made of four 9’s
and one decimal point) and insert a period after the first
two characters, outputting the result as 00.12. So in order
to get the correct output, the format must be written as PIC
99V.99. This will cause the printing of the output as 12.32.

Suppose a data like the day (DD), month (MM) and year

(YYYY) is to be printed as DD.MM.YYY, we have to
insert two periods in the picture format as PIC..
XX.XX.XXXX. Putting a V operator in the above case will
be absurd. There cannot be more than one V operator in a
number. A data 12111977 will be output as 12.11.1977 in
the above picture format. It must be noted that a V
operator is used only for numeric fields and for al¬
phanumeric fields the V operator is not used.

The following examples will illustrate the use of period

edit symbol in numeric fields.*
Data item Picture Printed as

2345b
13.2
(f.10

99V.999 23.456
PIC ZZZV.9 13.2

PIC ZZZV.99 .10

B adit symbol
This is an insertion character resulting in blanks being

created in the designated positions. To print a name
RRSWAMY as R. R. Swamy, we can give the output
format as PIC X. BX. BXXXXX. The period edit will give
the periods after the letters R and R. The B edit will give
the blank spaces in the two required positions. Thus the

output becomes more meaningful. Suppose we want to give
the day, month and year as 12 111977 in the output, we can
give a PICTURE XXBXXBXXXX. The B edit symbol can
be used with both numeric and alphanumeric fields.

It may be noted from the above that a comma is inserted

at any desired position, but when it is used in conjunction
with Z edit symbol, a comma is inserted only after the first
significant digit is printed. In the last example, even though
there are two commas in the Picture clause, there is only

one comma in the output, since the first significant digit
(non-zero) is encountered only after the position of the first

comma. So the first comma is ignored and only the second
comma is inserted. However, if the value is 234572.72 the
above-mentioned picture will give the output as
2,34,572.72. The two commas are inserted in the proper
positions. Since the comma edit symbol occupies a location,
it must be counted for the field length.

Plus and minus(+ & -) adit symbols
Suppose one wants to insert a — sign before a negative

number or a + sign before a positive number, the approp¬
riate signs can be placed in the output picture The —
Picture insertion character differs from the S character in
that the use of the S character identifies a field as a signed
one for computational purposes, but the sign does not
occupy a position as such. The use of + and - edit symbols
occupy a character position and hence must be counted for
field length. The + and - signs can also be floated just like
the Zedit symbol. This means that the leading zeros will be
automatically suppressed if there are more number of + or
- symbols. The following examples will illustrate their

use:

Actual item Edit Picture Printed as
- 123.47 - 999V.99 - l'23.47
- 123.47 -9V.99 - 123.47

1.28 -9V.99 1.28

- 1.28 -9V.99 - 1.28
+ 1.28 -9V.99 + 1.28
1.28 999V.99 + 001.28 +

1.28 999V. 99- 001.28
0.0 + + + + bbbbbb
- 13 + + + + bbb-13

It may be noted that the + and - signs may be placed as

first or last characters of Picture. When a- sign is placed for

a positive number or zero, the space will be left blank. Of

course, the - sign will appear in the printout if the number js
negative.

Comma (,) adit symbol
This is used to insert a comma wherever desired in

numeric as well as alphanumeric fields. The following ex¬
amples will illustrate the use of the comma edit.

Actual value Edit picture Printed as
2345.72 ZZZ99V.99 2345.72
2345.72 ZZ, Z99V.99 2,345.72
2345.72 Z, ZZ, Z99V.99 2,345.72

•Though this format is required for ICL 1900 series machines, the V
operator is not required for IBM 360 series machines.

Dollar ($) adit symbol
The $ insertion can be done at the desired position by

using the sign in the picture code. Since the $ sign is counted
in the field size, the field should be assigned at least one
more position than the maximum number of significant

• digits expected. The $ sign may also be floated, by which we
mean that it will not necessarily be entered in the leftmost

position of a field but will be entered to the left of the first

significant digit in the field and be preceded by blanks.

Suppose we have an editing picture clause as PIC

52 ELECTRONICS FOR YOU

$$$999, the computer looks at the data and checks whether
there is any zero in the leftmost position. If it is zero, the
next digit is examined. If this next digit is not zero, the $
sign is inserted directly to the left of it. For the above clause
the $ sign can be in any one of the fi-st three positions

according to the value stored in the field. The following
examples illustrate the use of the $ picture insertion charac¬
ter.

Actual item Edit Picture Printed ax

234.56 S99V.99 $234 56
100 $999999 $000100
100 $$$$$$9 $100
0023 SZZ99 $23

One must be careful it one uses a combination of the
different floating edit symbols. Since $. + or signs are
mutually exclusive as floating, if we want to have both float
and + or - sign, we write the +or the - sign to the right of
the field as $$$$999—. This picture will output a value 234
as $234-.

Since the list of editing symbols available will vary
slightly from computer to computer, it is advisable to refer
to that manual at the computing center for the complete list
of editing symbols.

Alphabetic and alphanumeric data
An item containing only alphabetic characters can be

described by using the ‘A’ picture code. For example, the
clause written as PIC A(6) may represent a name with six
alphabets, say, KRISHNA, If the item contains both al¬
phabetic and other characters, X can be used in the picture
code. For example, the clause written as PIC X(6) may
represent a name O’NEAL. Note that the names like
O’NEAL do not contain only alphabetic characters. When
the field width is more, the data items in the A and X
picturers are left justified. When the field width is less, the
data items are truncated on the left side. The following
examples illustrate the use.of A and X pictures.
Data Value Picture code Printed as
DIODE PIC A(5) DIODE
TUBE PIC X (5) TUBEB
A-B-C PIC X(4) -B-C

To be continued next month

Arphi STUDIO - PROFESSIONAL
AMD COMMUMICATIONS HEADPW0WES

SALIENT FEATURES'
• moucMct «wo*M'

10-20.000*41 ic.p ••
• MAXIMUM WEARING COMPORT

• MINIMUM PtriOUt

• NOME-EXCLUDINO EAACUBHIONB
• TO MATCH ANT IMPEDANCE

• AHO AVAILABLE WITH NOISE*CANCELLING
AND CLOSE-TALKING MICROPHONE ON
ADJUSTABLE BOOM PQR COMMUNICATIONS USE

Arphi INCORPOHATtO waihaoiv. industrial iHar
VIE* IAVANAN MANO (CAOia *0*01

p O SOM •»» SOMBAV-A0002S RMQNV

YOUR SUBSCRIPTION NUMBER
Rscords of your subscription to ELECTRONICS FOR YOU are
now being maintained by a modern computet to unsure an
efficient service But an access to your re, <u is can be made
only if we know your subscription number

So. whenever you write to us about youi sutw.cnplion, be
sure to mention your subscription number 1 his is a 4 digit
number preceded by an alphabet, and is printed i. iho bee?'- -
ning of the first line on your mailing address slip pa.Sieu on me
envelope containing your copy To be absolutely certain, you
may send the entire mailing slip bearing vour -tamo and ad¬
dress

if you are moving, please let us know a month or two betore
changing your address so that you may not miss any issue
And In this case we shall prefer that with your new address ,ou
send us the complete mailing list bearing your old add i

Clearance Sale

50% off on Previous
Annuals
Some copies of EFY’s Annual Number 197 / and
Annual Number 1976 are left in our stocks

Those who desire to have copies of these
bumper issues can have them at half price, till I he
stocks last.

1976 Annual 1977 Annual
Discounted
price : Rs 7.50 Rs 10.00
Original
price : Rs 15.00 Rs 20.00
Number of
pages : 304 316
Contents : Articles Articles

Who’s Who Who's Who
Company Company

Profiles Profiles
Directory Directory
Buyers’ Buyers'

Guide Guide
Facts & Facts &

Figures Figures
Payment has to be made strictly in advance. No

requests for VPP please. Full amount will be re¬
funded if the stocks exhaust in the meanwhile.

Postage will be borne by Electronics For You
for these two annual issues

The current Annual Number 1978 is available
for Rs 20, plus Rs 2 for despatch by registered
post.

—Circulation Manager

MAY 1978 53

