designideas
 READERS SOLVE DESIGN PROBLEMS

Simple automatic-shutoff circuit uses few components

Noureddine Benabadji, University of Sciences and Technology, Oran, Algeria

У
You often need to include a timed automatic-turn-off circuit in battery-powered equipment to extend battery life. Previously published Design Ideas for this function all involve many components (references 1 through 7). The circuit in Figure 1 is a simple auto-matic-shutoff add-on circuit featuring no quiescent current.

When you press the pushbutton switch, C_{1} charges rapidly through the low-value R , to the zener voltage of diode D_{1}, and P-channel MOSFET Q_{1} immediately conducts. After the pushbutton is released, C_{1} discharges slowly through the high-value R_{1} with a time constant of $\mathrm{R}_{1} \mathrm{C}_{1}$ seconds. During this
time, C_{1} loses 63% of its initial volt-age-from 9 V to 3 V after the delay. Reference 8 shows the on-resistance versus the gate-to-source voltage of a Vishay Siliconix Si4435. As long as the gate-to-source voltage is greater than approximately 3 V , the device's on-resistance remains lower than 0.1Ω, yielding a dropout voltage of less than 0.1 V for a load sinking as much as 1 A .

The 9.1 V zener diode, D_{1}, keeps the shutoff time delay independent of the battery voltage and ensures that the gate-to-source voltage does not exceed Q_{1} 's rated maximum of 20 V . Thus, you can use this circuit with a choice of battery voltages; only the maximum

Figure 1 This simple automatic-shutoff circuit uses a P-channel MOSFET.

TIME DELAY (SECONDS) WITH $10-\mathbf{M Q ~}_{1} \mathbf{R}_{1}$			
Battery voltage (V)	$\mathbf{L N}(3 / \mathbf{N B A T})$	$\mathbf{C}_{\mathbf{1}}=\mathbf{1 0} \boldsymbol{\mu} \mathbf{F}$	$\mathbf{C}_{\mathbf{1}}=\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{F}$
7.5	-0.916	92	916
6	-0.693	69	693
4.5	-0.405	41	405
3.6	-0.182	18	182

Dls Inside

48 Inverting level-shift circuit has negative potential

49 Single hex-inverter IC makes four test gadgets

- To see and comment on all of EDN's Design Ideas, visit www.edn.com/designideas.
drain-to-source voltage of transistor Q_{1} limits the choice. With 3.6 to 9 V batteries, D_{1} and R_{1} are useless (remove D_{1} and short-circuit R_{2}), and you must compute the time delay with the classic equation $T=-R_{1} C_{1} \log _{e}\left(3 / V_{B A T}\right)$, as Table 1 shows. With battery voltages as low as 1.5 V , instead use a bipolar transistor with a low saturation voltage as well as a modified circuit scheme.

Editor's note: With no feedback for rapid shutoff, as C_{1} slowly discharges below $3 \mathrm{~V}, \mathrm{Q}_{1}$ goes through a period of gradually increasing the on-resistance, which temporarily increases its power dissipation and heating during the shutoff action. Be sure to consider this effect, size Q_{1} adequately for the load current, and use adequately sized heat sinks.EDN

REFERENCES

T Baddi, Raju, "CMOS gate makes long-duration timers using RC components," EDN, March 1, 2012, pg 43, http://bit.ly/H9zt6n.
2 Chenier, Glen, "RC-timed shutoff function uses op amp and momentary switch," EDN, Feb 16, 2012, pg 45, http://bit.ly/HaSryz.
§. Espí, José M; Rafael García-Gil; and Jaime Castelló, "Circuit extends battery life," EDN, July 29, 2010, pg 42, http://bit.ly/Hc9zED.
4 Xia, Yongping, "Battery automatic power-off has simpler design," EDN,

designideas

March 31, 2005, pg 80, http://bit.ly/ bLJNgb.
$\boldsymbol{5}$ Gimenez, Miguel, "Scheme provides automatic power-off for batteries," EDN, May 13, 2004, pg 92,
http://bit.ly/aUdD3s.
6 Xia, Yongping, "Timer automatically shuts off," EDN, Aug 17, 2000, pg 128, http://bit.ly/GRefMO.
7 Elias, Kamil, "Timer provides power-
off function," EDN, May 22, 1997,
http://bit.ly/MlbQxg.
3 "Si4435BDY P-Channel 30-V (D-S)
MOSFET," Vishay Siliconix, May 4,
2009, http://bit.ly/HaWjiZ.

