Shunt regulator eases power-supply-start-up woes

Michael O'Loughlin, Texas Instruments, Nashua, NH

The popular and multiply sourced TL431 three-terminal shunt regulator offers designers considerable versatility in its applications. Figure 1a illustrates the TL431's internal circuitry, which comprises a precision voltage reference, an operational amplifier, and a shunt transistor (Reference 1). In a typical voltage-regulator application, two external resistors, R_{A} and R_{P} , determine the shunt-regulated output voltage at the lower end of load resistor R_c (Figure 1b). By way of illustration, the TL431 and a few external active and passive components can serve as a low-power auxiliary power supply for an SMPS (switchedmode-power-supply) PWM (pulsewidth-modulated) controller. In some power-supply designs, an auxiliary winding on the step-down transformer supplies power to the PWM controller. Under light output loads, the auxiliary

winding may supply inadequate power to the PWM controller. For example, the converter circuit in **Figure 2** derives power for PWM controller IC₁ through an auxiliary bias winding, W_{AUX} , which is part of transformer T₁. Resistor R_T and capacitor C_{HOLD} form a trickle-charge circuit that supplies start-up power to IC₁. To conserve energy, resistor R_T supplies just enough current to trickle-charge C_{HOLD} to voltage V_{AUX}. Once the circuit starts, it

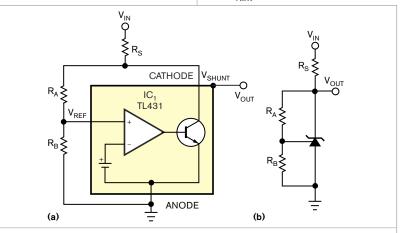
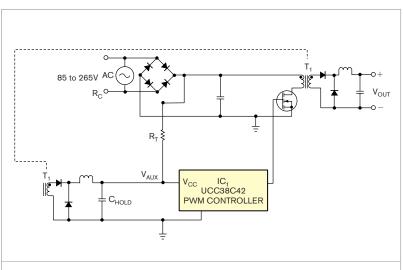


Figure 1 An uncomplicated block diagram (a) conceals the TL431's internal complexity, but you need only three external resistors to use the TL431 in a basic shunt-regulator circuit (b).


designideas

operates as you would expect and delivers output power to the load, and the auxiliary winding and its components power the PWM controller.

However, removing the output load reduces the energy supplied to the auxiliary bias winding, depleting the charge on $\mathrm{C}_{\mathrm{HOLD}}$ and causing IC_{1} to turn off, which in turn upsets outputvoltage regulation and causes the power supply to operate erratically. A lowpower bias-supply circuit supplies light-load start-up power and then switches off to conserve power whenever the auxiliary winding can supply enough energy to PWM controller IC₁ (Figure 3). In this circuit, a series-pass regulator turns on under light-load conditions and turns off when the bias winding can supply the energy to the PWM controller, thus conserving energy under load and improving converter efficiency.

Resistors R_A through R_D, shunt regulator IC_1 , diode D_1 , and transistor Q_1 form the low-load series-pass-regulated bias supply. You select these components to produce a voltage at Q₁'s emitter that falls between IC₁'s turn-off voltage and the nominal voltage produced by rectifying the auxiliary bias winding's output, V_{AUX_NOM} . In effect, the voltage at IC_1's $V_{\rm CC}$ pin follows in wired-OR fashion whichever is higher: V_{AUX_NOM} or the voltage at transistor Q_1 's emitter. When the auxiliary bias winding and its components deliver sufficient power, Q_1 's emitter sees a reverse bias, and Q_1 shuts off to conserve energy. Conversely, \boldsymbol{Q}_{1} supplies power when \boldsymbol{V}_{AUX} decreases below V_{AUX_NOM} due to a light output load. Note that the circuit still must include trickle-charge resistor R_T because most PWM controllers incorporate undervoltage lockout, the ability to start at a higher than nominal supply voltage.

To design the series-pass regulator, select resistor R_C to supply sufficient operating current to IC_2 , and select resistor R_D to maintain Q_1 's collector voltage and current within its safe operating area. Select resistors R_A and R_B to set the series regulator's output voltage above IC_1 's start-up voltage and below the nominal voltage supplied by the

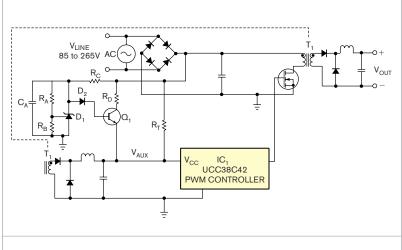


Figure 3 In this improved design, pulse-width-controller IC_1 derives its power from R_T for start-up, auxiliary winding W_{AUX} for normal operation, and shunt-regulator circuit IC_2 and Q_1 for low-load operation.

auxiliary winding's rectified output. Choose bypass capacitor C_A to minimize ripple voltage across IC_2 .

You can use the following **equation** to adjust the voltage divider formed by resistors R_A and R_B :

$$\frac{V_{AUX_NOM} - V_{DI} - V_{BE(Q_1)} - V_{REF} - 1V}{R_A}.$$

The voltage at Q_1 's emitter must fall below the nominal auxiliary voltage, which the auxiliary bias winding supplies. V_{REF} represents shunt regulator IC₂'s internal nominal reference voltage of 2.495V, and V_{DI} and $V_{BE(QI)}$ represent D_1 's voltage drop and Q_1 's forward base-emitter voltage, respectively.**EDN**

REFERENCE

O'Loughlin, Michael, "Shunt regulator serves as inexpensive op amp in power supplies," *EDN*, Sept 15, 2005, pg 96, www.edn.com/ article/CA6255051.