
Assembly Language
Primer for IBM PC:
Featuring the 8088 Microprocessor

Learning and using assembly language
By Robert La fore

INTRODUCTION

A SSEMBLY language has the reputation of being
difficult to learn; especially from the pages of a
magazine. We think this reputation is largely

undeserved, and that assembly language can be taught
as simply and easily as other languages such as BASIC
and Pascal. In the following article, we present
assembly language for the absolute beginner: the
person who has never programmed in assembly lan
guage before.

This article is excerpted from the forthcoming
Assembly Language for the IBM PC, a Waite Group
book by Robert Lafore. (As you may recall, Mr. Lafore
and Mr. Waite wrote Soul of CP/M, serialized in these
pages in 1983.) This new book is a complete introduc
tion to 8088 assembly language and forms part of an in
tegrated series of New American Library language
books on the IBM PC issued under the dual
Plume/Waite imprint.

How is it possible to teach assembly language so sim
ply? Mr. Lafore makes use of several innovative tech
niques. First, by basing his work on the IBM PC, he en-

sures that everyone will be working with exactly the
same equipment. Books which attempt to teach assem
bly language for a particular microprocessor chip must
be excessively vague about the actual commands used
to perform a given operation, since the same chip can be
used in many different machines.

Assembly Language for the IBM PC also uses the
"miniassembler" built into the DEBUG program. This
feature provides a greatly simplified entry into assem
bly language, since the reader need not start off by
learning the complexities of the full-scale IBM Macro
Assembler program. Finally, by making use of the pow
erful DOS functions built into the operating system, the
book can start out with programs that are very short
and simple, but that nevertheless accomplish signifi
cant tasks. As you will learn, programming through
DOS functions is the professional approach; it means
your programs will work on all computers that run a
version of the popular MS-DOS operating system.

For those of you who have always wanted to learn as
sembly language, but have not known how to begin, this
is your chance!

A SSEMBLY LANGUAGE is always the
fastest and most powerful language

for a given computer. It is essential in
programs where pure speed of operation
is important, such as graphics, sorting,
and sustained number-crunching. It is
also the only language that can make
use of all of a particular machine's hard
ware features. With higher-level lan
guages, such as BASIC or Pascal, the
programmer is always insulated from
the computer by the language itself- he
can only do what the writers of the lan
guage decided he should be able to do,
so inevitably he cannot tap the full pow
er of the computer.

practical, it is also a fascinating and re
warding field of study. Because it is so
close to the physical reality of the com
puter, everything you do in assembly
language is the result of the way the

computer operates, not the way design
ers of a higher-level language decided to
do things for the sake of ease and
convenience.

We can think of higher-level lan
guages as being like stodgy luxury se
dans: they're comfortable and easy to
use, but the steering is imprecise, the
suspension insulates you from the feel of
the road, and if you try to push them too
fast they slide into the ditch.

For these reasons, many types of
programs- such as operating systems,
compilers, word processors, and graph
ics programs-are almost always writ
ten in assembly language. If you want to
do this sort of programming, then you
need to know assembly language.

But assembly language is not only

82

Assembly language, on the other
hand, is the sports car of computer lan
guages. In a sports car you're close to
the road, the steering, brakes and gears
are light and precise, and the car is built
for speed and efficiency. It may not be
as comfortable as a sedan, but it's fast
and, more important, it's fun to drive.

Is Assembly Language Hard to
Learn? Unfortunately, assembly lan
guage has developed the reputation of
being difficult to learn. Many people-

Computers & Electronics

Assembly language is the sports car of computer
languages •••• It may not be as comfortable as a

sedan but it's fast and it's fun to drive
January1984 83

even those who had no trouble learning
a higher-level language such a s
BASIC-think that assembly language
is somehow beyond them. This belief is
fostered by many assembly-language
books which, strange as it may seem, ap
pear to be written with the assumption
that the reader already knows about the
subject. For instance, many assembly
language books start off by listing and
describing all of the scores of
microprocessor instructions. As a re
sult, most readers give up before finish
ing the text.

We believe that assembly language, in
spite of its reputation, is actually not
much harder to learn than any other
computer language, provided it is pre
sented so you do not feel overwhelmed
at the beginning. It's this sort of easy,
step-by-step presentation that will be
used in this series.

The series is intended primarily for
the person who has no previous ac
quaintance with assembly language: the
rank beginner. However, it will also

benefit the programmer who knows as
sembly language for a microprocessor
other than the 8088 described here, and
who wants to learn how the 8088 works.

Why the 8088? There are several rea
sons. First, because it's the micro
processor used in the IBM PC, a com
puter enjoying unprecedented sales
growth, as well as work-a-like comput
ers such as Compaq, Columbia Data
Products · and others. Second, if you
want to learn about the new 16-bit tech
nology, the 8088 chip in such computers
is the ideal device to use.

What You'll Need. This is very much a
hands-on series. Although you can gain
a general understanding of assembly
language by reading it without a com
puter at your disposal, you'll be far bet
ter off if you have a computer on your
desk before you start to read. As with
other languages-both human and
computer-it's only through practice
that real mastery is achieved.

We' ll assume therefore that you have
access to an IBM PC using PC-DOS or
to another 8088-CPU based computer

84

10 PRI NT "BASIC" -!INTERPRETER r §
SINGLE LINE OF _;
BASIC CODE SMALL GROUP OF_/

PROGRAM XX X
CONST PLUS='X'

MACHINE
LANGUAGE

INSTRUCTIONS

VAR NON INTEGER 1
BEGIN

REPEAT
NUM-NUM+l ro""" r~

UNTIL NUM=O
FOR NUM=DO

ENTIRE PASCAL
PROGRAM

; PROGRAM XXX

· ******

LARGE GROUP OF _/
MACHINE

LANGUAGE
INSTRUCTIONS

NAME SEGMENT
ASSUME CS, XX 1

; DO THIS & THAT
MOV DX,BX

:,,.,", r I
ADD CX, ZX
MOV BL,ZL

ENTIRE ASSEMBLY
LANGUAGE
PROGRAM

LARGE GROUP OF J
MACHINE

LANGUAGE
INSTRUCTIONS

Fig. 1

package: ASM and MASM. MASM
stands for "Macro ASseMbler," and is a
full-scale assembler with all the bells
and whistles. If you use it, you'll need a
minimum of 96K of RAM.

ASM, which is sometimes called the
"Small Assembler," is a more modest
version of MASM. It will run in a 64K
system if you are using PC-DOS Ver
sion 1.0 or 1.1. However, if you are us
ing DOS Version 2.0, then you will need
a minimum of 96K, with 128K being
preferable if you get into writing long
programs.

You can use any video display you
like, since the concepts we'll explain
here don't require the use of color.
However, all the examples we'll give are
based on an 80-column display. If you
are using only 40 columns, you will need
to do a little mental reformatting to
compare the printouts here with those
on your screen, but that should not pose
a major problem.

It's very nice, but not absolutely nec
essary, to have a printer when writing
assembly-language programs. A printed
listing is convenient for debugging and
for following the overall operation of a
program, but a printer is like a house in
the country: If you have one, you' ll love
it, but if you don't, you'll get along just
fine anyway.

You'll find the Technical Reference
Manual for your computer extremely
useful. It's packed full of details about
the computer's operation, and many of
those details will become important to
us as we explore the things assembly
language can do. And, of course, keep

Fig. 3

using MS-DOS. (Virtually everything
we' ll do can be done under either oper
ating system. From now on, though,
we'll speak only in terms of the PC and
PC-DOS.) You'll need at least one flop
py-disk drive. You won't be able to use a
cassette-based computer, since the as
sembler program and various other
pieces of software we' ll make use of all
require a disk operating system like PC
DOS or MS-DOS.

How much memory do you need to
create assembly-language programs?
That depends on which assembler you
want to use. When you buy the standard
IBM Macro Assembler for the PC, you
actually get two assemblers in the same

handy the manuals for your assembler
and for the other programs we'll be us
ing to create our own.

You can use any of the current re
leases ofPC-DOS: 1.0, 1.1, or 2.0. How
ever, there are some advantages to using
Version 2.0. First, PC-DOS Version 2.0
contains a very useful enhancement to
the DEBUG program that is part of the
disk operating system (DOS), and
which we'll be using quite a bit. This is a
"mini-assembler," built right into DE
BUG. The first assembly-language pro
grams we write will be created with DE
BUG's mini-assembler rather than the
more cumbersome ASM or MASM.
You can also use older versions of DE-

Computers & Electronics

08FI :0100 03 EB 42 90 75 03 EB 41-90 2C 30 72 38 3C OA 73

08FI :QIOO

0101

0 102

0103

0104

0 105

0106

PO~;IONJdjj MEMORY

03

OIOF ~
Fig. 4

BUG that do not contain the mini-as
sembler (we'll show you how), but it
will be easier if you have it.

Three of the utility progams that
come with PC-DOS are essential to fol
lowing the lessons we're going to
present. The first is DEBUG, which
we've already mentioned. It's used to
monitor, debug and edit assembly-lan
guage programs. Learning how to use it
is vital to an understanding of assembly
language.

The second utility is LINK, a pro
gram used to change an intermediate
form of assembly language programs,
call OBJ (for OBJect) files, into an exe
cutable program called an EXE file.
(We'll explain these terms as we go
along.)

If you're familiar with a higher-level
language such as BASIC or Pascal, you
know that there is a certain level of ab
straction involved in program state
ments in these languages. A BASIC
statement such as:

LET A=3

is operating on an abstract level. That is,
we don' t usually know, or need to know,

you're familiar with the two-step pro
cess involved: First you write a group of
BASIC program statements that make
up a program; then later, when you exe
cute the program, these statements are
"interpreted" or changed into machine
language instructions that are executed
by the microprocessor.

This process in BASIC is made to ap
pear "invisible" to the user. The indi
vidual program lines are interpreted one
at a time, and the resulting machine
language instructions for each line are
executed by the microprocessor before
the next line is interpreted. (Figure 1
shows how this works.)

In compiled languages such as Pas
cal, things are handled a little different
ly. The user first creates a source file,
which is a text file of the entire program.
This is then changed into machine-lan
guage instructions by a compiler pro
gram. (Actually, a utility called a linker
is used too, but we'll ignore it for the
moment.) In a compiled language the
entire program is transformed into ma
chine language all at once.

Assembly langl!age resembles a com
piled language more than it does an in
terpreted language such as BASIC. An
assembly-language source file consist-

The last is EXE2BIN, which converts
EXE (EXEcutable) files to COM
(COMmand) files. COM files are anoth
er, somewhat simpler, form of execut
able program.

Fig.5

Finally, once we start writing longer
assembly-language programs, you'll
need some sort of word processor to cre
ate what are known as the source files.
These are text files, just like letters or
other documents, but they contain the
assembly-language instructions that
will later be assembled for use by the
microprocessor.

PC-DOS comes with a text editor
called EDLIN (for EDit LINes).
Though it's possible to use EDLIN to
create assembly language source files,
its limitations will become apparent as
your programs become longer, and
you'll probably want a good word pro
cessor anyway.

Assembly Language. Let's start· by
talking about assembly language in
general- how it differs from higher-lev
el languages such as BASIC- and about
the operation of an assembler and how it
differs from the interpreter or compiler
used in higher-level languages.

January1984

where in the computer "A" is, or what
changes are taking place in the comput
er when A is assigned the value of 3.
This is because higher-level languages
are oriented toward the handling of
numbers with algebra-like formulas.
Programmers using higher-level lan
guages need that abstraction; they want
to be insulated from what's really going
on inside the computer so they can con
centrate on the formulas.

In contrast, assembly language oper
ates on a very concrete level. It deals
with bits, with bytes, with words (two
bytes side-by-side), with registers
which are physical places in the
microprocessor where bytes and words
are stored- and with memory loca
tions, which have specific numerical ad
dresses and specific physical locations
in the memory chips inside the
computer.

What Does an Assembler Do? If
you've written programs in BASIC,

ing of the text of the program is first
created. This is then assembled into ma
chine language by an assembler pro
gram. The assembler performs a process
very similar to that of a compiler except
that- as we'll see a little later- there is
a far closer correspondence between an
assembly-language instruction and a
machine-language instruction than
there is between a Pascal statement and
the group of machine-language instruc
tions that result from it.

What we've just described is the tra
ditional way of transforming an assem
bly-language program into machine
language instructions. To start with,
however, we' re going to use a different
approach; we' re going to use the mini
assembler in DEBUG. Using DEBUG,
it's almost as easy to create and run
short assembly-language programs as it
is to create and run interpreted
programs.

DEBUG vs. an Assembler. There are

85

several reasons why we've decided to
start with DEBUG rather than with
ASM or MASM. First, DEBUG is a
much easier program to operate than
the others. To type in and execute a pro
gram using DEBUG requires calling up
only DEBUG itself, a simple process.
Using an assembler, on the other hand,
involves using a text editor, the assem
bler itself, a linker program called
LINK, and often another program
called EXE2BIN. Each of these pro
grams requires a rather complex series
of commands to make it work. We fig
ured you'd have enough on your mind
being introduced to a new computer
language without having to learn how to
operate all those other programs at the
same time.

Fig. 6

DEBUG's second advantage is that
programs written with it require less
"overhead" memory than those written
with an assembler. This overhead comes
in the form of program statements that
must appear in the ASM source file, but ·
are not necessary in DEBUG. (Don't
worry if you don't understand what's
meant by some of the terms we've used.
Everything will be explained eventual
ly.) The reason these additional state
ments are necessary in the assembler is
difficult to explain at this point, so let's
just say that by using DEBUG you
avoid having to start your day with a lot
of incomprehensible program lines.

Third, using DEBUG puts you in
closer contact with what is really going
on in your computer than using an as
sembler does. DEBUG has features that
make it possible to get down to the most

BUG will do just fine. Table I summa
rizes the advantages and disadvantages
of DEBUG and assemblers.

Window of the Soul. An old saying has
it that "the eyes are the windows of the
soul."

We might say that DEBUG is the
window of the 8088's soul. Besides be
ing useful for assembling programs,
DEBUG is also used to examine and
modify the contents of memory loca
tions; to load, store, and start programs;
and to examine and modify registers. In
other words, DEBUG is designed to put
us in touch with various physical fea
tures of the PC-DOS or MS-DOS
computer.

Before we write our landmark, first
ever 8088 assembly-language program,
we're going to get to know our way
around DEBUG; rev it up, so to speak,
find out where the controls are, and taxi
it out of the hangar and around the run
way. Then we'll be ready for takeoff.

Fig. 7

fundamental level of your computer's
operation (short of opening up the cover
and probing about with logic probes and
oscilloscopes). Sooner or later, if you
write programs in assembly language,
you're going to have to understand this
fundamental level and learn to use DE
BUG; so now seems like a good time to
start.

Of course, as we'll find out later, an
assembler has all sorts of powerful fea
tures that make it indispensable for long
programs, but for the moment, DE-

86

Getting DEBUG Rolling. All right,
let's leap into the cockpit, get a firm grip
on the keyboard, and get DEBUG roll
ing! We'll assume that you have a disk
with DEBUG on it inserted into drive
A, and that the "A > " prompt is wait
ing for your next move. (If you have a
Winchester disk you'll have to make
sure that DEBUG has been copied to it,
and you'll also have to imagine a "C > "
whenever you see "A > " here.) DE
BUG is one of the programs provided

on the "system disk" that contains your
computer's operating system.

Following the DOS prompt, enter the
program name "DEBUG". (When we
tell you to "enter" something here, we
mean to type the "something" and then
press the ENTER key just to the left of
the numeric keypad on the PC's
keyboard.)

When DEBUG is loaded into the
computer it will display its prompt, a
single dash ("-"), which tells you that
it's ready to listen to what you have to
tell it.

The "D" Command. You can tell DE
BUG what to do by typing in single-let
ter commands, usually followed imme
diately by one or more numbers. When
we refer to these single-letter commands
here we'll usually use upper-case letters,
like "D," to make them stand out. How
ever, when you type them in you can use
either upper or lower case. For example,
enter the letter "d" followed by the dig
its "1" "0" "0". You should see a dis
play like the one shown in Fig. 2.

Wow! Look at all those numbers!
What does it all mean? First of all, you
may not see all zeros on your display as
we show here. What the "D" command
has done is to "dump" or display a por
tion of your computer's memory on the
screen. Each pair of numbers represents
one byte, or eight bits, of data stored in a
particular memory location. If your

TABLE I
ADVANTAGES AND
DISADVANTAGES

DEBUG
Easy to run
Low-overhead programs
Close to the machine
Not so versatile
Good on short programs

Assembler
Hard to run
More program overhead
Isolated from the machine
Very versatile
Good on long programs

Computers & Electronics

computer's memory happened to have
other data in it before you loaded DE~
BUG, it will appear here when you type
"D", so you may well see all sorts of
junky-looking numbers, like those in
Fig. 3.

All the numbers there are in hexadec
imal form. In fact, hexadecimal is the
only numbering system DEBUG knows
about, so if you aren't already acquaint
ed with this way of representing num
bers, now is the time to find out about it.
A good discussion of numbering sys
tems appeared in the December 1983
issue of COMPUTERS & ELECTRONICS.

Let's adopt this convention: Hexa
decimal numbers-except for those in
program listings or where the context
makes clear what they are-will be fol
lowed by the small letter "h" to distin
guish them from decimal numbers. Dec
imal numbers-again, unless the
context makes it clear-will be followed
by a small "d". Numbers from 0 to 9 are
the same in both systems, so they don't
really need a distinguishing letter, al
though they sometimes will have one for
consistency. Of course, since DEBUG
speaks only hexadecimal (hex for short),
it doesn't use an "h" on its displays, and
you should not put one after hexadeci
mal numbers you type in as DEBUG
commands.

It requires two hexadecimal digits to
represent .an 8-bit byte of data. This
two-digit hex number can range in value
from OOh to FFh (Od to 25Sd). Thus, all
the two-digit numbers in Fig. 3 fall into
this range. There are 16 of these num
bers on each line of the display. The
dashes in the middle of the display are
placed there for clarity, to separate the
eight left-hand bytes on the line from
the eight right-hand bytes.

Addresses. The numbers in the col
umn at the left of Figs. 2 and 3 (like
08F 1 :0 120) are the memory addresses of
the bytes of data displayed. Each byte
shown in the dumps occupies a specific
address, as illustrated in Fig. 4.

The vertical column to the left repre
sents an actual section of your comput
er's memory. Note how the byte in each
memory location corresponds to a par
ticular number in the DEBUG dump
shown in Fig. 3.

Each address consists of two numbers
separated by a colon. The number to the
right of the colon (like 0100) is called
the offset address, and for our purpose is
the only portion of the address we'll be
concerned with. The number to the left
of the colon is called the segment ad
dress, and is used when addressing very
high (above 64K) memory locations.
Since our programs are not going to be
anywhere near that large, we can safely
ignore it.

January1984

Notice how each offset address (we'll
just refer to them as addresses from now
on, since we will not be using the seg
ment portion) in the left-hand column
of a DEBUG dump ends with a zero. If
you're familiar with hexadecimal num
bers you should understand why this is
so. There are 16d, or lOh, bytes in each
line, so when you've counteq from Oh to
to Fh, you're ready to increase the ten's
(actually sixteen's) column by one, since

10 is the number that comes after F in
hex. So we display 16d (lOh) bytes, and
then move down one line, increment the
address by lOh, and display 10h more
bytes. The display would be easier to
read and understand if it had the 1 's col
umn values of the address printed
across the top, as shown in Fig. 5, but it
doesn't .

Anyway, it should be clear that the
first byte on the top row is at memory

•

FREE CATALOG OF
COMPUTER EQUIPMENT AND
HARD-TO-FIND TOOLS

Jensen's new catalog is jam-packed with hard-to
find precision tools, tool kits , tool cases, test
equipment and computer accessories used by
electronic technicians, sophisticated hobbyists,
scientists, engineers, laboratories and govern
ment agencies.

Call or write for your free copy today.

JENSEN TOOLS INC.
7815 S. 46th St., Phoenix, Arizona 85040 (602) 968-6231

SYNAPSE PHAROAH CURSE
MICROSPEC HBJ.CAT ACE
ATARI PROC. lASTHN RlONT

CX2600 CAAEW'Aft'
SlltAT BATTLE AT NORMANDY
COLECO laKXon
ATARI CX2675 MS. Pac Man
ATARI CXl676Centioeae
ATAR1CX2681 Battle lone
ATARI CX2689 Kangaroo ...
ATARI CX2694 Pole Position
ACTTVISION AC028 Robot Tank
PARKER 5560 OBert
M NfTWOfU(LOCk n Cnase
COLECO Mr Do•
COLECO Smurf

TEXAS INSTRUMENTS TI99 / 4A
•Home computer .
• 16KRAM ~

$5995 ~
Tl
Tl
Tl
Tl
Tl

Tl
Tl
Tl
Tl

~
MONITORS

VIC C1702 114"" COlon . . . '249.95
NEC C12202A 112"" (OIOrl . '249.95
Tl PHA4100 11o·· Colon . . '319.95
SONY ICV1331 113" COlOr/

Circle No. 8 on Free Information Card

174.95 TOMY 1021 voiCe Syntl'lesizer
'84.95 TOMY 8021 Data Recorder ...
'14.95 TOMY 8024 T! SOftware AGaP
'28.95 TOMY 8020 Joy Controllers

TOMY 902! Joy Sti<:k
TOMY 8100 cave Crawlers
TOMY 8104 Demon Diggers
TOMY 8107 VYWII Trip le Threat

HOW TO ORDER BY MAL: FOR PROMPT AND COURTEOUS SHIPMENT. SEND MONEY
ORDER. CERTIFIED CHECK. CASHIERS CHECK. MASTEii'CAADNISA unclude card

'"

Circle No. 23 on Free Information Card

3 GOrf ...
NUFEKOf' KralV Kong
NUFEICOf' VicMan
H£SMON Machine t.anguage
H£SWRITER IWOrd PrOC<!!SSOn

R.OPPY DISCS
EUPHANT GOLD lBO~ of 10l . '29.90
MAXB.L MOlD IBOJC Of 10l . '39.90
BASf FD-10 IBOJC Of 10l . . '32.90
SCOTCH 7450 IBOJC Of 10l . . . ·. '34.90
VERBATIM MDSlS IBox of 10l .. '34.90

TYPEWRITERS / PRINTERS
SMmt CORONA UK:rasonlc POrtable

Elect ew riter '379.95
SMITH 1.ETTlR QUALifY PRWTSt

TP1· '399.95
TP1· . 1399.95

1100CPS.
'299.95

87

•

location 0100, the next is at 0101 , the
next at 0102, and so on. Similarly, the
first byte on the second row is at 0110,
the second at 0111 , etc.

The "F" Command. Want to see the
display change? An easy way to do this
is to use DEBUG's "F" or FILL com
mand. This command fills ·a part of
memory with a particular hex number.

To use FILL, you enter "f' followed
immediately by three numbers separat
ed by spaces. The first of these numbers
is the address where you want to start
filling, the second is the address where
you want to stop filling, and the third is
the constant (from OOh to FFh) that you
want the locations from the first address
to the second to be filled with. Notice
that while the data to be filled in con
sists of two-digit hex numbers (repre
senting bytes), the addresses are four
digit hex numbers. Of course, you don't
need to type leading zeros, so you can
type fewer than four digits for the ad
dresses when appropriate, as it is here.
At the DEBUG prompt ("- ") enter
this:

f12014fff

The first "F" (remember, it can be
upper or lower case) is the FILL com
mand . . It is followed by, respectively,
the starting address of the fill, the end
ing address of~the fill, and the value
(FFh) that will be used. When you hit
ENTER, nothin appears to happen. To
see what's changed, you have to dump
the same part of memory again. A dump
of locations lOOh through 170h is
shown in Fig. 6.

Look at that! All the memory loca
tions between 120h and 14Fh are now
filled with FF,just as you specified with
the "F" command. As for the rest, if
you started out with numbers other
than zero in memory, they'll still be
there instead of the zeros shown in the
dump.

ASCII Codes. You may be wondering
about all the little dots and odd charac
ters on the right-hand side of the dump
display. These are the characters (like
"A" , "B", and so on) that the numbers
to the left represent. The number that
represents a particular character is
called its ASCII value. (ASCII stands
for "American Standard Code for In
formation Interchange.") As you prob
ably know, the ASCII code is the nor
mal way to represent characters in a
computer's memory.

Since neither 00 nor FF represents a
printable ASCII character, the posi
tions in the ASCII display correspond
ing to those numbers are filled with
dots, which indicate "no printable char-

88

acter." (If your computer's memory
was filled with junk rather than all zeros
to begin with, some of the num
bers-20h through 7Eh-may have
represented printable characters.) To
see the character display change, along
with the numbers, let's try filling in
parts of memory with numbers that we
know represent characters.

Enter the following three DEBUG
commands (the "-" is, of course, DE
BUG's prompt):

- f100 117 61
- f178 17f 24
-d100

You'll get the display shown in Fig. 7.
The character .corresponding to 61h is a
small "a," and 24 hex is the code for the
dollar sign,"$." We can see them both
as numbers, and to the right as
characters.

So far we've talked about how assem
bly language differs from higher-level
languages, and also explained some
thing about the operation of the DE
BUG utility program. You may find it
useful at this point to experiment a bit
with DEBUG. Try filling in different
constants to see how they look when
you dump them. Examine different
parts of memory. (You may be sur
prised at what you find!) You'll be using
DEBUG a great deal as we go on, and
you should feel comfortable with it.

Your First Program. Although you're
now going to write your first assembly
language program, you don't know as-

-e100 <---you enter this
04B5: 0100 61.

: \ I:\

sembly language yet. There will be
many aspects of the process that won't
seem completely clear to you. Don't
worry about this! Our approach is to
show you first what something looks
like, and afterwards explain why it looks
that way and how it works.

By moving in this direction, from the
concrete to the abstract, rather than the
other way around, we hope to avoid the
sort of academic theory-oriented de
scriptions that leave most readers con
fused, bored, and frustrated . Instead,
you'll first get the feeling of the process
(the roar of the motor and the rush of
the wind in your hair, to return to our
earlier flying analogy); later we'll ex
plain what happened.

Different DOSs. There's a small prob
lem we'd better deal with right away.
This has to do with which version of
DOS you're using. As noted previously,
the DEBUG in DOS Version 2 (that is,
Versions 2.0 and later) contains a built
in mini-assembler that will help in the
creation of assembly-language pro
grams. The DEBUG in DOS Version 1
(Versions 1. 0 and 1.1) does not have this
capability, so for those readers using
this version we need to take a slightly
different tack.

We'll handle the situation in the fol
lowing way. We'll first explain how to
type in a program if you're using DOS
Version 1. Even if you have Version 2,
you should read this part, try it out, and
understand it. There are two good rea
sons for this. The first is that you will be
introduced to a new DEBUG com-

: \ : ----the cursor will wait here for you to
segment \ type in a two digit number
address \
doesn't offset address is the same as what
matter you typed in

Fig. B

-E100
04B5:0100 61.b2 61.1 61.b4 61.2 61.cd 61.21 6l.cd

- <---DEBUG '-----;-----;:--;-;---:---:--;------;-----1
prompt press space bar following these numbers

Fig. 9

-a100
08F1:0100 mov d1,1 \
08F1: 0102 mov ah, 2 '--enter these lines
08F1:0104 int 21 I
08F1:0106 int 20 I
08F1: 0108 <------simply press ENTER here
- _ <---------------now you're back in DEBUG

Fig. 10

61.20

press ENTER
following
last number

Computers & Electronics

d!BB
~4BS.BIBB B2 Bl B4 B2 CD 21 CD 28-61 61 61 61 61 61 61 61 2.4.M'M ••••••••
B4BS.B11B 61 61 61 61 61 61 61 61-BB BB BB BB BB BB BB BB aaaa••••
B4BS.B12B FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
B4BS.B13B FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
B4BS:B14B FF FF FF FF FF FF FF FF-FF FF FF FF FF FF FF FF
B4BS:B15B BB BB BB BB BB BB BB BB-BB BB BB BB BB BB BB BB
B4BS.B16B BB BB BB BB BB BB BB BB-BB BB BB BB BB BB BB BB
B4BS:B17B BB BB BB BB BB BB BB BB-24 24 24 24 24 24 24 24 $$$$$$$$

Fig. 11

mand: the "E" (for Enter) command.
The second is that, after you've typed in
the program using "E," you'll be better
able to appreciate how lucky you are to
have DOS Version 2, with its advanced
version of DEBUG and its mini
assembler.

Using the "E" Command. Now we' ll
create an assembly-language program
using DEBUG's "E" command. (The
term "assembly language" is actually
not quite right in this particular in
stance, as we'll see later on, but that
needn' t concern us now.) If you have
DOS Version l, this is the only way to
use DEBUG to create a program. If you
have Version 2, you should follow along
anyway, typing in the commands.

The purpose of the "E" command is
to enter a byte (or bytes) of data into
memory. It's like the "F" command, ex
cept that you can enter a series of differ
ent bytes; they don't all have to have the
same value, as they do with "F."

to ·the DEBUG prompt. After you have
entered a number and pressed the space
bar, the command will then print out
the old contents of the next location and
wait for you to type in the new contents.

The series of hexadecimal numbers
we want to type in is the following:

82

84
2

CD
21
CD
20

These are the numbers that constitute
our program. Type each number, press
the space bar, type the riext number, and
so on. After you've typed in all eight
numbers, the screen should look like
Fig. 9 (minus our comments, of course).

Note that if you don't type any num
ber at all before hitting the space bar,
the byte in that location will remain un-

-u100, 106 < ----you enter this

08F1:0100 8201
08F1:0102 8402
08F1: 0104 CD21
08F1:0106 CD20

MOV
MOV
INT
INT

through this section so you know what
you're missing and, more important, be
cause future program descriptions are
going to be based on the "A" command
approach outlined here. You'll need to
know both approaches so you can use
"E" even though we're talking about
"A"; that is, translate our descriptions
of the "A" approach into operations
with "E." This won't be as difficult as it
probably seems, so read on. (Or, better
yet, hurry out and buy a copy of DOS
Version 2.)

The "A" command accomplishes the
same thing as the "E" command. There
fore, it is putting the bytes that consti
tute our program into memory-but it
does so in a different way.

When we use the "A" command we
don't insert hexadecimal bytes into
memory directly. Instead, we type in a
series of mnemonic symbols. ("Mne
monic" simply means "easy to remem
ber." The idea is that these symbols are
supposed to be easier to remember than
the hexadecimal numbers they repre
sent.) These codes are two- or three
character names that stand for certain
assembly-language instructions. The in
struction tells the microprocessor what
operation is to be done. The instruction
mnemonic is usually followed by a space
and then by some letters and numbers
that indicate what the operation is to be
done to.

Expressed in mnemonic symbols, our
program looks like this:

DL,01
AH,02
21
20

\

I

mov
mov
int
int

d I , 1
ah,2
21
20

: the program prints
-- out all this

The series of bytes we're going to en
ter with "E" will constitute our pro
gram. To insert this program into mem
ory, when you see the DEBUG prompt,
you enter the command "E," followed
immediately by the address where you
want the program to go. In our case,
we're going to put it at location 100h, so
we enter "e" followed by "100." The
program will respond by printing out
the address, followed by its current con
tents, as shown in Fig. 8.

Fig. 12

As shown there the content of loca
tion 100 happens already to be 6lh,
since that's what we put there with the
"F" command earlier. However, it
doesn't really matter what was there be
fore: The important thing is that we're
going to put it there now.

To "enter" a two-digit hex number
into this location we type the number
followed by-not the ENTER key-the
space bar. The space bar has the effect of
entering a number into one memory lo
cation and then advancing to the next
one. The ENTER key, on the other hand,
enters the number and then terminates
the entire "E" command and returns us

90

changed, as you will discover if you
make a typing mistake.

After you type the last number, press
ENTER to tell DEBUG you're through.
This should cause the DEBUG prompt
("-")to reappear.

If you make a mistake at any time,
just press ENTER to get back to the DE
BUG prompt and start over.

You've now placed your program in
the computer's memory, from location
100 to location 107, using the "E" com
mand. We' ll explain how to execute, or
"run," the program in a moment.

Using the "A" Command. Here's
where you DOS Version I users become,
briefly, just spectators. You should read

It looks short, but absolutely incom
prehensible, doesn't it? That's all right,
it won't be long before you can churn
out this kind of thing in your sleep.
We're going to type in this program,
then dissect it a little and see if we can
get a feel for how the "A" approach dif
fers from the "E" approach, and for
what assembly language is all about.

Enter the letter "A," followed by the
address where you want the program to
start. Here's a rule you should remem
ber: Programs written in DEBUG should
always start at JOOh. The reasons for
this will become clear later when we talk
about the difference between COM files
and EXE files.

When you enter "A" followed by an

Computers & Electronics

address, DEBUG will automatically
echo the address:

-a100
08f1:0100

DEBUG will then sit there waiting
for you to type in the mnemonic codes
for your program.

On the first line, enter "mov d1,1".
That's "mov" as in the first three letters
of "move," followed by a space, which is
important, then "dl, 1 " . with the letter
"1 ", followed immediately by a comma
and the number "1." Don't confuse let
ters and numbers. The screen should
now look like this:

0 8 F 1 : 0 1 0 0 mo v d I , 1
08F 1: 01 02_

You've just typed your first line of as
sembly language!

The assembler is waiting for line two.
Enter "mov ah,2". Then the third line,·
"int 21" and the fourth, "int 20".

After you've finished these four lines,
you're done. So when the program says:

08f1:0108

you simply press ENTER to let it know
you're through assembling this program
and want to get back to DEBUG's
prompt. Your screen should then look
like Fig. 10.

So you now have two-different ways
to enter your program, depending on
which version of DOS you have. In ei
ther case the program itself should be
sitting in memory, waiting to be execut
ed. There's a lot to say about the rela
tionship between these two approaches
to putting a program into memory, but
if you're a real red-blooded programmer
you can't wait to run the program. Let's
do that first, and talk later.

Running the Program. What does the
program do? Does it balance your
checkbook? Calculate accounts receiv
able? We're afraid it's not as ambitious
as that. Let's see what happens when we
run it. To execute the program we use
the "G" (for "Go") command. Simply
enter the letter "g." It's not followed by
any numbers (at this time). This will
cause the program to be executed, just
as entering "RUN" does in BASIC, and
you'll see a little happy face on the
screen smiling at you. Isn't that the cut
est thing you ever saw? (No? Well, what
did you expect from an 8-byte
program?)

If you didn't get a happy face, you
probably made a mistake typing in the
program. It's easy to mistype some
thing, what with all the numbers
and unfamiliar symbols. Start with
the "E" or "A" command and

January1984

try again.
Unfortunately, mistakes in assembly

language programs can have more seri
ous consequences than those in higher
level languages like BASIC. In
higher-level languages the interpreter or
compiler usually protects the operating
system from the consequences of errors
in programming by keeping your ma
chine running and displaying something
like, "Error in line 2034."

In assembly language, however, there
is no such protection. Assembly lan
guage is the most fundamental level of
the machine. There is nothing on a "su
pervisory level" overseeing the assem
bly-language program, as the interpreter
or compiler does in higher-level lan
guages. So if you make a mistake in as
sembly language it is woefully easy to
"crash" your operating system- that is,
alter parts of it in memory so that it no
longer works and you need to reset the
entire computer, either by hitting the
ALT, CTRL, and DEL keys simultaneous
ly or, in even worse cases, by turning the
entire computer off and then on again.
But all this is academic. You're never go
ing to make a programming error! Are
you?

Figure 11 shows the results of dump
ing locations 100 through 170 using the
"D" command. And there, in the first
eight locations, from 100 to 107, is our
program. You can see this by comparing
the numbers on the display with those
typed in using "E." Our program has
overlayed the 61s that were there before.

The symbols at the right-
2.4.M!M-are meaningless. They just
happen to be the ASCII equivalents of
the numbers that make up the program.

What Assemblers Really Do. If you
typed in the program using "E," you
probably aren't too surprised to see these
numbers reappear when you look in
memory with "D." After all, you en
tered the numbers into memory, and
there they are, just where you put them.

But how did they get there if you used
the "A" command? You typed in mne
monic instructions and, lo and behold,
there are the numbers sitting in memory.
What's happened here is what this series
is all about: The "A" command assem
bled the mnemomic instructions into
hex numbers. This is the function of an
assembler; both of DEBUG's mini-as
sembler that you invoke with the "A"
command and of its large-scale relatives
ASM and MASM. We'll have more to
say about this later. First let's
look at our program from another
perspective.

The "U" Command. There's a more el
egant and useful way to look at our pro
gram than by using "D" as we did above:

the "U" command. We've assembled
our program with "A" or typed in the
pre-assembled hex numbers with "E."
Now let's use the "U" command to
unassemble it. "U" is the opposite of the
"A" command. Where "A" takes us
from symbolic mnemonic codes to the
hex digits of machine language. "U"
takes us from hex digits back to mne
monic codes. (Actually, the usual word
for "unassemble" is "disassemble.")

To "unassemble" your program, enter
"U," followed by the address where you
want to start disassembling, then a com
ma, and then the address where you
want to stop disassembling, as you see it
in Fig. 12.

"U" shows the program in both hex
codes and mnemonic instructions, all
nicely arranged for you to admire! Thus
the new number B201 is the machine
language equivalent of the assembly lan
guage statement "MOV DL,Ol," and so
on for the other instructions. As before,
the numbers on the left, such as
"08F1:0100'" are the addresses of the
locations occupied by the program.
There's an address printed for each in
struction, and since each of the instruc
tions happens to occupy just two bytes,
the addresses are all even numbered:
100, 102, 104, and 106.

Machine Language and Assembly
Language. The hex numbers on the left
in the "U" listing in Fig. 12 are what is
called machine language. These num
bers occupy specific memory locations,
and the 8088 microprocessor looks in
these locations, takes the numbers out of
them, figures out what they mean, and
executes them. These numbers are called
"machine language" because it's the
machine-the microprocessor
that understands them and operates on
them. As far as we humans go, such
numbers are hard to understand and vir
tually impossible to remember. For a hu
man to decipher a program written en
tirely in hex numbers requires the most
masochistic form of mental discipline,
while the microprocessor chip, no
larger than a fingernail, ·· handles it
easily. It is perhaps better not to
dwell on the philosophical implications
of this.

Take heart, however. The mnemonic
instructions in the column on the right in
the listing are not comprehensible to the
microprocessor, clever though it may be.
They form what is properly called "as
sembly language." And while you may
not understand them now, you will when
you finish reading this material.

If you want to pursue learning assem
bly language with the IBM PC, addition
al articles that build on this one can be
read in upcoming issues of our sister
publication, PC magazine. 0

91

