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Selecting Mixed-Signal
Components for Digital
Communications
Systems—Part V
Aliases, images, and spurs
by Dave Robertson
Part I (Analog Dialogue 30-3) provided an introduction to the concept
of channel capacity, and its dependence on bandwidth and SNR; part
II (30-4) briefly summarized different types of modulation schemes;
part III (31-1) discussed different approaches to sharing the
communications channel, including some of the problems associated with
signal strength variability. Part IV (31-2) examined some of the
architectural trade-offs used in digital communications receivers,
including the problems with frequency translation and the factors
contributing to dynamic range requirements. This final installment
considers issues relating to the interface between continuous-time and
sampled data, and discusses sources of spurious signals, particularly in
the transmit path.

Digital communications systems must usually meet specifications
and constraints in both the time domain (e.g., settling time) and
the frequency domain (e.g., signal-to-noise ratio). As an added
complication, designers of systems that operate across the boundary
of continuous time and discrete time (sampled) signals must
contend with aliasing and imaging problems. Virtually all digital
communications systems fall into this class, and sampled-data
constraints can have a significant impact on system performance.
In most digital communications systems, the continuous-time-to-
discrete-time interface occurs in the digital-to-analog (DAC) and
analog-to-digital (ADC) conversion process, which is the interface
between the digital and analog domains. The nature of this interface
requires clear understanding, since the level-sensitive artifacts
associated with conversion between digital and analog domains
(e.g., quantization) are often confused with the time-sensitive
problems of conversion between discrete time and continuous time
(e.g., aliasing). The two phenomena are different, and the subtle
distinctions can be important in designing and debugging systems.
(Note: all digital signals must inherently be discrete-time, but
analog signal processing, though generally continuous-time, may
also be in discrete time—for example, with switched-capacitor
circuits.)

The Nyquist theorem expresses the fundamental limitation in
trying to represent a continuous-time signal with discrete samples.
Basically, data with a sample rate of Fs samples per second can
effectively represent a signal of bandwidth up to Fs/2 Hz. Sampling
signals with greater bandwidth produces aliasing: signal content
at frequencies greater than Fs/2 is folded, or aliased, back into the
Fs/2 band. This can create serious problems: once the data has
been sampled, there is no way to determine which signal
components are from the desired band and which are aliased.

Most digital communications systems deal with band-limited
signals, either because of fundamental channel bandwidths (as in
an ADSL twisted-pair modem) or regulatory constraints (as with
radio broadcasting and cellular telephony). In many cases, the

signal bandwidth is very carefully defined as part of the standard
for the application; for example, the GSM standard for cellular
telephony defines a signal bandwidth of about 200 kHz, IS-95
cellular telephony uses a bandwidth of 1.25 MHz, and a DMT-
ADSL twisted-pair modem utilizes a bandwidth of 1.1 MHz . In
each case, the Nyquist criterion can be used to establish the
minimum acceptable data rate to unambiguously represent these
signals: 400 kHz, 2.5 MHz, and 2.2  MHz, respectively. Filtering
must be used carefully to eliminate signal content outside of this
desired bandwidth. The analog filter preceding an ADC is usually
referred to as an anti-alias filter, since its function is to attenuate
signals beyond the Nyquist bandwidth prior to the sampling action
of the A/D converter. An equivalent filtering function follows a
D/A converter, often referred to as a smoothing filter, or reconstruction
filter. This continuous-time analog filter attenuates the unwanted
frequency images that occur at the output of the D/A converter.

At first glance, the requirements of an anti-alias filter are fairly
straightforward: the passband must of course accurately pass the
desired input signals. The stopband must attenuate any interferer
outside the passband sufficiently that its residue (remnant after
the filter) will not hurt the system performance when aliased into
the passband after sampling by the A/D converter. Actual design
of anti-alias filters can be very challenging. If out-of-band
interferers are both very strong and very near the pass frequency
of the desired signal, the requirements for filter stopband and
narrowness of the transition band can be quite severe. Severe filter
requirements call for high-order filters using topologies that feature
aggressive filter roll-off. Unfortunately, topologies of filters having
such characteristics (e.g., Chebychev) typically place costly
requirements on component match and tend to introduce phase
distortion at the edge of the passband, jeopardizing signal recovery.

Designers must also be aware of distortion requirements for anti-
alias filters: in general, the pass-band distortion of the analog anti-
alias filters should be at least as good as the A/D converter (since
any out-of-band harmonics introduced will be aliased). Even if
strong interferers are not present, noise must be considered in anti-
alias filter design. Out-of-band noise is aliased back into the
baseband, just like out-of-band interferers. For example, if the filter
preceding the converter has a bandwidth of twice the Nyquist band,
signal-to-noise (SNR) will be degraded by 3 dB (assuming white
noise), while a bandwidth of 4× Nyquist would introduce a
degradation of 6 dB. Of course, if SNR is more than adequate,
wide-band noise may not be a dominant constraint.

Aliasing has a frequency translation aspect, which can be exploited
to advantage through the technique of undersampling. To
understand undersampling, one must consider the definition of
the Nyquist constraint carefully. Note that sampling a signal of
bandwidth, Fs/2, requires a minimum sample rate ≥Fs. This Fs/2
bandwidth can theoretically be located anywhere in the frequency
spectrum [e.g., NFs to (N+1/2)Fs], not simply from dc to Fs/2.
The aliasing action, like a mixer, can be used to translate an RF or
IF frequency down to the baseband. Essentially, signals in the bands
NFs<signal<(N+1/2)Fs will be translated down intact, signals in
the bands (N–1/2)Fs<signal<NFs will be translated “flipped” in
frequency (see Figure 1) This “flipping” action is identical to the
effect seen in high-side injection mixing, and needs to be considered
carefully if aliasing is to be used as part of the signal processing.
The anti-alias filter in a conventional baseband system is a low-
pass filter. In undersampling systems, the anti-alias filter must be
a bandpass function.
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Undersampling offers several more challenges for the A/D
converter designer: the higher speed input signals not only require
wider input bandwidth on the A/D converter’s sample-and-hold
(SHA) circuit; they also impose tighter requirements on the jitter
performance of the A/D converter and its sampling clock. To
illustrate, compare a baseband system sampling a 100-kHz sine-
wave signal and an IF undersampling system sampling a 100-MHz
sine-wave signal. In the baseband system, a jitter error of 100 ps
produces a maximum signal error of 0.003% of full scale (peak-
to-peak)—probably of no concern. In the IF undersampling case,
the same 100-ps error produces a maximum signal error of 3% of
full scale.
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Figure 1. Aliasing, and frequency translation through
undersampling.

Oversampling is not quite the opposite of undersampling (in fact,
it is possible to have a system that is simultaneously oversampling
and undersampling). Oversampling involves sampling the desired
signal at a rate greater than that suggested by the Nyquist criterion:
for example, sampling a 200-kHz signal at 1.6 MHz, rather than
the minimum 400 kHz required. The oversampling ratio is defined:

OSR = sample rate/(2 × input bandwidth)

Oversampling offers several attractive advantages (Figure 2). The
higher sampling rate may significantly ease the transition band
requirements of the anti-alias filter. In the example above, sampling
a 200-kHz bandwidth signal at 400 kHz requires a “perfect” brick-
wall anti-alias filter, since interferers at 201 kHz will alias in-band
to 199 kHz. (Since “perfect” filters are impossible, most systems
employ some degree of oversampling, or rely on system
specifications to provide frequency guard-bands, which rule out
interferers at immediately adjacent frequencies). On the other hand,
sampling at 1.6 MHz moves the first critical alias frequency out
to 1.4 MHz, allowing up to 1.2 MHz of transition band for the
anti-alias filter.
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Figure 2. Oversampling makes filtering easier.

Of course, if interferers at frequencies close to 200 kHz are very
strong compared to the desired signal, additional dynamic range
will be required in the converter to allow it to capture both signals
without clipping (see part IV, Analog Dialogue 31-2, for a discussion
of dynamic range issues.) After conversion, oversampled data may
be passed directly to a digital demodulator, or decimated to a data
rate closer to Nyquist. Decimation involves reducing the digital
sampling rate through a digital filtering operation analogous to
the analog anti-aliasing filter. A well-designed digital decimation
filter provides the additional advantage of reducing the quantization
noise from the A/D conversion. For a conventional A/D converter,
a conversion gain correspnding to a 3-dB reduction in quantization
noise is realized for every octave (factor-of-two) decimation. Using
the 1.6-MHz sample rate for oversampling as above, and
decimating down to the Nyquist rate of 400 kHz, we can realize
up to 6 dB in SNR gain (two octaves).

Noise-shaping converters, such as sigma-delta modulators, are a
special case of oversampling converters. The sampling rate of the
modulator is its high-speed clock rate, and the antialiasing filter
can be quite simple. Sigma delta modulators use feedback circuitry
to shape the frequency content of quantization noise, pushing it
to frequencies away from the signal band of interest, where it can
be filtered away. This is possible only in an oversampled system,
since by definition oversampled systems provide frequency space
beyond the signal band of interest. Where conventional
converters allow for a 3-dB/octave conversion gain through
decimation, sigma-delta converters can provide 9-, 15-, 21- or
more dB/octave gain, depending on the nature of the modulator
design (high-order loops, or cascade architectures, provide
more-aggressive performance gains).

In a conventional converter, quantization noise is often
approximated as “white”—spread evenly across the frequency
spectrum. For an N-bit converter, the full-scale  signal-to-
quantization noise ratio (SQNR) will be (6.02 N + 1.76) dB over
the bandwidth from 0 to Fs/2. The “white” noise approximation
works reasonably well for most cases, but trouble can arise when
the clock and single-tone analog frequency are related through
simple integer ratios—for example, when the analog input is exactly
1/4 the clock rate. In such cases, the quantization noise tends to
“clump” into spurs, a considerable departure from white noise.

While much has been written in recent years about anti-aliasing
and undersampling operations for A/D converters, corresponding
filter problems at the output of D/A converters have enjoyed far
less visibility. In the case of a D/A converter, it is not unpredictable
interferers that are a concern, but the very predictable frequency
images of the DAC output signal. For a better understanding of
the DAC image phenomenon, Figure 3(a,b) illustrates an ideal
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sine wave and DAC output in both the time and frequency
domains. It is important to realize that these frequency images are
not the result of amplitude quantization: they exist even with a
“perfect” high-resolution DAC. The cause of the images is the
fact that the D/A converter output exactly matches the desired
signal only once during each clock cycle. During the rest of the
clock cycle, the DAC output and ideal signal differ, creating error
energy. The corresponding frequency plot for this time-domain
error appears as a set of Fourier-series image frequencies (c). For
an output signal at frequency Fout synthesized with a DAC updated
at Fclock, images appear at NFclock ± Fout. The amplitude of these
images rolls off with increasing frequency according to

    

sin π(Fout /Fclock)
π(Fout /Fclock)

leaving “nulls” of very weak image energy around the integer
multiples of the clock frequency. Most DAC outputs will feature
some degree of clock feedthrough, which may exhibit itself as
spectral energy at multiples of the clock. This produces a frequency
spectrum like the one shown in Figure 4.
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Figure 3. Time domain and frequency domain representation
of continuous time and discrete sampled sine wave, and an
interpolated discrete sampled sine wave.

The task of the DAC reconstruction filter is to pass the highest
desired output frequency, Foutmax, and block the lowest image
frequency, located at Fclock – Foutmax, implying a smoothing filter
transition band of Fclock – 2Foutmax.

This suggests that as one tries to synthesize signals close to the
Nyquist limit (Foutmax = Fclock/2), the filter transition gets
impossibly steep. To keep the filter problem tractable, many
designers use the rule of thumb that the DAC clock should be
at least three times the maximum desired output frequency. In
addition to the filter difficulties, higher frequency outputs may
become noticeably attenuated by the sinx/x envelope: a signal
at Fclock/3 is attenuated by 1.65 dB, a signal at Fclock/2 is
attenuated by 3.92 dB.

Oversampling can ameliorate the D/A filter problem, just as it
helps in the ADC case. (More so, in fact, since one need not worry
about the strong-interferer problem.) The D/A requires an
interpolation filter. A digital interpolation filter increases the effective
data rate of the D/A by generating intermediate digital samples of
the desired signal, as shown in Figure 3(a). The frequency-domain
results are shown in (d,e): in this case 2× interpolation has
suppressed the DAC output’s first two images, increasing the
available transition bandwidth for the reconstruction filter from
Fclock – 2Foutmax to 2Fclock – 2Foutmax. This allows simplification of the
filter and may allow more-conservative pole placement—to reduce
the passband phase distortion problems that are the frequent side
effects of analog filters. Digital interpolation filters may be
implemented with programmable DSP, with ASICs, even by
integration with the D/A converter (e.g., AD9761, AD9774). Just
as with analog filters, critical performance considerations for the
interpolation filters are passband flatness, stop-band rejection (how
much are the images suppressed?) and narrowness of the transition
band (how much of the theoretical Nyquist bandwidth (Fclock/2) is
allowed in the passband?)

DACs can be used in undersampling applications, but with less
efficacy than are ADCs. Instead of using a low-pass reconstruction
filter to reject unwanted images, a bandpass reconstruction filter
can be used to select one of the images (instead of the fundamental).
This is analogous to the ADC undersampling, but with a few
complications. As Figure 3 shows, the image amplitudes are actually
points on a sinx/x envelope in the frequency domain. The
decreasing amplitude of sinx/x with frequency suggests that the
higher frequency images will be attenuated, and the amount of
attenuation may vary greatly depending on where the output
frequency is located with respect to multiples of the clock
frequency. The sinx/x envelope is the result of the DAC’s “zero-
order-hold” effect (the DAC output remains fixed at target output
for most of clock cycle). This is advantageous for baseband DACs,
but for an undersampling application, a “return-to-zero” DAC
that outputs ideal impulses would not suffer from attenuation at
the higher frequencies. Since ideal impulses are physically
impractical, actual return-to-zero DACs will have some rollof of
their frequency-domain envelopes. This effect can be pre-
compensated with digital filtering, but degradation of DAC
dynamic performance at higher output frequencies generally limits
the attractiveness of DAC undersampling approaches.

Frequency-domain images are but one of the many sources of
spurious energy in a DAC output spectrum. While the images
discussed above exist even when the D/A converter is itself
“perfect”, most of the other sources of spurious energy are the
result of D/A converter non-idealities. In communications
applications, the transmitter signal processing must ensure that
these spurious outputs fall below specified levels to ensure that
they do not create interference with other signals in the
communications medium. Several specifications can be used
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to measure the dynamic performance of D/A converters in the
frequency domain (see Figure 4):

• Spurious-free dynamic range (SFDR)—the difference in signal
strength (dB) between the desired signal (could be single tone
or multi-tone) and the highest spurious signal in the band being
measured (Figure 4). Often, the strongest spurious response is
one of the harmonics of the desired output signal. In some
applications, the SFDR may be specified over a very narrow
range that does not include any harmonics. For narrowband
transmitters, where the DAC is processing a signal that looks
similar to a single strong tone, SFDR is often the primary spec
of interest.

• Total harmonic distortion (THD)—while SFDR indicates the
strength of the highest single spur in a measured band, THD
adds the energy of all the harmonic spurs (say, the first 8).

• Two-tone intermodulation distortion (IMD)—if the D/A converter
has nonlinearities, it will produce a mixing action between
synthesized signals. For example, if a nonlinear DAC tries to
synthesize signals at 1.1 and 1.2 MHz, second-order
intermodulation products will be generated at 100 kHz
(difference frequency) and 2.3 MHz (sum frequency). Third-
order intermodulation products will be generated at 1.3 MHz
(2 × 1.2 – 1.1) and 1.0 MHz (2 × 1.1 – 1.2). The application
determines which intermodulation products present the greatest
problems, but the third-order products are generally more
troublesome, because their frequencies tend to be very close to
those of the original signals.

• Signal-to-noise-plus-distortion (SINAD)—THD measures just the
unwanted harmonic energy. SINAD measures all the non-signal
based energy in the specified portion of the spectrum, including
thermal noise, quantization noise, harmonic spurs, and non-
harmonically related spurious signals. CDMA (code-division,
multiple-access) systems, for example, are concerned with the
total noise energy in a specified bandwidth: SINAD is a more-
accurate figure of merit for these applications. SINAD is
probably the most difficult measurement to make, since many
spectrum analyzers don’t have low-enough input noise. The
most straightforward way to measure a DAC’s SINAD is with
an ADC of significantly superior performance.

These specifications, or others derived from them, represent the
primary measures of a DAC’s performance in signal-synthesis
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Figure 4. Different error effects in the output spectrum of a DAC.

applications. Besides these, there are a number of conventional
DAC specifications, many associated with video DACs or other
applications, that are still prevalent on DAC data sheets. These
include integral nonlinearity (INL), differential nonlinearity
(DNL), glitch energy (more accurately, glitch impulse), settling time,
differential gain and differential phase. While there may be some
correlation between these time-domain specifications and the true
dynamic measures, the time-domain specs aren’t as good at
predicting dynamic performance.

Even when looking at dynamic characteristics, such as SFDR and
SINAD, it is very important to keep in mind the specific nature of
the signal to be synthesized. Simple modulation approaches like
QPSK tend to produce strong narrowband signals. The DAC’s
SFDR performance recreating a single tone near full scale will
probably be a good indicator of the part’s suitability for the
application. On the other hand, modern systems often feature
signals with much different characteristics, such as simultaneously
synthesized multiple tones (for wideband radios or discrete-multi-
tone (DMT) modulation schemes) and direct sequence spread-
spectrum modulations (such as CDMA). These more-complicated
signals, which tend to spend much more time in the vicinity of the
DAC’s mid- and lower-scale transitions, are sensitive to different
aspects of D/A converter performance than systems synthesizing
strong single-tone sine waves. Since simulation models are not yet
sophisticated enough to properly capture the subtleties of these
differences, the safest approach is to characterize the DAC under
conditions that closely mimic the end application. Such
requirements for characterization over a large variety of conditions
accounts for the growth in the size and richness of the datasheets
for D/A converters. b
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