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Testing logic networks 
New method using numerical spectra can be implemented on a 

computer 

by S. L. Hurst, M.Sc.(Eng), Ph.D., F.I.E.E., F.I.E.R.E. University of Bath 

As digital equipment becomes more 
complicated there is an increasing 
need for effective fault diagnosis 
techniques. This article introduces the 
subject of Rademacher -Walsh spec- 
tra, which can be used in the design 
of logic networks but have not so far 
been applied to network testing. The 
speed with which Rademacher -Walsh 
spectra may be handled by a digital 
computer may be of great signifi- 
cance. 

While "fault detection" is a go /no -go 
test to check whether a network 
performs its required input- output 
functions correctly, "fault diagnosis" is 
a more comprehensive test to (ideally) 
pin -point the source of the fault if one 
exists. Automatic fault diagnosis is the 
aim of modern digital testing tech- 
niques. 

For automatic testing it is normally 
assumed that faults in logic circuits will 
be logical faults, that is logic 0 signals 
are erroneously present instead of logic 
1 signals, or vice versa, and that such 
faults are steady and not intermittent. 
This implies that a faulty logic network 
has an input- output behaviour which is 
logical but not the correct one, and in 
general a fault may be defined by 
"stuck -at -1" or "stuck -at -0" to indicate 
a faulty logic node in the network. 

One objective of automatic fault 
diagnosis is to examine the network 
under test with the minimum number 
of test sequences. This involves apply- 
ing a chosen series of input conditions 
such that all paths in the network from 
input to output are verified. Funda- 
mental difficulties may be experienced 
in practice which no input- output 
testing can resolve, such as internal 
faults which do not propagate to the 
output (which may arise for example in 
redundant or hazard -free network 
designs), and faults on different nodes 
which give rise to the same output 
fault. However, accepting such funda- 
mental constraints, the test diagnosis 
methods currently in use are based 
upon conventional Boolean techniques; 
such methods are largely derived from 
the theoretical development of Seshu 
(1956), Roth (1966), Kautz (1968) and 

Sellers et. al. (1968)1.2.3.4. These are well 
reviewed in recent summary papers5, 6, 7. 

However, instead of truth -tables or 
Boolean equations to express the 
input- output relationships of any given 
logic network, there is a completely 
different method by which such input - 
output relationships may be expressed. 
This is the Rademacher -Walsh spectral 
method. In the following sections this 
method is briefly introduced and an 
indication given of further research in 
this area. 

The Rademacher -Walsh spectra 
The Rademacher -Walsh spectrum of 
any given logic function with n 
independent input variables, say x1 to 
x ", consists of a series of 2" integer 
numbers. The magnitude and sign of 
these 2" numbers constitute the spectral 
coefficient values of the given function. 
They uniquely define the given 
function, as would a Boolean truth - 
table, but in a completely dissimilar 
manner from the 2" entries of 0 and 1 in 
a truth -table. 

The rigorous mathematical back- 
ground and possible use of these 
spectral coefficients in logic synthesis 
will be found documented9' 10, 11. How- 
ever, here it will suffice to state what 
the spectral coefficient values repre- 
sent, and how the values may be 
calculated by hand for simple functions. 
The actual coefficient values may differ 
in sign or by some normalising factor 
between different authorities, depend- 
ing upon initial definitions, but the 
following gives a straightforward 

definition based upon logic 0 and logic 1 

values without any normalising. 
Consider a logic network with n 

independent binary inputs x1 to x". 
Then the 2" Rademacher -Walsh spec- 
tral coefficients which characterise 
such a network are labelled: 
R0,121,122, .. .,R ",R12,R13, ...,R12 .. ", 
where the subscripts are all possible 
combinations of subscripts 1 to n taken 
one -at -a -time, two -at -a -time, etc. up to 
n -at -a -time, in addition to the first 
subscript For For example, for n = 4 we 
have the sixteen coefficients: 
R°,R1,R2,R3,R4,R12,R13,R14,R23,R24, 

R34,R12 124,- 134, -234,- 1234 

The spectral coefficient values for 
any given Boolean function f(xl, ...,x ") 
may be digitally- computed extremely 
rapidly by an appropriate fast Walsh 
transform which has been developed12. 
However, hand -computation, which 
helps to emphasise the meaning and 
numerical significance of each coeffi- 
cient value, may be undertaken as 
follows. 

For illustration, take the simple 
three -variable function f(x)= 
[x1x2 + x2.x3]. Compile the truth - 
table shown in Table 1, which as well as 
listing the given inputs x,,x2,x3, also lists 
xo,x, a x2,x1 e x3,x2 a x3, and x1 a x2 e x3, where x° - always 0, x1 a x2 is the 
exclusive - OR of inputs x1,x2, and so 
on. This "primary set" and "secondary 
set" constitute an augmented set of 
input variables. They are conventional- 
ly labelled r °,r r2 etc., as shown in Table 
1. The function output is listed in the 
normal manner. 

Table 1. The truth -table for function f(x)= [x1.72 +x2x3] in terms of the augmented 
set of input variables r;. (Note: the total number of variables r; will always be 2 for 
any n). 

"Primary" input set "Secondary" input set Function 
output 

ro 
=XO 

rl 
=X, 

r, 
=X2 

r3 
=X3 

/12 
=X, 

.73 
X2 =X, e X, 

r23 
, ® " 

r1:S 
=X,eX2®X3 f(x) 

0 0 0 0 o 0 o o o 
0 0 0 1 0 1 o 
o 0 1 0 o 1 1 

0 0 1 1 o o o 
0 1 0 0 o 1 1 

0 1 0 1 o o 1 

0 1 1 0 0 0 1 

0 1 1 t 0 o o 1 0 
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Now the Rademacher -Walsh spectral 
coefficients for any given function f(x) 
are given by: 
R1,i= 0,1,2, .. ., 12 . . . n, = (Number of 
agreements between the value 0 or 1 of 
the input r1 and the output f(x)) - 
(number of disagreements between r, 

and f(x)). 
For the function tabulated in Table 1, 

this gives: 
Ra R1 R2 R3 R12 Ria R23 R123 

0 +4 0 -4 +4 0 +4 0 
These spectral coefficient values are 
illustrated in Fig. 1. This figure is the 
spectrum of the given function, and 
may be considered analogous to the 
familiar Fourier frequency spectrum of 
a complex analogue waveform. 

Points of note are: 
B the given function is uniquely defined 
by the value of the spectral 
coefficients8. Hence if any fault deve- 
lops in the network which propagates to 
the output, then the spectral coefficient 
values for the network will be modified; 
ár the relative magnitude of each 
coefficient is a measure of the "impor- 
tance" of the particular input parameter 
r;,i # 0, in determining the network 
output value 0 to 1. A high positive 
value indicates a high degree of depen- 
dence of the output on the particular r, 
input, while a high negative value 
indicates a high degree of dependence 
of the output on the complement of the 
particular i input, i.e. upon 

For example, in the function illus- 
trated in Fig. 1 the output of the 
network is relatively highly dependent 
upon r1 ( =input xi), not very dependent 
upon r1(= input x2), and relatively 
highly dependent upon F3( = input 5E3). 

The further spectral coefficients give a 
measure of the importance of r12,r13 etc. 
(= the exclusive -ORs of the inputs 
x1,x2, etc) in controlling the output 
value. 

Further, for fault diagnosis, suppose a 
"healthy" network has a certain high - 
value spectral coefficient, and under 
some internal fault condition a low 
value is found for this coefficient, then 
such a discrepancy indicates that the 
particular node(s) or path(s) of the 
network which contributes to this part 
of the spectrum is suspect. 

These ideas, therefore, are the basic 
ideas underlying the possible use of 
Rademacher -Walsh spectra for logic - 
network fault diagnosis. 

Basic properties of the spectra 
Certain basic properties of the spectra 

,of a logic network may be detailed: 

Ro maximum- valued. If the value for Ro 
for a network is found to be ±2n (that is 
±8 for a 3- variable system, ± 16 for a 
4- variable system and so on), then the 
network output is constant, that is 
stuck -at -0 or stuck -at -1. For a 
4- variable system, a stuck -at -0 output 
gives Ro = + 16, and a stuck -at -1 output 
gives Ra = -16, using the definition of Ro 
-given in the preceding section. 

With Ro= ±2n, all other spectral 
coefficient values will be zero. There is 
therefore no need to evaluate them once 
this maximum value condition for Ro is 
known. 

Ri maximum -valued. If the value for any 
primary coefficient Ri, j= 1 to n (that is 
the spectral coefficient value relating 
directly to a binary input xi,x2, ..., xn), 
is found to be ±2 ̂ , then the output of 
the network is controlled entirely by the 
one particular input xi. All other inputs 
are redundant or ineffective in con- 
trolling the network output. For exam- 
ple should R2 be + 16 in a logic network 
with four input variables x1 to x4, then 
the network output is entirely depen- 
dent upon x2, the output being f(x) =x2. 
If R2 was -16 then output f(x) =x2. 

With any primary coefficient R. at a 
maximum value, then all other spectral 
coefficients, including Ro, will be zero. 
There is no need to evaluate them once 
a maximum condition for R, is known. 

Rik maximum -valued. If the value for 
any secondary coefficient Rik 
i k, j,k =1,2 ..., (that is the spectral 
coefficient values relating to the exclu - 
sive-ORs of the binary inputsx1,x2, . 

xn), is found to be ±2n, then the output 
from the network is controlled entirely 
by the exclusive -OR of two (or more) 
inputs xi,xk. For example, should R234 
be + 16 in a network with four input 
variables x1 to x4, then the network 
output is entirely dependent upon x2 
x3 ® x4,x1 being redundant or ineffec- 
tive. If R234 was -16, the output would 
be [x2 ®x3 ® x47 

With any secondary coefficient Rik ... at a maximum value, then all other 
spectral coefficients, including Ro, will 
be zero. 

Ro zero- valued. No particular signifi- 
cance may be attached to the situation 
where Ro is zero. This only indicates 
that the output from the network is 1 for 
exactly the same total number of input 
minterms as when the output of 0. For 
example, see the simple network eval- 
uated above. R0 = zero does not give 
any indication which input minterms 
give the network output 0 or 1. 

Ri zero -valued. No particular signifi- 
cance may be attached to any one Ri, 
j =1 to n, being zero -valued. This only 
indicates a certain symmetry in the 
network output 0 and 1 values with 
respect to the 0 and 1 values of the 
particular xi input. For example, see R2 
in the example given above. 

Rik zero- valued. Similarly no particular 
significance may be attached to any one 
secondary coefficient value being zero - 
valued. However, see the following 
case. 

Multiple zero -valued coefficients. While 
no great significance may be attached 
to a single zero -valued coefficient, more 
than one zero -valued coefficient may 
have significance. 
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Fig. 1. The Rademacher -Walsh spec- 
trum of the Boolean function 
f(X)=[x152 + x2X3] 

If the value of any primary coefficient 
Ri,j =1 to n, is zero, and if all the 
secondary coefficients Rik,Ri1, etc. con- 
taining this coefficient subscript j are 
also zero, then (and only then) the 
network input xi is redundant or 
ineffective. 

For example, if the spectrum for the 
function shown in Fig. 1 had been 
evaluated assuming four inputs xi,x2,x3 
and x4 were present, x4 in this particular 
example being unnecessary (redun- 
dant), then (i) the value of all the 
spectral coefficients shown in Fig. 1 

would each be twice as great, corre- 
sponding to the twice -as -many agree- 
ments /disagreements now present in 
the truth -table, but (ii) the coefficients 
for R4,R14,R24 >R34,R124,R134, ,R234 and R1234 
would all be zero -valued. 

It will further be noticed that if a 
necessary input to a logic network 
becomes stuck -at -0 or stuck -at -1 to the 
complete network, this fault will result 
in all the associated spectral coefficients 
becoming zero -valued. 

Certain other restricted zero -valued 
relationships may be formulated. How- 
ever these restricted zero -valued rela- 
tionships do not have such a funda- 
mental importance as cases where all 
coefficients containing a particular 
subscript identification are zero. 

Relationships of the spectral coefficient 
values. Collectively the spectral coeffi- 
cient values define the input- output 
relationships of the complete network. 
The zero -value and the maximum -value 
coefficients have a particular signifi- 
cance, as briefly covered above. 

However, in every case there are 
certain arithmetic relationships which 
exist between the values of all the 
coefficients, but these relationships are 
indirect.* Further, it is known that the 
coefficient values for any function must 
lie in a very restricted set of numbers, 
the actual ordering and signs being the 
specific spectrum for the given func- 
tion. For example, there are only eight 
possible sets of spectral coefficient 

*By the very definition of these coefficient 
values, one is not free to alter the value of any 
one without automatically altering the value 
of others. So the freedom in the range these 
numbers çan collectively take is restricted, 
but in a difficult way to non -mathematically 
express and appreciate. 
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magnitudes (the "positive canonic 
spectra ") to cover all possible logic 
networks with four input variables13. 

The full significance, understanding, 
and potential usefulness of these consi- 
derations are the subject of continuing 
reseazch. Statistical considerations can 
come into this area, as it is not 
necessary to evaluate more than a 
certain percentage of the total spectrum 
in order to define certain functions with 
a high degree of surety. As far as faults 
within networks are concerned, then it 
would appear that any fault which 
propagates to the output will cause a 
dramatic change in the resulting spec- 
trum, and not a minor change in, say, 
one of the higher- ordered spectral 
coefficients only. Thus it may not be 
necessary to consider all the spectrum 
in fault- diagnosis procedures. 

Effect of logic inversion and logic gates 
on spectra 
It would be attractive to be able to 
furnish a simple set of arithmetic rules 
detailing how the spectral coefficient 
values build up as one considers the 
progression through a logic network. 
Unfortunately no such set of rules is 
available to cover all situations. The 
following, however, details some simple 
features for particular cases. 

Logic inversion. A logic inversion 
(NOT) of a Boolean function changes 
the sign of all spectral coefficient 
values, Thus the spectrum of a function 
before and after an inverter gate is 
related by sign changes only, which 
mathematically may be regarded as 
multiplying the spectrum by -1.0. 
Similarly, the output spectrum from a 
NAND gate is -1.0 times that of an 
AND gate with the same inputs, and 

Fig. 2. Disjoint inputs to a 3 -input OR 
gate. 
Input I = î1Î2X3 
Input 2= g1x2x3 
Input 3= x1x3x4 
Output z = [î2.2.5C3 + .1x2x3 + x /z3Î4] 

1. 

2 

3 

\ 1 +x2 
0.0 0,1 

0,0 

1,0 

1.1 1,0 

. ú 
r2 

/i6 C/ 

2 

Table 2. 

Ro R, R2 R3 
Input 1: +12 -4 -4 -4 
Input 2: +12 -4 +4 +4 
Input 3: +12 +4 0 +4 

and the output spectrum is: 

R4 R12 R13 
0 -4 -4 
0 +4 +4 

-4 0 -4 

R14 R23 R24 R34 R123 R124 R134 R234 R1234 0-4 0 0-4 0 0 0 0 0-4 0 0-4 0 0 0 0 
+4 0 0 +4 0 0 -4 0 0 

+4 -4 0 +4 --4 0 --4 +4 --8 0 +4 -8 0 --4 o 0 

Table 3. 

Ro R1 R2 R3 R4 R12 R13 R14 R23 R24 R34 R124 R 124 R134 R234 81234 
Input 1: -12 +4 +4 +4 0 +4 +4 0 +4 0 0 +4 0 0 0 0 
Input 2: --12 +4 -4 -4 0 -4 -4 0 +4 0 0 +4 0 0 0 0 
Input 3: --12 -4 0 -4 +4 0 +4 -4 0 0 -4 0 0 +4 0 O 

Output: -4 +4 0 -4 +4 0 +4 -4 +8 0 -4 +8 0 +4 0 0 
This example is illustrated in Fig. 4. 

that of a NOR gate is -1.0 times that of 
an OR gate. 

Output spectrum of an OR gate. Neg- 
lecting for the moment the Ro term, 
which as we shall see is a special case, 
then if and only if the input signals to an 
OR gate are disjoint (that is they have 
no logic 1 minterms in common) the 
output spectrum of the gate is given by 
the arithmetic sum of the individual 
input spectra. 

The Ro spectral components do not 
obey this simple arithmetic summation; 
instead the Ro spectral component of 
the gate output is given by 

m 
E (input Ros) +(m -1)2n, 
1 

where m is the number of inputs to the 
OR gate. The reason for this exception 
can be demonstrated very simply. 

As an example, a three -input (m = 3) 
OR gate with the inputs shown in Fig. 2 
is in the category of an OR gate with 
disjoint inputs. The spectra are given in 
Table 2. 

However, when the input signals are 
not disjoint, and "overlap" occurs 
between logic 1 input minterms, then 
simple addition of the input spectral 
component values is not valid. This, 
unfortunately, is more often the case 
than not in logic networks, unless the 
designer deliberately sets out to make 
all inputs disjoint. 

Output spectrum of a NOR gate. The 
situation with a NOR gate is precisely 
that of the OR gate, except for the 

Fig. 3. The equivalent of an AND gate. 

output inversion which is equivalent to 
multiplication of the output spectrum 
by -1.0. Again, therefore, only if the 
input signals are disjoint can simple 
addition of the input spectra be made. 

Output spectrum of an AND gate. The 
AND relationship can be generated by 
inverter and NOR gates as shown in Fig. 
3. Therefore if, and only if, the comple- 
ments of the inputs to an AND gate are 
disjoint, the output spectrum of the gate 
excepting Ro may be obtained by the 
arithmetic sum of the individual input 
spectra. The output Ro value is given by 

m 
E (input Ras) +(m -1)2^ 
1 

As an example, taking the comple- 
ments of the inputs used in the previous 
disjoint OR of Fig. 2 as inputs to a 
3 -input AND gate, see Table 3. 

Output spectrum of a NAND gate. The 
situation with a NAND gate is precisely 
that of the AND gate, except for the 
multiplication by -1.0 of the output 
spectrum. 

Thus all these OR and NOR, and AND 
and NAND cases now considered are 
special cases, and are therefore of 
restricted use. For the more general 
case, the numerical relationships 
between spectra before and after a logic 
gate are given by matrix manipulations, 
which can readily be handled by a 
digital computer. The cases here consi- 
dered with their simple arithmetic 
relationships are particular cases of 
such manipulations. 

AND 

Y3 

input spe rra L 
input spectra x -1.0 

J 

z-Y1Y2Y3 
output spectrum, 

coefficient values (except R0) 
X [input spectra] 
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x3,x4 

0,0 

0,1 

1,0 

0,0 0,1 1,1 1,0 

Input 

z 

3 

Input2 

Output Z 

Input 3 

Fig. 4. Inputs to a 3 -input AND gate, 
with disjoint complementary inputs. 
Input I =xi +x2 +x3 = NOT5Ed72.3 
Input 2 =xi +x2 +x3 = NOTx2x2x3 
Input 3 =x1 +z3 +x4 = NOTx1x354 
Output z = [(x1 +x2 +x3) (x1 +22 +x3) 
(X1 +x3 +X4)] 

The effect of logical faults, an example 
Any logical fault in a network which 
propagates to the output will cause a 
change in the output spectrum. How- 
ever the change is unlikely to be a 
simple arithmetic change, except in 
restricted cases such as considered 
above. 

As an exercise, consider the simple 
all -NAND circuit shown in Fig. 5. This 
circuit deliberately has no strong char- 
acteristics or disjoint properties which 
might give rise to simple manipulations 
of spectral coefficient values. It is a 

network not strongly dependent upon 
any one or more input parameter. 

The fault -free spectral coefficient 
values at nodes (c), (k) and (o) and at 
the output are as shown in Table 4 

(note, + signs have now been omitted 
for brevity): 

A computer -run of the output spec- 
trum with each individual node 
stuck -at -0 and stuck -at -1 yields the 
output coefficient values under each 
single -fault condition as shown in Table 
5. 

From this tabulation it will be noted 
that all faults which are logically 
distinguishable at the output give rise to 
a distinct output spectrum. In this 
particular network it is sufficient to 

Fig. 5. NAND network, output z = 
[XIx2 +X15c23c-3 +x2X3x4] with internal 
nodes (a) to (o) as the source of potential 
stuck -at -I or stuck -at -0 faults. 

examine the primary spectral compon- 
ents Ra to R4 only to diagnose the fault 
classification, the information con- 
tained in the remaining components 
being unnecessary. However further 
research is necessary to show whether 
this is always so. 

Summary and further research 

The underlying mathematics of the 
Rademacher -Walsh transform, and the 
.advantages of computer -handling of 
data in the spectral domain as compared 
with the Boolean domain, have not been 
covered, as these may be found in 
existing literature. The software for 
computing the spectral component 
values for given circuits, both with and 
without "stuck -at" faults present, is 
straightforward and fast. 

At this early stage of research, the 
outcome and potential of this technique 
in fault diagnosis lies in the future. 

x1 (a) 
2 

x3 

(d ) 

(b) 

(e) 

x,4 

(m) 

( h) 

(9) 

(t) 

(n) 

x1 20C3 
(k) 

(o) 
2x3x4 

o 

3,x4 

0,0 

0,1 

1,0 

0,0 0,1 1,1 1.0 

www.americanradiohistory.com

www.americanradiohistory.com


86 

Table 4. 

Ro R, R2 R3 R4 R,2 R,3 R,4 R23 R24 R34 R123 R,24 
Node (c): -8 -8 -8 0 0 8 0 0 0 0 0 0 0 
Node (k): -12 4 4 4 0 4 4 0 4 0 0 4 0 
Node (o): --12 0 -4 --4 --4 0 0 0 4 4 4 0 0 
Output z: 2 2 6 --2 2--10 -2 2 --6 --2 --2 --6 --2 

Table 5. 

(a) or (b) stuck -at -0, or (c) stuck -at -1 
8 -4 0 0 4 -4 -4 0 -8 -4 -4 --4 0 

(d), (f) or (h) stuck -at -1, or (e), (g) or (j) stuck -at -0, or (k) stuck -at -1 
6 6 10 2 2 -6 2 2 -2 -2 --2 -2 -2 

(I), (m) or (n) stuck -at -0, or (o) stuck -at -1 
4 4 4 -4 

(a) stuck -at -1 
-4 -4 12 -4 

(b) stuck -at -1 
-6 10 -2 -2 

(d) stuck -at -0, or (e) stuck -at -1 
-2 6 2 -6 

(f) stuck -at -0, or (g) stuck -at -1 
-2 -2 10 -6 

(h) stuck -at -0, or (j) stuck -at -1 
-2 -2 2 2 

0 -1 2 

0 -4 

2 -2 

2 -6 

2 -6 

2 --14 

-4 

--4 

-2 

2 

-6 

2 

0 -4 

0 -4 

2 -6 

2 -10 

2 -2 

2 --2 

0 

0 

-2 

-2 

-2 

-2 

0 

0 

-2 

-2 

-2 

-2 

-4 

-4 

-6 

--2 

-2 

--2 

0 

0 

-2 

-2 

-2 

-2 
(I) stuck -at -1 

-2 2 2 2 

(m) stuck -at -1 
0 0 8 -4 

(n) stuck -at -1 
0 0 8 A 

(c), (k) or (o) stuck -at -0 
-16 0 0 0 

6 -10 

4 -8 

0 -8 
0 0 

-2 

-4 

0 

0 

2 -2 

4 -4 

0 -8 
0 0 

2 

-4 

0 

0 

-6 

0 

0 

0 

-6 

-4 

-8 
0 

-2 

-4 

0 

0 

R134 R234 R1234 
0 0 0 
0 0 0 0--4 0 

--2 2 2 

0 4 0 

--2 2 2 

O 0 0 

0 0 0 

-2 

-2 

2 2 

2 2 

-2 2 2 

-2 2 2 

-2 -2 2 

O 0 0 

O 0 0 

O 0 0 

Fundamentally the spectra contain a 
very high and inter -related information 
content, which must be usable in t Lily 

ways apart from network synthesis 
which has been its main research use to 
date. For fault diagnosis, the following 
are some of the immediate problems 
under consideration: 

Does the spectrum of a fault -free 
network itself provide sufficient or 
partial data for determining diagnostic 
test sequences? 

Can the spectrum of a faulty network 
be used to control automatic diagnostic 
procedures by controlling the input test 
sequences? 

Because all logic functions may be 
grouped into positive canonic spectra 
classfications, can standard test tech- 
niques be outlined for each such group 
of functions? 

Is it possible to compute a useful 
"partial spectrum" by considering only 
a limited number of "agreements - 
disagreements" (see above), instead of 
all 2n? 

How best can the network- under- 
test /computer -interface be engineered? 

Can useful all- hardware (not com- 
puter- based) field test sets be formula- 
ted, for testing relatively small digital 
networks14? 

Do these ideas, even if satisfactory, 
give any advantages over existing 
digital a.t.e. techniques? 

It is hoped that this introductory 
article may stimulate continuing 
research in this new area. 
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turns off and has no further effect on 
the VU circuitry. Diodes D3 and D4 
isolate the two VU circuits from each 
other and also prevent Trio from being 
driven into conduction on negative 
half -cycles. 

A further point about the VU system, 
which should have been emphasized in 
the original article, is that the 10k02 
resistor and germanium diode associat- 
ed with the meter itself are only 
relevant if inexpensive milliammeter 
movements are fitted. If professional 
VU meters are used, which contain 
internal bridge rectifiers, the above 
components are unnecessary. 

Because the amplifier is already fitted 
with a relay that switches off the main 
outputs, it is simple to add a socket for 
remote muting. Fig.4 shows part of the 
original rumble -gate system, together 
with the new components required. All 
that is involved is the closure of a switch 
between the base and emitter of Tr29 so 
that the transistor turns off and causes 
the relay contacts to open. Note that, 
like the switch -on delay, this facility 
overrides all other control functions. 
The resistor and diode are included to 
protect the circuit if a wrong connec- 
tion to the remote- muting socket is 
made. As the control lead only handles a 
small direct voltage the audio signal 
cannot be degraded. 

Reference 
Butler, F. Transistor wide -band cascade 
amplifiers, Wireless World, March 1965, 
pp.124 -128. 

Printed circuit boards 
A p.c.b. which accommodates a 
stereo rumble and scratch filter, 
virtual earth mixer, and meter surge 
suppression circuit, will be available 
for £3.50 from M. R. Sagin at 23 
Keyes Road, London N.W.2. 
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