Circuit adds foldback-current protection

Rafael García-Gil and JM Espí, Electronic Engineering Department, University of Valencia, Spain

For many applications that require power-supply currents of a few amperes or less, three-terminal adjustable-output linear voltage regulators, such as National Semiconductor's LM317, offer ease of use, low cost, and full on-chip overload protection. The addition of a few components can provide a three-terminal regulator with high-speed short-circuit current

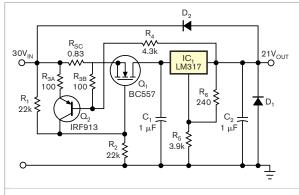
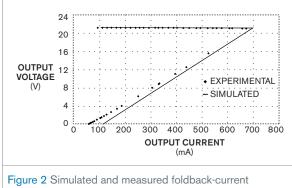
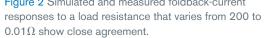




Figure 1 This circuit adds foldback-overcurrent protection to a linear regulator.

limiting for improved reliability. The current limiter protects the regulator from damage by holding the maximum output current at a constant level, I_{MAX} , that doesn't damage the regulator (**Reference 1**). When a fault condition occurs, the power dissipated in the pass transistor equals approximately $V_{IN} \times I_{MAX}$. Designing a regulator to survive an overload requires conservatively

rated—and often overdesigned—components unless you can reduce, or fold back, the output current when a fault occurs (**Reference 2**).

The circuit in Figure 1 incorporates foldbackcurrent limiting to protect the pass transistor by adding feedback resistor R₄. Under normal conditions, transistor Q_2 doesn't conduct, and resistors R1 and R2 bias MOSFET Q₁ into conduction. When an output overload occurs, Q₂ conducts, reducing the on-state bias applied to Q_1 and thus increasing its drain-source resistance and limiting the current flowing into regulator IC_1 , an LM317. Adding R_4 makes Q_2 's bias current dependent on the output voltage, V_{OUT}, which decreases under overload conditions.

For the circuit in Figure 1, you can calculate the maximum foldover and short-circuit currents, $I_{\rm KNEE}$ and $I_{\rm SC}$, respectively, as follows:

$$I_{\text{KNEE}} = \frac{\left(R_3 + R_4\right) \times V_{\text{SENSE}}}{R_{\text{SC}} \times R_4} \quad (1)$$

$$\left(V_{\text{IN}} - V_{\text{OUT}}\right) \times \frac{R_3}{R_{\text{SC}} \times R_4} \quad (1)$$

$$I_{\text{SC}} = \frac{\left(R_3 + R_4\right) \times V_{\text{SENSE}}}{R_{\text{SC}} \times R_4} \quad (2)$$

$$V_{\text{IN}} \times \frac{R_3}{R_{\text{SC}} \times R_4} \quad (2)$$

In a practical design, you select values for $I_{\rm KNFF}$ and $I_{\rm SC}$ and equal values for $R_{_{\rm 3A}}$ and $R_{_{\rm 3B}}$ and then use equations 1 and 2 to calculate resistors R_{SC} and R_4 . For the circuit in Figure 1, the output's maximum and short-circuit currents are fixed at 0.7 and 0.05A, respectively. With R_{3A} and R_{3B} set to 100 Ω , solving the equations yields values of 0.73Ω for R_{sc} and 4.3 k Ω for R_4 . You can demonstrate the circuit's performance by applying a variable-load resistor that's adjustable from 0 to 200 Ω . As Figure 2 shows, the output's simulated and measured voltage-versus-current characteristics, V_{OUT} and I_{OUT} , respectively, are in close agreement.EDN

REFERENCES

Hulseman, Herb, "MOSFET enhances voltage regulator's overcurrent protection," *EDN*, March 3, 2005, pg 74.

Galinski, Martin, "Circuit folds back current during fault conditions," *EDN*, Nov 28, 2002, pg 102.