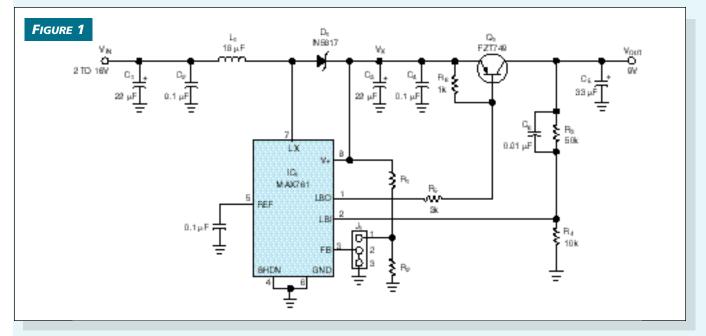

EDITED BY BILL TRAVIS & ANNE WATSON SWAGER

Step-up/step-down converter takes 2 to 16V inputs

LUCIANO BORDOGNA AND LUCA VASALLI, MAXIM INTEGRATED PRODUCTS, MILAN, ITALY

The circuit in **Figure 1** is a low-cost step-up/step-down dc/dc converter. By definition, its input can range above and below the regulated voltage. The circuit includes a simple switch-


mode boost converter (IC_1) that contains a comparator normally used to detect low battery voltage. In this case, the comparator controls an external pnp transistor that operates as a

linear regulator. IC_1 steps up V_{IN} (2V minimum) to the level of V_X , as determined by the jumper block, J_1 .

A 2-3 jumper selects the internal divider, producing V_x=12V. A 2-1 jumper selects feedback resistors R₁ and $R_{2'}$ producing $V_x = 1.5V(R_1+R_2)/R_2$. You should set V_x to 1 to 2V above the desired output voltage. The Q₁ linear regulator steps V_x down to an output level determined by R₃ and R₄: V_{OUT}= $1.5V(R_3+R_4)/R_4$, where $V_X > V_{OUT}$. When $V_{IN} > V_{x}$, the switching regulator turns off, and the linear regulator alone controls V_{OUT}. C₆ reduces output ripple. The circuit accommodates a wide range of input and output voltages and supplies output currents as high as 500 mA (Figure 2). (DI #2218) EDN

Delivering more than 100 mA over its 2 to 16V useful input-voltage range, the regulator in Figure 1 provides 500 mA over an 8 to 13V range.

Toggling between switching and linear operation, this regulator operates with input voltages above and below the desired output voltage.

www.ednmag.com

To Vote For This Design, Circle No. 418