designates solve design problems

Simple automatic-shutoff circuit uses few components

Noureddine Benabadji, University of Sciences and Technology, Oran, Algeria

You often need to include a timed automatic-turn-off circuit in battery-powered equipment to extend battery life. Previously published Design Ideas for this function all involve many components (references 1 through 7). The circuit in Figure 1 is a simple automatic-shutoff add-on circuit featuring no quiescent current.

When you press the pushbutton switch, C_1 charges rapidly through the low-value R_2 to the zener voltage of diode D_1 , and P-channel MOSFET Q_1 immediately conducts. After the pushbutton is released, C_1 discharges slowly through the high-value R_1 with a time constant of R_1C_1 seconds. During this time, C₁ loses 63% of its initial voltage—from 9V to 3V after the delay. **Reference 8** shows the on-resistance versus the gate-to-source voltage of a Vishay Siliconix Si4435. As long as the gate-to-source voltage is greater than approximately 3V, the device's on-resistance remains lower than 0.1Ω , yielding a dropout voltage of less than 0.1V for a load sinking as much as 1A.

The 9.1V zener diode, D_{1} , keeps the shutoff time delay independent of the battery voltage and ensures that the gate-to-source voltage does not exceed Q_1 's rated maximum of 20V. Thus, you can use this circuit with a choice of battery voltages; only the maximum

Figure 1 This simple automatic-shutoff circuit uses a P-channel MOSFET.

TABLE 1 TIME DELAY (SECONDS) WITH 10-M Ω R ₁			
Battery voltage (V)	LN (3/V _{BAT})	C ₁ =10 μF	C ₁ =100 μF
7.5	-0.916	92	916
6	-0.693	69	693
4.5	-0.405	41	405
3.6	-0.182	18	182

DIs Inside

48 Inverting level-shift circuit has negative potential

49 Single hex-inverter IC makes four test gadgets

► To see and comment on all of *EDN*'s Design Ideas, visit www.edn.com/designideas.

drain-to-source voltage of transistor Q_1 limits the choice. With 3.6 to 9V batteries, D_1 and R_1 are useless (remove D_1 and short-circuit R_2), and you must compute the time delay with the classic **equation** T= $-R_1C_1\log_e(3/V_{BAT})$, as **Table 1** shows. With battery voltages as low as 1.5V, instead use a bipolar transistor with a low saturation voltage as well as a modified circuit scheme.

Editor's note: With no feedback for rapid shutoff, as C_1 slowly discharges below 3V, Q_1 goes through a period of gradually increasing the on-resistance, which temporarily increases its power dissipation and heating during the shutoff action. Be sure to consider this effect, size Q_1 adequately for the load current, and use adequately sized heat sinks. EDN

REFERENCES

Baddi, Raju, "CMOS gate makes long-duration timers using RC components," *EDN*, March 1, 2012, pg 43, http://bit.ly/H9zt6n.

Chenier, Glen, "RC-timed shutoff function uses op amp and momentary switch," *EDN*, Feb 16, 2012, pg 45, http://bit.ly/HaSryz.

Espí, José M; Rafael García-Gil; and Jaime Castelló, "Circuit extends battery life," *EDN*, July 29, 2010, pg 42, http://bit.ly/Hc9zED.

Xia, Yongping, "Battery automatic power-off has simpler design," *EDN*,

designideas

March 31, 2005, pg 80, http://bit.ly/ bLJNgb. Gimenez, Miguel, "Scheme provides automatic power-off for batteries," *EDN*, May 13, 2004, pg 92, http://bit.ly/aUdD3s.
Xia, Yongping, "Timer automatically shuts off," *EDN*, Aug 17, 2000, pg 128, http://bit.ly/GRefMO.
Elias, Kamil, "Timer provides power-

off function," *EDN*, May 22, 1997, http://bit.ly/MlbQxg. Given Si4435BDY P-Channel 30-V (D-S) MOSFET," Vishay Siliconix, May 4, 2009, http://bit.ly/HaWjiZ.