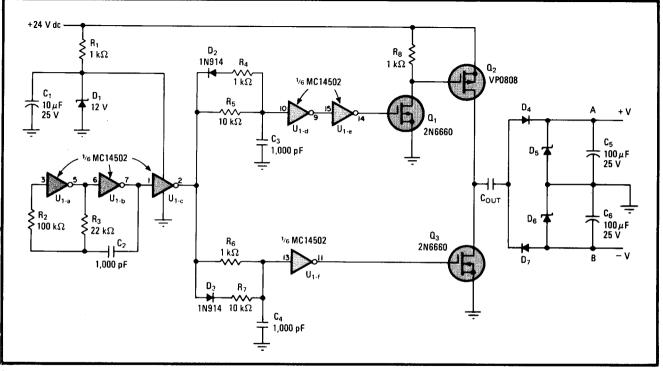
## Bipolar dc-dc converter requires no inductor

by E. Mendes
Electronics Corporation of Israel Ltd., Tel-Aviv, Israel

The saturable cores used in dc-dc converters often create radio-frequency interference that must be suppressed with filters. This coreless dc-dc converter circuit helps circumvent these rfi problems and also provides two dc voltages, one of negative and one of positive polarity with reference to ground. And it does so without using expensive and dilatory transformers or inductors.


kilohertz oscillator whose square-wave output—further shaped by  $D_2$ ,  $R_4$ , and  $R_5$  and by  $D_3$ ,  $R_6$ , and  $R_7$ —drives power field-effect transistors  $Q_2$  and  $Q_3$ . The p-channel and n-channel FETs conduct alternately, in a push-pull configuration. When  $Q_2$  conducts, the positive charge on  $C_{out}$  forces diode  $D_4$  to conduct as well, which

In the circuit shown, inverters U<sub>1-a</sub> and U<sub>1-b</sub> form a 20-

push-pull configuration. When  $Q_2$  conducts, the positive charge on  $C_{out}$  forces diode  $D_4$  to conduct as well, which produces a positive voltage, determined by zener diode  $D_5$ , at terminal A.

Similarly, when  $Q_3$  in its turn conducts, the negative charge on  $C_{out}$  forces  $D_7$  to do so as well. A negative voltage therefore develops at terminal B, whose level is

set by D<sub>6</sub>.



**Converter.** Unlike standard dc-dc converters, this circuit gives two dc voltages, one of positive, one of negative polarity—without using transformers or inductors. Only one inverter chip, three transistors, and a few discrete components are needed to realize the converter. Diodes  $D_5$  and  $D_6$  determine the level of positive and negative voltages at terminals A and B.

Electronics/August 25, 1983