
26 Silicon chip siliconchip.com.auAustralia’s electronics magazine

Remote
Monitoring

Station
If you have an expensive car, boat, caravan, holiday house, farm . . .
virtually anything at all . . . you need to know what’s going on when

you are away. Is the battery going flat? Is your boat taking on water? Is
your water pump running incessantly? You need to find out about these
ASAP. All you need to do this is a couple of Arduino shields and a little
software. You can even remotely trigger actions, such as switching off

that misbehaving pump, before it drains all your water!

by Tim Blythman

We have to admit: the raison
d’être for this project orig-
inally had nothing to do

with monitoring expensive cars or
boats, remote holiday houses, farm
water tanks or anything so esoteric.

It was all to do with wombats.
For the benefit of our overseas

readers wombats, a somewhat
threatened species, are cute, (usu-
ally) slow-moving furry animals that
inhabit the Australian bush (and, in-
cidentally, are unique in that their
poo is cube-shaped!).

But even that’s not the whole
story.

SILICON CHIP’s zany resident car-
toonist, Brendan Akhurst, actually
lives way out in the bush and is a
member of his local wombat protec-
tion society.

Part of their remit is to re-home
wombats in areas where they are less
likely to be attacked by other animals
(eg, dogs). They do this by trapping
them and relocating them.

The problem is/was that wombats
are very easily stressed and will die if
they are trapped for too long.

What Brendan wanted was a means
of letting society members know, as
soon as possible, that one of their traps

had been sprung.
“Aha!” we said. “There is an idea

we’ve been working on for a couple
of months which will alert you, via
your mobile phone, of virtually any
incident.”

“A sprung wombat trap included?”
he asked.

“We did say virtually any incident!”
So Brendan’s Wonderful Wombat

Warning Whatchamacallit is the re-
sult. . .

Of course, what you use it for is en-
tirely up to you!

2G, 3G and 4G
 The 2G (GSM) mobile network

has already been essentially shut
down, and some telcos are starting
to threaten to shut down their 3G
network.

So to do this kind of job reliably for
the next few years at least, you need
a 4G device.

When we found a locally-available
Arduino 4G shield at a reasonable
price, we jumped at the opportunity
to design a Remote Monitoring Sta-
tion around it.

Since this Station is based on
an Arduino board, it can be easily

programmed to suit your specific re-
quirements. It can monitor the state of
switches, voltages, sensors – just about
anything, provided there is an Arduino
library to interface with it (and there
usually is)!

Similarly, you can send commands
to the Arduino from your mobile
phone or PC to do things like switch
mains power on or off, using a sim-
ple add-on device, such as our Opto-
Isolated Mains Relay (October 2018;
siliconchip.com.au/Article/11267).

You might remember the GSM Re-
mote Monitoring Station project from
the March 2014 issue, which was also

Remote
Monitoring

Station

http://siliconchip.com.au/Article/11267

February 2020 27siliconchip.com.au Australia’s electronics magazine

Arduino-based (siliconchip.com.au/
Article/6743). That is now well and
truly obsolete.

If you have already built that de-
sign, as the command set of the new
4G shield is very similar, you may be
able to update it by simply replacing
the shield and making some small code
changes.

One minor difference between that
2G shield and the 4G shield we are
using here is that the power control
signal is on a different Arduino pin.
We haven’t tested this newer shield
with the older Monitoring Station
design, but it’s likely to work with
some fiddling.

The new shield has enough extra
features to warrant a major update,
and so this new 4G Remote Moni-
toring Station makes good use of
many new features.

As this is an Arduino-based
project, you’ll need to be famil-
iar with the Arduino IDE (integrated
development environment) software.

This is a free download from www.
siliconchip.com.au/link/aatq

4G Shield
This project revolves around a 4G

Shield designed by DFRobot. It is

based on a SIMCom SIM7000E mod-
ule, which provides the 4G capability.

Its circuit diagram is shown in Fig.1.
The SIM7000E module is fed pow-

er from the Arduino’s VIN pin via an
MP2307 buck regulator. This produc-
es a steady 3.3V with at least 4.75V at

its input.

While this eliminates the option of
powering the shield from a 3.7V lith-
ium-ion or LiPo cell, it will work with
most Arduino applications powered
from the VIN pin or DC barrel socket.

Below the regulator is the power
control section. The PWRKEY pin on
the SIM7000E is pulled low to signal
that it should power on or off.

Pushbutton S1 connects this pin
momentarily to ground, while

NPN transistor Q1 allows Ar-
duino pin D12 (driven high)
to achieve the same effect.

Communication between
the host Arduino and the
shield is with a serial TX/RX
pair, via level-shifting transis-
tors Q8 and Q9. Slide switch
S2 routes the signals to ei-

ther D0/D1 (which is usually
a hardware serial port on Ar-
duino boards) or D8/D7 on the

Arduino.
The SIM7000E’s USB port is

broken out to a micro-USB con-
nector. This does not supply power

to the shield, but can be used by a PC
to communicate with the SIM7000E
module.

We didn’t investigate this in detail,
but it appears that many features of the

The completed assembly is compact, needing only a few flying
leads. Even the smallest 12V SLA battery dwarfs it. The Arduino
board (in this case, a Duinotech Leonardo) is on the bottom, the

SIM7000E board in the middle and our power control board
is on top. The antennas for both the GPS module and the main
antenna (at left of pic) should be mounted with a clear view of

the sky for best reception.

We used an
Aldi SIM card on the
Telstra network to test our
SIM7000 shield. This SIM cost $5 and
did not need to add any extra credit,
even after two months of testing. The
shield also has sockets for external
mobile and GNSS antennas.

http://siliconchip.com.au
http://siliconchip.com.au/Article/6743
http://siliconchip.com.au/Article/6743
http://www.siliconchip.com.au/link/aatq
http://www.siliconchip.com.au/link/aatq

28 Silicon chip siliconchip.com.auAustralia’s electronics magazine

module are useable via the USB con-
nection. It may even be able to act as
a USB 4G modem.

There are also sockets for a full-
sized SIM card, 4G antenna and GNSS
(Global Navigation Satellite System)
antenna, which is used for GPS and
GLONASS.

For more information on these and
the many other GNSS systems that ex-
ist, see our article “A look at SatNav
systems” in the November 2019 issue
(siliconchip.com.au/Article/12075).

One common use for a remote moni-
toring station is vehicle tracking, and
in this case, a GNSS receiver is prac-
tically mandatory.

We don’t need to add any extra hard-
ware to implement tracking into our
4G Remote Monitoring Station.

The two antennas are included
when you purchase the shield. The
mobile network antenna is a sim-
ple, self-adhesive PCB type.

Some photos of the shield
show a small whip-style an-
tenna, but it appears this has
been replaced by the PCB
type. A ceramic patch anten-
na is supplied for GNSS use.

Also on the shield is a
BME280 temperature, pressure
and humidity sensor.

We covered modules built
from similar sensors back in
2017 (siliconchip.com.au/Arti-
cle/10909). This is a great addition
as it adds even more sensor data to
our 4G Remote Monitoring Station
without needing extra hardware.

We found that the temperature
read by the sensor was higher than
ambient, probably due to the heat
generated by the surrounding cir-
cuitry; think of how hot some mobile
phones get!

SIM7000E module
The SIM7000E module is touted as

an NB-IoT/LTE/GPRS/GPS module.
LTE and GPRS are longstanding mo-
bile data transmission technologies,
but NB-IoT is a newer standard.

NB-IoT is a low-power, narrowband
variant of mobile phone technology,
designed to be used by IoT (internet
of things) devices. You can find out
more about IoT from our November
2016 article on the topic (siliconchip.
com.au/Article/10425).

We aren’t using the NB-IoT feature
in this project; at this stage, it appears
the technology is still being rolled out
in Australia, and an NB-IoT-specific
SIM card is required.

The SIM7000 module comes in sev-
eral variants which support dif-
ferent mobile frequency

bands. We are using the SIM7000E
(the model sold by Core Electron-
ics), which is designed for the Euro-
pean market and supports bands 3, 8,
20 and 28. There is also a SIM7000C
which is designed for the frequencies
used in China.

In our tests in suburban Sydney, we
could not get reception with an Optus
SIM card, but had success with a Tel-
stra SIM card. This is despite the Op-
tus network apparently using some of
the above bands.

Because not all frequencies are of-
fered in all areas, your experience may
be different.

We suggest that you thoroughly
research what frequencies are used
where you plan to deploy the 4G Re-
mote Monitoring Station, to make sure
this shield supports them.

This module does not support voice
calls. Most monitoring stations typi-
cally use SMS (text messages) or data
packets for communication. The
SIM7000E module does support mo-
bile data, and this is a great way to
communicate lots of small snippets
of monitoring data.

Our design uses both the SMS
and mobile data features of the
shield.

ThingSpeak data logging
Our Water Tank Level Meter

from February 2018 (siliconchip.
com.au/Article/10963) is a remote

device which periodically uploaded
data to the ThingSpeak website, al-
though it used a WiFi connection to an
existing internet-connected network,
limiting where it could be used.

Such restrictions can be removed by
using a 4G shield like this one.

We’re also using ThingSpeak for
this project. It has a simple API
(application programming interface)

The electrolytic
capacitor and 555 timer used on the

power control shield have been carefully
chosen for low leakage and low quiescent

current, to extend battery life. Note the
jumper wire connecting the Arduino’s D7

pin and the SLEEP terminal.

Here are the three boards used in this project. From left to right
they are the SILICON CHIP power control shield, the DFRobot 4G

shield and the Arduino Leonardo microcontroller unit.

http://siliconchip.com.au/Article/12075
http://siliconchip.com.au/Article/10909
http://siliconchip.com.au/Article/10909
http://siliconchip.com.au/Article/10425
http://siliconchip.com.au/Article/10425
http://siliconchip.com.au/Article/10963
http://siliconchip.com.au/Article/10963

February 2020 29siliconchip.com.au Australia’s electronics magazine

Fig.1: the SIM7000 shield circuit. It has several nice features,
 including an efficient buck regulator and a BME280 temperature/

pressure/humidity sensor. The slide switch (at
upper left) allows the serial data to be

rerouted; we are using pins D0 & D1.

,
DUINOTECH CLASSIC,

ARDUINO UNO

FREETRONICS ELEVEN
OR COMPATIBLE

ARDUINO UNO,
DUINOTECH CLASSIC,
FREETRONICS ELEVEN

OR COMPATIBLE

D
0/

RX
D

D
1/

TX
D

D
2/

PW
M

D
3/

PW
M

D
5/

PW
M

D
6/

PW
M

D
4/

PW
MD
7

D
8

D
9/

PW
M

D
10

/S
S

D
11

/M
O

SI

D
12

/M
IS

O

D
13

/S
C

K

USB
TYPE B
MICRO

G
N

D

A
RE

F

SD
A

SC
L

A
0

A
1

A
2

A
3

A
SD

A
4/

A
SC

L
5/

+5
V

+5
V

G
N

D

G
N

D

VI
N

RE
SE

T

+3
.3

V

DC VOLTS
INPUT

1 2

3 4

5 6

ICSP

68

58

67

39

40

SIM7000E
LTE-FDD & Dual-Band
GPRS/EDGE module

SIM7000E
LTE-FDD & Dual-Band
GPRS/EDGE module

1

2

3

4
5

6

7
8

9

10
11
12

1415

16

17

TXD

RXD

VBAT VBAT VBAT

STATUS

USB_D–

USB_D+

GND PINS

18

19
20
21
22

23

24

25

26

13

USB_VBUS

RTS
CTS

RI

29

33

34

35
36

37
38

43
44

45 46

47

49

51

56 57

59

60

61

64

63

62

SIM_VDD

SIM_RST
SIM_CLK
SIM_DATA
SIM_DET

PWRKEY

NRESET

NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC

MDM_LOG_TX

GNSS_ANT

PCM_DOUT

PCM_DIN

PCM_SYNC
PCM_CLK

I2C_SCL
I2C_SDA

42

48

52

53

54

55

30

31
32

GND

GND

GND

GND

RF_ANTNETLIGHT

BOOT_CFG

DCD
DTR

GPIO0 RT3_TXD/UA

GPIO1 RT3_RXD/UA
GPIO2
GPIO3
GPIO4

ADC

VDD_EXT

41

66

50

65

27

28

2020
SC

�

�

A

K

A

K

SDO

SCK

GND GND

VDD VDDIO

SDI

CSB

IC2
BME280

IC2
BME280

1

2

3

4

5

6

7

8

12

3

4

5

6

7

8

SWEN

COMPGND

BS

SS

IN

FB

REG1
MP2307

REG1
MP2307

1
2
3

4
5
6

100�100k�

3.9nF
RESET

VIN

+5V

+5V

+5V

+5V

+5V

+5V

+3.3V

+3.3V

6.8k�

100k�
1.5k�

22 F� 22 F�
10nF

10nF

100nF

100nF 100nF 100nF

3.9nF

L1 10 H�

33k�

10k�

VIN VBAT

VBAT

VBAT

470 F� 33pF

33pF

10pF

ON

ZD1
6.2V

TVS60

ANTENNA 1

ANTENNA 2

47 H�

10�

TVS52

1.5k�

4.7k�

4.7k�

47k�

47k�

NETL

Q2

TVS10TVS9

�

A

K

G

G

G

G

S

S

S

S

D

D

D

D

C

C

B

B

E

E

2x
4.7k�

2x
4.7k�

Q8

Q9

VDD_EXT

S2
TP1

TP2

TP3

D0
D8

D
1

D
7

22 F� 10nF TVS3

TVS1 TVS2

MICRO USB
1
2
3
4
5

SIM CARD S K TOC E

22�

22�

22�

TVS5 TVS6 TVS7 TVS8 3x
22pF

100nF

Q1
BOOT

TVS4

S1

SCL

SCL

SDA

SDA

100nF100nF

2x10k�

2x10k�
Q10

Q11

RXD

TXD

UART

I2C

4

4

3

3

2

2

1

1

SIM7000 ARDUINO EXPANSION SHIELD

http://siliconchip.com.au

30 Silicon chip siliconchip.com.auAustralia’s electronics magazine

for uploading data, which is great for
resource-constrained devices like Ar-
duino microcontrollers. It also pro-
vides simple graphical visualisations
of the recorded data. The data can also
be downloaded as a CSV (comma-sep-
arated value) file.

These files can be opened into a
spreadsheet program to allow more
advanced analysis to take place. Cre-
ating charts is also an option in many
spreadsheet programs.

Uploading data to the ThingSpeak
website requires mobile data, so the
SIM card used needs to support this.

For the low cost, longer-expiry pre-
paid mobile phone plan that we tried,
it was typically cheaper to send weeks
of data to the ThingSpeak website than
to send a single text message.

Our 4G Remote Monitoring Station
is ideally suited to providing continu-
ous logging of data via 4G as well as
sending text messages for raising alerts
for unusual situations that need to be
acted on promptly.

Power control shield
In addition to the pre-build 4G

shield, our Remote Monitoring Station
also uses a custom-designed shield to
provide for battery power, solar charg-
ing of that battery and some power-sav-
ing techniques to give it a long runtime
when using a small battery.

Most Arduino boards have poor
power efficiency; they have simply
not been designed with this in mind.
Even with the processor set to sleep
mode, other components such as lin-
ear voltage regulators and LEDs have
quiescent currents in the tens of mil-
liamps.

Our shield reduces the standby
battery draw to microamps, which it
does by completely disconnecting the
Arduino board (and SIM7000 shield)
from the battery using a Mosfet, and
only powering those components up
periodically.

The shield provides a reasonably ef-
ficient way to charge the battery, and
also monitors the supply and battery
voltages via the Arduino’s analog in-
puts.

Most of the unused pins are broken
out to headers, allowing other sensors
or peripherals to be connected. There’s
even a small prototyping area on it, for
extra components.

Shield circuit
The custom shield circuit is shown

in Fig.2. Unregulated DC power is fed
into CON1 (from a solar panel, plug-
pack etc), while the battery is connect-
ed via CON2.

The battery needs to operate in the
range of 7-15V, so a 12V lead-acid or
SLA battery is suitable. We used a
1.3Ah SLA with our prototype.

Power from CON1 feeds REG1, an
LM317 adjustable regulator. The 220Ω
fixed resistor and 10kΩ variable re-
sistor VR1 allow you to set its output
voltage.

As REG1 maintains about 1.25V be-
tween its OUT and ADJ pins, around
5mA flows through the 220Ω fixed
resistor.

This current mostly also flows
through VR1, so by adjusting its resist-
ance, you change the voltage between
ADJ and GND.

Hence, you can set the voltage at
VOUT, since this will be the voltage
across VR1 plus the 1.25V.

The output from the regulator is
filtered by a 1µF capacitor and fed to
the battery via 1A schottky diode D1.
This prevents the battery discharging
into the power source, eg, if it is a so-
lar panel in darkness.

The 1Ω resistor between the output
of REG1 and anode of D1 reduces the
output voltage as the current drawn
from REG1 increases.

Hypothetically, if the current
through this resistor reached 1.25A
(which would not be possible in prac-
tice), the voltage across this resistor
would rise to 1.25V, cancelling out
REG1’s reference voltage, so the out-
put would drop to 0V.

Thus, the output voltage drops ap-
proximately 1V for every 100mA of
load current.

So if a battery is heavily discharged
and its terminal voltage is low, the
regulator output current is moderat-
ed until its voltage rises to the normal
range, at which point virtually no cur-
rent will flow into the battery.

In practice, the charging current is
limited by dissipation to about 160mA
for a 12V solar cell (with nominal 18V
open-circuit voltage) feeding into a
discharged 12V battery.

While the range of VR1 allows a ter-
minal voltage from 1.25V up to 56V to
be set, it shouldn’t be set any higher
than around 15V as this may damage
the regulator on some Arduino boards,
as well as IC1.

If you don’t need to use a battery,
power can instead be fed directly into

CON2. D1 will prevent back-feeding
into the charge circuit.

Arduino and SIM7000 shield
power control

Power control is provided by 7555
CMOS timer IC1 and P-channel Mos-
fet Q2. Q2 is simply used as a high-
side switch. Q2 can handle much more
current than is required (hundreds of
milliamps at most), so it does not need
heatsinking.

We have chosen the CMOS variant
of the 555 for its low quiescent current
of around 60µA, compared to about
10mA for the bipolar version. This is
because it is active and drawing cur-
rent from the battery at all times.

IC1 is configured as a monostable
timer. When power is first applied, the
470µF timing capacitor is discharged,
and the threshold pin (pin 6) is below
2/3 of the supply voltage. The trigger
pin (pin 2) is held high by the 10kΩ
resistor. The transient conditions dur-
ing power-up result in output pin 3
being high, and discharge pin 7 is in
a high-impedance state.

With output pin 3 high, Q2’s gate is
high and so it is off, and the Arduino
is not powered. The 470µF capacitor
slowly charges up through the 1MΩ
resistor. This capacitor needs to be a
low-leakage type; otherwise, the leak-
age would prevent it from charging
up fully.

The time constant of this circuit is
nominally 470 seconds (just under
eight minutes). Due to the 555’s trip-
ping point not being exactly 63% of
the supply voltage, it actually takes
around 10 minutes for the timer’s state
to change.

Once the trigger pin voltage reaches
about 2/3 of the supply voltage, output
pin 3 goes low, pulling down Q2’s gate,
switching it on and connecting the bat-
tery to the Arduino board’s VIN pin.

This powers on the Arduino board
and attached 4G shield. IC1’s dis-
charge pin, pin 7, goes low at the same
time, discharging the 470µF capacitor
quickly via the 470Ω resistor.

Being a monostable circuit, it re-
mains in this state until the Arduino
decides that it needs to power down.

To do this, it drives the base of NPN
transistor Q1 positive, pulling the trig-
ger pin (pin 2) of IC1 low. IC1’s flip-
flop toggles, output pin 3 goes high
(switching off Q2 and the Arduino)
and the discharge pin (pin 7) goes back
to a high-impedance state, allowing

February 2020 31siliconchip.com.au Australia’s electronics magazine

,
DUINOTECH CLASSIC,

ARDUINO UNO

FREETRONICS ELEVEN
OR COMPATIBLE

ARDUINO UNO,
DUINOTECH CLASSIC,
FREETRONICS ELEVEN

OR COMPATIBLE

D
0/

RX
D

D
1/

TX
D

D
2/

PW
M

D
3/

PW
M

D
5/

PW
M

D
6/

PW
M

D
4/

PW
MD
7

D
8

D
9/

PW
M

D
10

/S
S

D
11

/M
O

SI

D
12

/M
IS

O

D
13

/S
C

K

USB
TYPE B
MICRO

G
N

D

A
RE

F

SD
A

SC
L

A
0

A
1

A
2

A
3

A
SD

A
4/

A
SC

L
5/+5

V

+5
V

G
N

D

G
N

D

VI
N

RE
SE

T

+3
.3

V

DC VOLTS
INPUT

1 2

3 4

5 6
ICSP

2020
SC

�

A K

+5V

+5V

+5V

10k�

1k�

1M�1M� 1M�
1 F� 1 F�

1nF

1nF

100nF

220� 100�

VR1
10k�

VIN

VBAT VBAT

VBAT

470 F�
1k�

470k� 470k�

1�

C

B
E

VSWVSW

VSW

Q1
BC547

BOOT

JP1

SLEEP

4 3

3

3

2

2

2

1

1

1

SIM7000 POWER CONTROL SHIELD

ADJ

IN OUT

IC1
5557

8 4

3

5

1

7

6

2CON1

REG1 LM317T D1 1N5819

VSENSE 1

VSENSE 1

VSENSE 2

VSENSE 2

CON2

++
––

Q2
SUP53P06

470�

CON5CON6
66 55 44 33 22 11

CON7
POWER

CON4

CON3

A2

A3

ANALOG

ANALOG

G
S

D

ADJ OUT

LM317T

OUT IN

G
D

D

S

SUP53P06

K

A

1N5819

E C

B

BC547

I 1
555
C

7

Fig.2: the circuit of our control shield. Adjustable regulator
REG1 sets the charge termination voltage and voltage/current

characteristics for charging a battery connected via CON2,
while IC1, Q1 and Q2 shut down the Arduino for a fixed

time before powering it back up again, as a power-
saving measure. The effect is that the Arduino is
powered intermittently, for as long as necessary

to do its monitoring tasks.

the timing capacitor to charge.
When the Arduino is shut down,

it can no longer keep Q1 switched
on, so there is no chance of this state
latching.

Thus the cycle continues where it
began. The Arduino has no way of
turning itself on at a particular time;
it just shuts down for the period of the
monostable timer.

It’s not exactly high precision, but it
allows very low power consumption
while ensuring that the Arduino is
powered up periodically to do what-
ever it needs to do.

Jumper JP1 allows the monosta-
ble circuit to be bypassed. If JP1 is
shorted, IC1’s threshold pin is pulled
above 2/3 of its supply, so Mosfet Q2
is forced on. As long as this jumper
remains in place, the Arduino is un-
able to shut itself down.

This can be used to bypass the sleep
mode during testing, or to force the 4G
Remote Monitoring Station to operate
when deployed.

Sensing external voltages
Two six-way headers, CON5 and

CON6, are provided to make connec-
tions to the Arduino’s digital pins. A
small prototyping area with nine pads
is also provided.

A pad connecting to SLEEP is
placed nearby. This is intended to
be connected with one of the digital
pins via a short jumper wire, mean-
ing the pin used for shutting down
the Arduino is not fixed in hardware,
but can be altered. For our prototype,
we used D7.

A small four-way header is also bro-
ken out for 5V, VIN and GND, since
connected sensors or peripherals will

need access to power.
Two analog pins are connected to

resistive dividers to sense the battery
voltage (A0) and incoming supply
voltage (A1). The 1MΩ/470kΩ divider
means that voltages up to 15.6V can
be measured. These high values are
chosen to minimise loading (to around
10µA), especially on the battery.

The two 1nF capacitors provide a
low source impedance for the analog
inputs, as otherwise, these voltage
readings would be inaccurate.

Two more analog pins (A2 and A3)
are broken out to separate three-way
headers (CON3 & CON4), along with
ground and 5V. These allow common
three-wire analog sensor modules to
be connected.

Note that there is nothing about this
shield which ties it specifically to the
4G Shield. Any application which re-

http://siliconchip.com.au

32 Silicon chip siliconchip.com.auAustralia’s electronics magazine

quires battery charging, monitoring
and low power consumption could
use this shield.

Building the shield
Use Fig.3, the PCB overlay, as a

guide during construction. The shield
is built on a double-sided PCB cod-
ed 27111191 which measures 53.5 x
68.5mm.

We built our shield with simple
headers to plug into the 4G Shield
below it.

If you intend to add another shield
above this one, you could use stackable
headers instead, but that would make
it difficult to access the pin headers on
top of this board.

Start construction by fitting the re-
sistors. There are several different val-
ues, so check the resistance of each
with a multimeter. Then solder one
of the lead off-cuts between the pad
marked “SLEEP” and the Arduino
digital pin that you want to use for
the shutdown function. We used D7,
simply because it is close to the SLEEP
terminal and it is not usually used for
any specific purpose.

Next, mount the three rectangular
MKT capacitors, which are not polar-

ised. The 100nF part may be marked
with the code 104 or possibly 0.1µF,
while the 1nF parts may be marked
102. Follow with the two 1µF ceram-
ic capacitors, which are also not po-
larised.

The final capacitor is the low-leak-
age electrolytic type. It is polarised,
and we have left space on the PCB for
it to be mounted on its side so that an-
other shield can be fitted above. The
negative lead (usually shorter and in-
dicated by a stripe on the can) goes
into the pad closer to Q2. If you want
to use a larger capacitor for a longer
delay, we have left a bit of extra room.

You may wish to apply a small dab
of hot glue or neutral-cure silicone
sealant to help hold it in place in case
the unit is subjected to vibration.

Fit the semiconductors next. D1 is
the only diode and goes near CON2,
with its cathode stripe closest to
CON2. Mount Q1 near the middle of
the PCB, orientated a shown. Carefully
bend its leads to suit the PCB footprint,
push down firmly onto the PCB and
solder it in place.

Q2 and REG1 are both in TO-220
packages that are mounted flat against
the PCB, to keep the overall height low.

Fig.3: fit the components to
the control shield PCB as

shown here. It shouldn’t take
you too long to assemble.
Just watch the orientation

of diode D1, IC1, Q1 and the
electrolytic capacitor. Also,
ensure that the wire entry
holes for CON1 and CON2

face outwards. You can
use standard male headers

(fitted to the underside of the
board), or stackable

headers, depending on how
you plan to use the shield.

Don’t get them mixed up. Bend the
leads back on each part, around 8mm
from where the body meets the leads.
Push the leads into the PCB pads and
make sure the tab hole lines up with
the PCB, then use an M3 machine
screw and nut to secure the regulator
before soldering its pins.

Next, fit timer IC1. You may need
to gently bend the leads inwards to fit
the IC to the PCB. Check its orienta-
tion to make sure it matches the PCB
overlay diagram, then solder two di-
agonally opposite pins and check that
it is flat against the PCB. If not, remelt
the solder and adjust, then solder the
remaining pins.

To solder the Arduino headers,
plug them into another Arduino board
(such as the Leonardo) to keep them
straight. Place the shield over the pin
headers and once you are happy that
the headers are straight, solder each
pin to the PCB. Plain headers are sol-
dered on top while stackable headers
are necessarily soldered underneath.
Then remove the shield from the Ar-
duino board.

Now mount CON1 and CON2, the
screw terminal connectors. They are
identical, and care should be taken

With stackable headers, the three shields (PCBs) simply
connect together via their header pins and sockets, as
shown here.

February 2020 33siliconchip.com.au Australia’s electronics magazine

that the wire entry holes face out from
the PCB.

You can now fit headers for JP1 and
CON3-CON7 for breaking out the vari-
ous Arduino pins. They aren’t need-
ed for the most basic usage of the 4G
Remote Monitoring Station, but they
are handy for adding extra sensors if
and when necessary.

We used a four-way female header
strip for CON7, to allow the VIN volt-
age to be monitored easily.

To help test whether the shield is
feeding power to the VIN pin, we
rigged up a test LED by soldering a 1kΩ
resistor to one lead. We then plugged
this LED/resistor combo into the VIN/
GND pair on CON7, with the LED an-
ode to VIN.

Testing
We can do a few basic tests to check

that everything is working as expect-
ed. The shield must not be connected
to any boards during these tests. Wind
VR1 fully anti-clockwise before pow-
ering it up.

The first step is to adjust VR1 for
the correct battery charging voltage.
This is done without a battery con-
nected. To do this, connect a power
supply to CON1 which supplies at
least 3V more than the fully charged
battery voltage. Adjust VR1 until the
correct maximum charge voltage is
reached at CON2.

For an SLA or similar 12V nominal
type battery, set it to around 14.4V. In
practice, this voltage is only reached
at zero current, so the actual charge
voltage is a bit lower than this.

If you are unable to set the voltage
correctly, check the components relat-
ing to REG1. Otherwise, connect the
battery and check that it is charged.
You should see the battery voltage ris-
ing slowly.

Next, check the voltage between
VIN and GND, using the LED we men-
tioned earlier or a voltmeter. These
pins are easily accessible on CON7.
You will probably get a zero reading,
meaning that Q2 is off.

In this case, if you check the volt-
age across the electrolytic capacitor,
you should find that it is slowly ris-
ing. This can be measured at pin 6 of
IC1 referred to GND. Note that the load
presented by your multimeter might
affect this reading.

Now bridge JP1, to force Q2 on, and
re-check the VIN voltage. It should be
close to the battery voltage and the

voltage at pin 6 of IC1 should be low.
To simulate the Arduino activating

the switch-off, momentarily connect
the SLEEP pad to the 5V pin of CON2
using a 1kΩ resistor. VIN should drop
to zero, and the electro should start
charging. If it isn’t, that could indicate
that your capacitor is leaky.

If you’re fussy about the exact tim-
ing of the sleep period, you can meas-
ure the time and change the values of
the timing components to tweak it.
Keep in mind that the Arduino needs
to operate for at least 30 seconds to up-
date its state, so sleep periods shorter
than two minutes are not that useful,
as the Arduino will spend much too
much time starting up.

Once testing is complete, discon-
nect the power supply and batteries.

Building the Remote
Monitoring Station

Having built the shield, now we can
put it all together. We chose to use
an Arduino Leonardo board for our
prototype. It uses the ATmega32U4
micro rather than the Uno’s ATme-
ga328. The “U” indicates that this IC
supports USB.

Their specs are otherwise quite sim-
ilar, but the Leonardo has the advan-
tage that the hardware serial port on
D0/D1 is not shared with the USB host
serial interface used for programming.
We can therefore use this to communi-
cate with the SIM7000. The Leonardo
also has an extra 512 bytes of RAM;
this can be handy for remote monitor-
ing as we need to store and process
data before sending it.

If we had used an Arduino Uno, we
would have been forced to choose be-
tween using the hardware serial port
(D0/D1) to communicate with the
SIM7000, which would interfere with
programming and debugging, or using
a software serial port which is slow
and has a lot of overhead.

So we set the switch on the SIM7000
shield to the D0/D1 position, and as
mentioned above, we used D7 as the
sleep control pin.

To set up the 4G Shield, fit the two
antennas and a working SIM card. As
with many of these sorts of applica-
tions, a prepaid SIM is preferred in
case the microcontroller ‘goes nuts’.
With a prepaid limit in place, there is
no chance of accidentally racking up
huge data or call charges.

Now plug the 4G Shield into the
Leonardo and then plug the power

Parts list – 4G Remote
Monitoring

1 Arduino Leonardo or compatible
board

1 DFRobot SIM7000 shield
[Digi-Key/Mouser (Cat DFR0505)
or direct from www.dfrobot.com]

1 4G SIM card for SMS and data use
1 power control shield (see below)
1 12V rechargeable battery and

suitable charging source
(eg, a small 12V solar panel)

Parts for power control shield
1 double-sided PCB coded

27111191, 53.5 x 68.5mm
2 2-way, 5mm-pitch PCB-mount

terminal block (CON1, CON2)
[Jaycar HM3172, Altronics
P2032B]

1 set of Arduino headers (1 x 6-way,
2 x 8-way, 1 x 10-way – see text)

1 2-way male pin header with jumper
shunt (JP1)

2 3-way male pin header (CON3,CON4)
2 6-way male pin header (CON5,CON6)
1 4-way female header (CON7)
2 M3 x 6mm machine screws & nuts

(for mounting REG1 & Q2)

Semiconductors
1 7555 CMOS timer IC, DIP-8 (IC1)
1 LM317 adjustable voltage

regulator, TO-220 (REG1)
1 BC547 NPN transistor, TO-92 (Q1)
1 SUP53P06 P-channel Mosfet,

TO-220 (Q2)
1 1N5819 schottky diode (D1)

Capacitors
1 470µF 25V low-leakage electrolytic
2 1µF multi-layer ceramic [Jaycar

RC5499]
1 100nF MKT 2 1nF MKT

Resistors (all ¼ W 1% metal film)
3 1MW 2 470kW 1 10kW
2 1kW 1 470W 1 220W
1 100W 1 1W
1 10kW mini horizontal trimpot (VR1)

control shield on top. Check for any
fouling between the shields; if you
have not trimmed all the leads close-
ly, they may short together.

Our sample software simply logs
data from the onboard sensors. We’ve
also marked some places in the code
to add your own tests or actions. For
example, you could monitor a voltage
and send an SMS if it gets too low or
high. Or similarly, you could send an
SMS if a switch is opened or closed.

http://siliconchip.com.au
http://www.dfrobot.com

34 Silicon chip siliconchip.com.auAustralia’s electronics magazine

You will need to set up a Thing-
Speak account to make full use of our
sample code.

Setting up a
ThingSpeak account

ThingSpeak can be accessed for
commercial use with a time-limited
free period, but a free license is avail-
able for personal use and offers four
‘channels’ and up to three million
updates per year. If we were to send
an update every ten minutes, then we
would only need around 50,000 up-
dates per year.

Go to https://thingspeak.com/users/
sign_up and enter the information as
shown on Fig.4. You may be prompted
to confirm that you wish to use a per-
sonal email address, and also to click
on a link sent in an email to verify that
email address.

Once this is done, create a user ID
and password, accept the Online Ser-
vices Agreement and click continue
as per Fig.5. You will be prompted to
select how you will use ThingSpeak.
To be able to use the free license, you
should choose “Personal, non-com-
mercial projects”.

The next step is to create a chan-
nel. Each channel consists of up to
eight fields, so in theory, you could
have up to four 4G Remote Monitor-
ing Stations, each writing to their own

independent channel.
Click on “New Channel” and fill

out the information as shown in Fig.6.
You don’t need to use all eight fields,
but we have set the Arduino software
to use all eight as shown. You should
use the same fields unless you plan to
modify the software.

Click Save, and you are shown the
Channel data on the Channel manage-
ment page, as seen in Fig.7.

Note that we did not create fields for
latitude and longitude. ThingSpeak
has hidden fields for this information.
It can’t be seen on the graphs, but is
downloaded in the CSV data. Our Ar-
duino code logs latitude and longitude
to these hidden fields.

API keys
To allow our device (and only our

device) to upload data to our chan-
nels, we need an API key. It must be
programmed into the Arduino code for
your 4G Remote Monitoring Station
to work with your ThingSpeak chan-
nel. Copy the 16-character alphanu-
meric code under “Write API Key” to
somewhere safe; we’ll add this to the
Arduino code soon.

You can test that your channel is
working by copying the text after the
word “GET” in the “Write a Chan-
nel Feed” box. Paste this into a web
browser and hit Enter; you should see

a blank page with the number “1”.
This indicates that this is the first

update, and shows how the 4G Re-
mote Monitoring Station uploads data
to ThingSpeak. This only updates one
field; if you are familiar with HTTP,
you might want to experiment with
this.

Browse back to the “Private View”
of the created channel, and you should
see some activity in the first field;
this is the data you sent from the web
browser. You can leave this window
open while testing, as it will update
in near-realtime and you can see the
results.

Arduino libraries
There are four libraries needed for

the software we have written; two are
included with most Arduino IDE dis-
tributions. We used version 1.8.5 of
the Arduino IDE.

The avr/sleep and Wire libraries are
the two usually included. The first li-
brary provides functions for low-pow-
er modes, while the second provides
an I2C interface for communicating
with the BME280 sensor.

The third library, which we created,
is named “cwrite”. It lets us read and
write from a character array as though
it is a stream object, so we can use
the print function’s ability to format
floating-point numbers to form a URL.

Fig.4: apply for a ThingSpeak account via the web page
shown here. This is needed to use the software we’ve
written, as ThingSpeak lets you upload data to “the
cloud”. MATLAB users can use their existing account for
ThingSpeak.

Fig.5: as with many online services, you need to create
a username and password for ThingSpeak. This page
indicates if your chosen username is free, and how strong
it thinks your password is.

https://thingspeak.com/users/sign_up
https://thingspeak.com/users/sign_up

February 2020 35siliconchip.com.au Australia’s electronics magazine

The resulting datum can then be
sent to the 4G Shield in one go.

This library can be seen as two ex-
tra tabs in the Arduino project. If you
make a copy of the project (by using
File -> Save As...), then this library is
copied too.

The final library is to make the actu-
al temperature, humidity and pressure
readings from the BME280 sensor.

It is written by a company called
SparkFun and can be installed via
the Library Manager utility of the
Arduino IDE. Search for “sparkfun
BME280” under the Library Manager
and click Install.

We have included this library in
our software bundle for this project,
in case you can’t find it.

Arduino software
We set up the Arduino software

to work with the eight fields that we
have just created, plus three hidden
fields of latitude, longitude and height
above sea level.

These three fields are from by the
GNSS receiver on the SIM7000 mod-
ule, plus the BME280’s atmospheric
pressure sensor to determine altitude.

The software is modularised in such
a way that proficient Arduino users
can modify it to behave differently,
if needed.

In any case, you will need to edit the

software to suit your API key. Around
line 28, change the text API_KEY_
HERE to the API key that you cop-
ied earlier. You should end up with a
16-character sequence surrounded by
double quotes.

Below this, on lines 29 and 30, are
entries for phone numbers. Any in-
coming text messages have their num-
ber checked against the AUTH_NUM-
BER string. The sequence AUTH_
NUMBER_HERE should be replaced
by the trailing digits of your phone
number.

We have done it this way to allow
matching of both national and inter-
nationally formatted numbers. Thus
for an Australian mobile number, the
first digit should be the ‘4’, meaning
the leading ‘0’ is dropped.

The sketch simply matches what-
ever digits are present. So if this were
changed to “693”, then any number
ending in “693” would be accepted.
If you don’t wish to use this feature,
leave it as the default string, as this is
highly unlikely to match an incom-
ing number.

The outbound number should be a
fully-qualified international mobile
number; eg, an Australian mobile
phone number including country code
would start with “+614” followed by
eight digits. This is used for outgoing
text message alerts.

Fig.7: once the channel has been created, you can go to its
overview, which defaults to a series of charts. You can add
more with the “Add” buttons. By default, the channel data
is private, but you can set it to be visible to others if you’d
like to.

Fig.6: we recommend that you (at least initially) create a
ThingSpeak channel and set up its fields as shown here.
These fields suit the data produced by the 4G Remote
Monitoring Station software. They can be changed later if
necessary.

Many of the other ‘defines’ are set
to set things like the analog input
voltage measurement ratios, and how
much memory is available. There is
no reason to change these unless you
are modifying the hardware.

The software performs basic initiali-
sation of the hardware in the setup()
routine. More initialisation happens
in the loop() function, particularly for
the 4G Shield.

The code sends the shield some data
to see if it is powered up and if not,
toggles the power line.

A set of fixed sequences are sent to
put the 4G Shield in a known state.
The shield is given ten seconds to get
a GNSS fix. If this is successful, the
unit’s speed is checked, and a message
is sent if it is higher than 100km/h.
This is a basic demonstration of how
easily an action can be performed
based on sensor state.

The code then sends an update to
ThingSpeak; this is wrapped up in a
single function which validates the
GNSS data and only sends that data
if it is valid.

The Arduino then checks for text
messages from the authorised num-
ber. If one is found, a canned response
is sent.

You can modify the code to check
the message content and perform dif-
ferent actions (and supply different

http://siliconchip.com.au

36 Silicon chip siliconchip.com.auAustralia’s electronics magazine

Fig.9: as the 4G Remote Monitoring Station is only powered
up infrequently, it may not respond to an SMS command
immediately. The two-minute delay shown here occurred
during testing, when we had the Interface Shield set to
power down for about one minute at a time. The canned
response can be changed by editing the Arduino code.

Fig.8: here is some sample debugging data from the serial
port of the Remote Monitoring Station during normal
operation. Your data may differ, if, for example, you have a
different telco.

responses) depending on it.
If the GNSS data is not valid, then

instead of powering off, the Arduino
goes to sleep and leaves the 4G Shield
running to allow it to get a fix. This
does not reduce power as much as
switching the Arduino off, but does
give it a chance to get a position fix.

If the GNSS data is valid, then the
modem’s power pin is toggled (to per-
form a controlled shutdown), and D7
is driven high to power down every-
thing else.

Next time the Arduino powers back
up, the sequence repeats, resulting
in ThingSpeak updates about every
10 minutes.

Each update uses around 2kB of
data, which, according to our mo-
bile plan, costs around $0.0001. Dur-
ing our testing, we sent around 6000
updates (over a month worth of up-
dates) for a total cost of $1.08. Your
plan might vary.

Finishing it off
Connect the Arduino board to

your computer and select the Leon-
ardo board and its corresponding
serial port from the Arduino IDE
menus.

 Compile and upload the “4G_
Monitoring_Station.ino” sketch. Un-
plug the Leonardo and attach the two
shields.

Connect the battery to CON2 and
the power source to CON1. Briefly
short out JP1 and check that the whole
assembly powers up.

The upload to ThingSpeak should
take less than a minute. If it does not,
then you may need to do some debug-
ging to find out what’s wrong.

Re-connect the Leonardo board to
the computer and open a serial termi-
nal program to monitor the output. It
should look like that shown in Fig.8.
Look for a 200 HTTP code and “Thing-
Speak Success” message.

If you get this, then uploads to
ThingSpeak are working correctly.

You might find that the Arduino
Serial Monitor does not behave well
when the Leonardo powers down. We
had success with a program called
TeraTerm, as this automatically re-
connects to the serial port if it discon-

nects and reconnects.
Unfortunately, the USB lead will

also power the Leonardo, so the power
down functions may not work as ex-
pected while connected to a computer.

A trick for testing
To test our prototype, we needed

a way to allow USB communication
but without powering the Leonardo,
as this interferes with the power con-
trol hardware.

To achieve this, we used one of our
USB Port Protector PCBs described
in May 2018 (siliconchip.com.au/
Article/11065).

If the Port Protector PCB is wired
up with no components except the
USB plug and USB socket (CON1 and
CON2), then it connects GND, D+ and
D-, but not 5V.

Thus this ‘dongle’ can be used to
connect a USB device to allow data
but not power to be transferred. The
Leonardo is then powered via its
onboard 5V regulator fed from the
VIN pin.

Take care that the ground of your
computer is not at a different poten-
tial to the ground of the 4G Remote
Monitoring Station; for example, if
you are powering it from a bench sup-
ply or similar, make sure the outputs
are floating.

You can use a battery-powered com-

Here’s the
USB Port Protector

from our May 2018 issue – we used
one of these without components,

except for the USB plug and socket,
during testing. This allows data to be

transferred, but not power.

http://siliconchip.com.au/Article/11065
http://siliconchip.com.au/Article/11065

February 2020 37siliconchip.com.au Australia’s electronics magazine

puter for testing if you are not sure
about this.

Debugging
While the code is quite complex, we

did not run into many problems with it.
But in case you do, we’ll run through
some of the error messages the Arduino
might display.

If you don’t see the “GNSS on” or
“Format set” messages, your Arduino
is probably not communicating with
the 4G Shield.

According to the shield’s data sheet,
it communicates at 115,200 baud, but
our unit was set to 19,200 baud. You
can change this setting at line 5 in the
Arduino code.

After the “GNSS on” message, you
should see “Success” and a network
name.

If you see “Fail” here, the 4G Shield
is not registering with the network.
This generally happens when the 4G
Shield has no reception. It could be
due to the shield not supporting your
telco’s frequency band, or you may be
out of range of a cell tower. Check that SC

the antennas are connected correctly.
You will occasionally see “GNSS

fix fail” as the 4G Remote Monitoring
Station compromises getting a fix at all
times for saving power.

The code tries to retrieve the APN
(access point name) from the 4G Shield
and use it to connect to mobile data.
If you see a message referring to APN,
CSTT or bearer failing, then this is not
being set up correctly. Check the APN
name that your provider uses.

The URL that the 4G Remote Mon-
itoring Station uses should be dis-
played, followed by an HTTP result
code.

If it is not 200 (HTTP success),
check https://au.mathworks.com/help/
thingspeak/error-codes.html to see
what other error codes mean.

If it still isn’t working, numerous
extra debugging lines in the code have
been commented out (by adding “//”
to the start). You can enable the extra
messages by removing these and com-
piling and uploading the code again.

You can also try our “Leo_FTDI_
with_passthrough.ino” sketch. This

configures the Leonardo to allow di-
rect communications between the se-
rial port and the 4G Shield.

You can try different baud rates to
see what works and send commands
directly to the 4G Shield.

Upload this to the Leonardo and
short JP1 on the power control shield.
You may need to press the 4G Shield’s
BOOT button to power it up manually.
Once you have confirmed the correct
baud rate, upload “4G_Monitoring_
Station.ino”’ to the Leonardo again.

Conclusion
We’ve deliberately left this as an

open-ended project; we expect that
readers will customise the hardware
and code to suit different applications.

For outdoor use, we recommend
housing everything in an IP-rated
plastic enclosure, with both antennas
mounted on the underside of the lid.

Including some vent holes, facing
down, can help to drain any conden-
sation which may form, and allow
the outside air to be sampled by the
BME280 sensor.

UNIQUE ORIGINAL CARTOON ARTWORK!
100% of proceeds go to the
NSW RURAL FIRE SERVICE
and “WOMBATISED”
We mentioned earlier that this project came about because of Wombats - or more
particularly, our zany cartoonist Brendan Akhurst(whose work features in our “Ser-
viceman” column). We also mentioned that Brendan lives way out in the bush – what we
didn’t know then is that his whole area was severely impacted by last month’s bushfires.

Brendan told us about the incredible work of both “Wombatised”, the group helping to
save Wombats in the wild, and the volunteer Rural Fire Service whose members not
only saved his house but many of his neighbours (along with countless Wombats!).

He wanted to organise some way to thank the RFS and “Wombatised”. Now we are
often complimented about Brendan’s cartoons in SILICON CHIP and he suggested
that we could sell the ORIGINAL ARTWORK of his Serviceman cartoons, with the
whole of the proceeds being split between the RFS and Wombatised.

So here’s the offer: if you’ve admired Brendan’s wacky cartoons in the past, you can
now purchase that original art, autographed by him, for the bargain price of just
$100 each – and you’ll know that 100% of that money will go to the two charities.

Of course, if you want to pay more than $100, we’ll make sure that every cent is
donated. And we’ll even pick up the postage charge. Simply look back through the
magazine and choose the cartoon(s) you want to buy. If someone else has beaten you
to the draw, (ok, crook pun!) we’ll let you know so you can choose another.

Original cartoon artwork, signed
by Brendan Akhurst himself
Only $100 each (or more if you
want to donate more!)
Tell us the issue date and page
no of the cartoon you want.
If that cartoon is already sold,
we’ll let you know.
Order now online: via
siliconchip.com.au/shop/3/5289,
or call SILICON CHIP 9AM-4PM,
Mon-Fri on (02) 9939 3295
VISA and MASTERCARD accepted

http://siliconchip.com.au
https://au.mathworks.com/help/thingspeak/error-codes.html
https://au.mathworks.com/help/thingspeak/error-codes.html
http://www.siliconchip.com.au/shop/3/5289

