ANY means of spreading the great numher of short wave transmissions which can he heard over an increased tuning range is helpful, simplifying and easing tuning. When several ranges are needed it becomes difficult to use separate inductors for each range, involving a large number of coils, with all the associated switching.

In the receiver described here, only two coils are required band-changiog being achieved by hringiog in pairs of fixed capacitors. This breaks up the full tuning range into a numher of smaller divisions.

CIRCUIT

Fig. I is the mixer stage circuit the wiring being very much simplified by using this switching arrangement. L1 is the aerial coil, tuned by VC1, and L2 the oscillator coil, tuned by VC2. VCl and VC2 are sections of a small ganged capacitor, operated through a cord drive.

The 2-pole 9-way rotary switch S2/S3 selects the required band. With the switcb in position $1, \mathrm{VCl} / 2$ alone are in use, for the highest frequency band. When the switch is in position 2, C2 and C10 are in circuit. Each of these capacitors is 50 pF , so the next range runs on from the frequency reached wben $\mathrm{S} 2 / 3$ was in position 1 , and VCl/2 fully closed. In a similar manner, positioo 3 of the switch brings in C3 and C11, each of 100 pF . The next lower frequency band employs C4 aod C12, eacb of 150 pF , with the switcb in position 4. This continues for the nine ranges, each pair of capacitors heing 50 pF larger in value than the previous pair.
$\mathrm{VCl} / 2$ has a swing of a little over 50 pF , so that ranges overlap. VC3 is a panel trimmer, whicb can he set for hest volume on any band, or wheo altering the aerial. S1 is ao aerial switcb, used for the attacbed telescopic aerial or an external aerial.

The capacitors C2 to C9 for the aerial circuit, and C 10 to C17 for the oscillator, are 1% or 2% silvermica, and any variation in the exact capacitances of the components used is easily cancelled out by VC3.

IF AMPLIFIER

A conventional high gain intermediate frequency amplifier is used, Fig. 2. This has two double-tuned i.f.t.'s, aod one single tuned i.f.t. resulting in good selectivity.
The i.f. amplifier is wired as a separate unit, on

686
a small insulated hoard. Input from the mixer stage is to pin 2 of i.f.t.l and audio output is from D1 aod C26. VR1 is the usual audio volume control.

AUDIO AMPLIFIER

This provides high gain aod 330 mW output into a 15 ohm speaker. Fig. 3 is the circuit and $\operatorname{Tr} 4$ is the first a.f. amplifier stage, stahilised by R14. Output from Tr4 collector is via C30 to the hase of Tr5, which witb Tr6 forms a Darlington pair driver for the output transistors. Tr7 and Tr8. These form a push-pull complementary-symmetry stage, working in Class B, with diode D2 for thermal stabilisation. Feedback througb R17 maintains operating
conditions for the four directly-coupled transistors Tr5 to Tr8.

This circuit has plenty of amplification and volume. In order to simplify construction of the whole receiver, the audio amplifier is obtained as a printed circuit package, ready for use, and incorporating matched transistors.

A is the common positive line, and \mathbf{D} the negative line. Point C is for audio input. The resistor R13 is iocluded in the amplifier. R12, which is in series with R13, was found to be necessary for stable working in this particular receiver.

Leads from D (battery negative line) and E run to the 15 ohm speaker. The circuit is of the transformerless type and a speaker of other than 15 obm impedance should not he used.

Fig. 2. The circuit of the l.f. stages, constructed as a separate unil on a paxolin panel (See Fig. 6). The input comes from pin 8 on 12 in the mixer stage.

Fig. 3. Since the audio stages are contained within a packaged module this circuit of the 5 transistor unit is given for interest only. inpul from the l.f. assembly goes to pin C, the loudspeaker to pins D and E and the earth line to the onloff switch S3. (Note; C23 should read C32.)

MIXER STAGE ASSEMBLY

A 10 in . x 4in. flanged plate (universal cbassis - member) serves as panel for the controls and tbe top of, the case. The controls are placed lin. from the bottom of this plate, VC3 and the cord drive spindle being $1^{3} 4 \mathrm{in}$. from the plate ends and $\mathrm{S} 2 / 3$ and VR1-equally spaced between these.
$\mathrm{VCl} / 2$ is fixed as in Fig. 4 so that the top of the drum is about $1_{8} \mathrm{in}$. below the top of the plate. One pulley is ahove tbe cord drive spindle, to keep the cord parallel with the plate. The second pulley guides the cord clear of the hushes of S2/3 and VR1. Tbe pulleys are on bolts fixed with lock nuts to the plate. The cord is given one complete turn round the drive spindle, then passes round the wheels and

Fig. 4. Layout of the mixer assembly built on an aluminium plate.
drum. It is taken througb the drum slot, and tied so that it is under tension from tbe spring.

Fig. 4 shows wiring, etc., for this stage. L1, L2 and the otber items are mounted on a piece of paxolin 5 in. $\times{ }^{2}{ }^{1}{ }_{2}$ in., whicb has a cut-out section to clear $\mathrm{S} 2 / 3 . \mathrm{VCl} / 2$ is bolted to the 10 in . $x 4 \mathrm{in}$. plate, and the paxolin is in turn bolted to the underside of the ganged capacitor. Additional support is given by a bracket attached to the paxolin and rear of the 9 -way switch.
Transistor Trl has three leads soldered directly

Fig. 5. Delails of the wiring of the bandswitch S2/S3.

\star components list

```
Resistors:
\begin{tabular}{|c|c|c|c|c|c|}
\hline R1 & 10kS 2 & R5 & 68k5 & R9 & 47 kg \\
\hline 2 & \(2 \cdot 7 \mathrm{k} 2\) & R6 & 6801 & R10 & 1162 \\
\hline R3 & 1 k 8 & R7 & \(8 \cdot 2 \mathrm{k}\) & R11 & 1 ks 2 \\
\hline R4 & \(1 \mathrm{k} \Omega\) & R8 & 22k52 & R12 & \(47 \mathrm{k} \Omega\) \\
\hline
\end{tabular}
            A!! W 10%
    VR1 5ki2 potentiometer, tog with switch (S3).
Capacitors:
```



```
Semiconductors:
```

Tet OC:170
T13 AF117
Tr2 AF117
D1 OA81

Inductors:

```
IFT1 IFT18465 (Oenco)
IFT2 IFT 18465 (Denco) Range 4 Blue
IFT3
IFT14465 (Denco)
(Transistor)
```

Audio Amplifier:
PC3 Peckaged circuit (Newmarket).

Miscellaneous:

Cabinet: 2 off, 10 in . x in, Universal chassis flanged member (Home Radio). 2 off, $7 \frac{1}{2} \ln x$ 4ith: ply wood, 2 off, 10in x 7in. hardboard.
Tuning drive: Drum, 2*: m , dia, DL 84 drive spindle, sping, cord, pufleys (Home Radio), Speaker, 7 in. x 立in., is Telescopic aerial. Aerial siucket, knobs, rubber feet.
to the pins of L 2 . The base lead B is extended by soldering on connecting wire, to run to C18. Connections in tbis stage should be reasonably short and direct. R3, C19 and C20 are wired to a tag under the paxolin, in contact with the metal frame of VCl $/ 2$.
VC3 is mounted directly under $\mathrm{VCl} / 2$ and is connected in parallel with it by sbort leads.
The bandswilcb occupies the position shown in Fig. 4, and is wired as in Fig. 5. The switch has separate single-pole 9 -way wafers connected directly to VCl and VC 2 by sbort leads. No extra connection is made to position 1. Position 2 bas the pair of capacitors C2 and C10 (50 pF each). Position 3 bas equal capacitors C3 and Cll (100 pF each), and so on.
The capacitors are best arranged to lie partly over tbe wafers, in the manner giving sbortest leads to a stout wire which returns to tbe frame tag of the ganged capacitor.

GANGED CAPACITOR BAND SWITCH

S2/3 introduces fixed capacitor increments of 50 pF at eacb position. Tbere is a certain amount of stray circuit capacitance, to whicb is added the
minmum capacitance of $\mathrm{VCl} / 2$. This means that a ganged capacitor baving a maximum capacitance of 50 pF each section is not quite sufficient and results in small gaps in the tuning range.

A ganged capacitor with a capacitance swing of just over 50 pF (say from 10 pF to 70 pF) would be ideal. To obtain a little overlap, and allow for variations of C2 to C17, the nearest standard value is 75 pF , whicb is satisfactory.

When this tuning arrangement was first used, a $2 \times 100 \mathrm{pF}$ capacitor was fitted and some plates pulled off, but this resulted in too many being removed. A new capacitor thus had to be fitted. Caution is tberefore required, if a capacitor is modified in this way. With a 2 -gang 100 pF capacitor, the effective value can be reduced to about 75 pF by placing a 300 pF fixed capacitor (silver mica) in series with eacb section. The lead from Ll to VCl must then run over VCl so that it can join the lead from S2.

IF AMPLIFIER ASSEMBLY

This is assembled and wired on a paxolin panel 33_{4} in. $x 1^{3}$ in. All components are mounted on one side and wiring is on the reverse, as in Fig. 6. Note that the different spacing of the pins of the i.f.t.'s enable these to be identified. Remember to drill holes for adjustment of the cores.

Small holes are drilled for the leads of the other components. Note tbe polarity of C21 and diode D1. Connections underneath are made by bending over the wires and snipping off the ends and by using thin connecting wire wbere required. Insulated sleeving is put on all leads where necessary. Two bolts holding the tags MC, locked on, will mount the finished amplifier and provide a positive return circuit.

Fig. 7. The i.f. and audio stages are mounted on a common panel.

Solder a lead to pin 2 of i.f.t.1. This is later soldered to pin 8 of the oscillator coil L2.

Take a black lead from R11, to use as negative. Solder a wire to the junction of R11 and C25, as shown, which will later run to R4. The remaining external connection is from R7, C26 and D1, and goes to the volume control VR1.

Both i.f. and a.f. amplifiers are mounted on a piece of paxolin 5^{1} in. x $2^{1}{ }_{2} \mathrm{in}$. whicb is supported by the bracket mentioned earlier, and by a furtber bracket bolted to the 10 in . x 4 in . aluminium plate. Extra nuts are put on the bolts holding the tags MC, Fig. 6. The bolts pass through the $5^{1}{ }_{2}$ in. $x{ }^{21}{ }_{2}$ in. paxolin. Furtber tags are then put on fixed with nuts. The tags are wired to the volume control and metal plate (positive line).

The audio amplifier package is mounted in a similar way, Fig. 7. R12 is soldered to point C. A black lead for battery negative is taken to point D, and white leads for speaker connections to points D and E. A red lead from point A runs to the positive line at VRl and the on-off switcb.

ALIGNMENT

The complete assembly on the 10 in . x 4in. flanged plate is aligned and tested before fitting it in the cabinet. A speaker of tbe correct type (15 ohms) must be connected.

The five cores of the i.f.t.'s are rotated with a suitable tool, such as the Denco TT5, for best results. A weak signal is most suitable from a signal generator, or from a transmission, a sbort wire aerial being temporarily

Fig. 6. Layout and wiring diagram of the l.f. assembly built on a paxolin panel, 3 asin x ${ }_{12}^{2} \mathrm{in}$.
connected to tag 8 of L1. VR1 should be near maximum volume, hut a strong signal should he avoided hecause the automatic gain control circuit will then make critical adjustment of the cores difficult.

Once the i.f.t. cores have been correctly peaked for best sensitivity, they should he left alone. A meter placed in one battery lead should show a current of under 15 mA with weak signals, rising to peaks of 50 mA or more with signals giving good volume.
The cores of L 1 and L 2 are then rotated until ahout ${ }_{8} \mathrm{in}$. of threaded hrass projects. Set VC3 and TCl at ahout half capacitance. Open $\mathrm{VCl} / 2$, set the bandswitch at Position 1, and rotate TCl as necessary to tune to about 15 MHz .

Leave VC3 and TC1, switch to Position 9, and close $\mathrm{VCl} / 2$. Rotate the core of L 2 as necessary to tune to approximately $3 \cdot 6 \mathrm{MHz}$. Switch to Position 8 , tune in a transmission, and rotate the core of L1 for best results.
It should then he found that with the bandswitch in any position, and a transmission,tuned in, VC3 can be peaked for hest reception. Should VC3 need to be either fully open or fully closed with tbe switch in Positions 1 or 2, re-adjust TCl as required. If VC3 is either fully open or fully closed to give hest results with the switch in positions near the low frequency end of the coverage provided (especially Position 8 or 9) then the core of Ll needs slight readjustment to avoid this.
It sbould be found that VC3 generally only needs one adjustment for each band and that often even this will not be necessary. VC3 can he peaked up for hest reception of weak signals at any time, when changing the aerial, or switching Sl.
If it is found that almost uninterrupted whistles arise at the extreme h.f. end of the coverage provided, include a resistor at X in Fig. l, hetween collector and pin 9 of L2. Its value should be the lowest which prevents oscillation and will generally be around 47 ohms to 470 ohms or so. This depends on the individual transistor and other factors.

CABINET ASSEMBLY

Fig. 8 will help to clarify assemhly of the case. Cut two pieces of hardhoard 10 in . x 7 in . and with a pad saw or keyhole saw cut a hole to match the

A view inside the 'works' shows the three units forming the complete receiver.
speaker cone. Clean up all edges with glasspaper and wipe off any dust. Fahric is then stretched over the harảhoard, lrought round tbe edges, and glued on the inside.

The sides are 3 -ply, each 7^{1} in $\times 4^{1}{ }_{2}$ in., sanded and varnished. The $10 \mathrm{in} \times 4 \mathrm{in}$. flanged plate forming the case hottom is placed on a flat surface, and the sides are positioned as in Fig. 8. Mark through the flange holes, drill the sides to match, and fix them with holts.
Drill tbe harclboard front for speaker and front flange, and holt this as in Fig. 8, with the speaker in position.

The receiver panel should then be finished. Cut a piece of plywood or other thin wood about 5 in . x 2 in . and fix this with small screws through the 10in x 4 in. plate, to hring the tuning scale about level with the drive cord. Clip a small piece of tinplate on the cord, and solder a striught wire pointer on this, so that it moves along the scale.
A piece of perspex is cut $10 \mathrm{in} . \mathrm{x} 4 \mathrm{in}$., and drilled to match the four control spindles and for 6BA bolts in line with the four boles which are in the universal chassis flanged plate. A piece of coloured card is also cut this size, and a window about $5{ }_{4} \mathrm{in} . \times{ }^{11}{ }_{4} \mathrm{in}$. is cut in it with a sharp hlade, to lie over the tuning scale.

Fig. 8. Delails of the construction of the receiver cabinet.
Four lin. long 6BA bolts are put through the holes in the perspex and card. A washer and nut is put on each holt, and the nuts are tightened. An extra nut is then put on each holt, and the whole is fixed in place with further nuts behind the flanged plate. The nuts are adjusted to give ahout ${ }_{2}$ in. clearance, to take tbe drum, cord and pointer.

The assembly is then put in the top of the case, so that the flanged plate is about ${ }_{2}$ in. down, as in Fig. 8, and the perspex is flush with the case front. Drilling positions are then marked through the holes punched in the flanges. The sides are drilled, and the receiver bolted in place. The receiver case front is also bolted to the front flange of tbe 10 in . $x 4 \mathrm{in}$. plate.

AERIALS

The telescopic type aerial has a bracket, so tbat it can be bolted directly on the left hand side of the case, about lin. from the back. An insulated socket is fitted on the: side of the case for an external aerial. Many transmissions can be received at ample volume with the telescopic aerial alone but an external aerial will greatly improve the reception of weak signals.

DIAL SCALE

Because each of the nine bands covers a relatively small frequency range, the main tuning scale is fitted with a card marked 0 to 50 .

The bandswitch has nipe positions, and the card scale under it has ten frequency markings. The bandswitch pointer comes to rest between these markings, which thus show the approximate frequency coverage of that particular range. For example, if the pointer rests between $4 \cdot 6$ and $5 \cdot 0$, the range is $4 \cdot 6 \cdot 5 \cdot 0 \mathrm{MHz}$, while if it is between $5 \cdot 0$ and $5 \cdot 6$ the range is $5 \cdot 0.5 \cdot 6 \mathrm{MHz}$, covered with the normal tuning control.

The full markings are as follows: $3 \cdot 6-3 \cdot 8-4 \cdot 3-$ $4 \cdot 6-5 \cdot 0-5 \cdot 6-6 \cdot 3-7 \cdot 4-10-15$. This scale is best put under the perspex.

