EDN DESIGN IDEAS

## EDITED BY BILL TRAVIS & ANNE WATSON SWAGER

## **Bipolars provide stable current source**

BILL MORONG, MORONG'S HARNESS, DOVER-FOXCROFT, ME

It's possible to implement a precise current source with a useful output at high frequencies, without using operational amplifiers. The circuit in **Figure 1a** suffers inaccuracies from both the  $V_{BE}$  drop and the finite base current of the transistor. The circuit in **Figure 1b** overcomes the base-current problem, but has two  $V_{BE}$  drops and does not perform well at high frequencies. The circuit in **Figure 1c** has no base-current problem and performs well at high frequencies, but is prone to inaccuracies from the  $V_{GS}$  of the FET. The circuit in **Figure 2** largely overcomes these problems.

The V<sub>BE</sub> of Q<sub>2</sub> cancels that of Q<sub>1</sub>. Because the base current of Q<sub>1</sub> diverts (via Q<sub>3</sub>) as shown around the current-setting resistor R<sub>1</sub>, I<sub>OUT</sub> is simply two-thirds of V<sub>IN</sub> divided by R<sub>1</sub>. Because the circuit provides error cancellation, the values and voltages are not critical, provided you match the upper and lower components. In this example, Q<sub>1</sub> has a beta of 50; the circuit self-adjusts as beta varies. Neon-driver transistors are a



Finite base current, temperature-dependent base-emitter drop, and gate-source-voltage variations lead to errors in single-transistor current sources.

good choice for  $Q_1$  because  $Q_2$  and  $Q_3$  need neither good high-frequency performance nor high output impedance. High-beta (400 in **Figure 2**) transistors are appropriate, as they minimize errors. Insofar as possible, it is desirable to have similar, high betas for  $Q_2$  and  $Q_3$ . At high frequencies, it may be beneficial to bypass the base of  $Q_1$  to ground. (DI #2257).





Base-emitter-voltage and base-current cancellation are the keys to a stable, predictable current source.