Negative-to-negative switch-mode converter offers high current and high efficiency

Budge Ing, Maxim Integrated Products Inc, Sunnyvale, CA

When converting a negativeoutput power supply to one with less-negative output, you must ensure that variations in input voltage don't affect the output voltage. All such supplies include an internal reference voltage that enables output-voltage regulation. You usually refer this reference to the most negative rail, which is ground. Thus, the output voltage of such a converter depends on the accuracy of its negative input supply voltage. The circuit in **Figure 1** lacks that limitation. Delivering output currents as high as 4A with efficiencies better than 90%, it generates a negative output with the help of an op amp and a switch-mode boost converter. Closed-loop feedback regulates the output voltage with respect to ground, the most positive rail,

DIs Inside

46 ADC for programmable logic uses one capacitor

51 Use two phases to cut current and improve EMI

52 Fader switch uses inexpensive controller

► To see all of *EDN*'s Design Ideas, visit www.edn.com/design ideas.

designideas

which is also the node from which current is delivered to the load.

The circuit converts a -5.2V supply voltage to -3.6V. The boost converter, IC₁, regulates its output voltage to maintain its feedback voltage at -3.95V—1.25V above -5.2V. Resistor R₈ and capacitor C₈ form a lowpass filter that stabilizes the voltage at FB. You must then select the R₄/R₆ and R₅/R₇ pairs to produce the desired out-

put voltage. Making R_4 and R_5 equal and making R_6 and R_7 equal improves the common-mode performance. The ratio of R_4 to R_5 determines the voltage level at the positive input of op amp IC₂, whose closed-loop configuration ensures that the same voltage appears at its negative input. Knowing IC₂'s output voltage, -3.95V, and its negative input voltage lets you determine the output voltage using the values of

 R_6 and R_7 : $V_{OUT} = -V_{REF}(R_6/R_7)$, where V_{REF} is the 1.25V nominal reference voltage of IC₁, $R_4 = R_6$, and $R_5 = R_7$.

The component values in Figure 1—for example, $1.96 \text{ k}\Omega$ for R_5 and R_7 and $5.76 \text{ k}\Omega$ for R_4 and R_6 —produce an output voltage of -3.76 V. Graphs of output voltage versus output current (Figure 2) and efficiency versus output current (Figure 3) illustrate this circuit's performance.EDN