

Analog Engineer's Circuit: Data Converters SLAA867-December 2018

Programmable, two-stage, high-side current source circuit

Garrett Satterfield

Design Goals

Supply Voltage (V _{cc})	DAC Output Voltage	Output Current	Error	Max Load Resistance	Compliance Voltage
5V	0V–2V	0–100mA	<1% FSR	45Ω	4.5V

Design Description

The programmable high-side current source supplies an adjustable current to a ground reference load. The first op amp stage sets a reference current based on the DAC output voltage. The second op amp stage acts as a current mirror that gains the reference current and regulates the current sourced from the output PMOS to the load. R_{SET} , RA, and RB set the output current based on the DAC voltage. Components C_{COMP} , R_{ISO} , and R_{FB} provide compensation to ensure stability of the circuit. Common end equipment that utilize this circuit include *PLC Analog Output Modules*, *Field Transmitters*, *Digital Multimeters*, *Printers*, *Optical Modules*, *LED Drivers*, and *EPOS*.

Design Notes

- 1. Choose a DAC with low offset, gain, and drift errors. RRIO op amps should be used to maintain low compliance voltage and op amps with low offset should be selected.
- 2. Minimize the current flow through R_A, Q1, and R_{SET}by selecting a large ratio of R_A:R_B to maximize efficiency while also minimizing heating and drift in the first stage.
- 3. Use high-precision, low-drift resistors for R_{SET}, R_A, and R_B to minimize error caused by resistor mismatch and temperature drift.
- 4. Minimize the resistance of R_B to maximize compliance voltage.
- 5. Avoid placing Q2 near thermally sensitive components in layout as the power dissipation causes heating.

www.ti.com

Design Steps

 Set the reference current in the sink stage by selecting R_{SET} based on V_{DAC}. The reference current should be minimized as it flows directly to ground and reduced efficiency. Set the reference current to 1mA and calculate R_{SET}.

$$R_{SET} = \frac{V_{DAC,max}}{I_{SET}} = \frac{2V}{1mA} = 2k\Omega$$

- 2. Select the required gain ratio based on the desired output current and $I_{OUT}/I_{SET} = 100$ mA/1mA = 100, this is the required ratio of R_A : R_B .
- 3. Calculate the maximum value of R_B from the maximum allowable voltage drop to drive the maximum current through the maximum load.

$$R_{B} < \frac{V_{CC} - I_{OUT,max}R_{LOAD,max}}{I_{OUT,max}} = \frac{5V - 0.1A \times 45\Omega}{0.1A} = 5\Omega$$

4. The voltage V_A is $V_{CC} - I_{SET} x R_A$ which is equal to the voltage V_B due to the op amp feedback. Select R_A to achieve a voltage drop of <500mV to maintain the desired compliance voltage. A standard resistance of 4.7 Ω is chosen.

$$V_{A} = V_{B}$$
$$R_{A} = \frac{V_{CC} - V_{A}}{I_{SET}} = \frac{470 \text{mV}}{1 \text{mA}} = 470 \Omega$$

5. Calculate R_B based on R_A and the gain selected in step 2.

$$\mathsf{R}_\mathsf{B} = \frac{\mathsf{R}_\mathsf{A}}{100}$$

6. Verify the power dissipation of Q2. The power dissipation of Q2 based on the load is given by:

 $P_{\text{Diss},\text{Q2}} = V_{\text{CC}} \times I_{\text{OUT}} - I_{\text{OUT}}^{2} \times (R_{\text{LOAD}} + R_{\text{B}}) = 5V \times 0.1A - 0.1A^{2} \times (40\Omega + 4.7\Omega) = 0.053W$

The maximum power dissipation of Q2 occurs when the load resistance is zero:

 $P_{\text{Diss},\text{Q2,max}} = V_{\text{CC}} \times I_{\text{OUT}} - I_{\text{OUT}}^2 \times R_B = 5V \times 0.1A - 0.1A^2 \times 4.7 = 0.453W$

Ensure Q2 is rated for this power dissipation.

www.ti.com

DC Transfer Characteristics

Small-Signal Step Response

High Voltage Supply Modification

This circuit design example uses a low voltage supply for V_{cc} . Some applications, such as 4–20mA current loops, require a high voltage supply to drive large resistive loads. To modify this current source for higher voltage supply, choose a high voltage, rail-to-rail input/output amplifier such as OPA192.

www.ti.com

Devices

Device	Key Features	Link	Other Possible Devices				
DACs							
DAC80501	16-bit resolution, 1LSB INL, Single-Channel, Voltage Output DAC with 5ppm Internal Reference	http://www.ti.com/product/DAC80501	http://www.ti.com/pdacs				
DAC80508	16-bit resolution, 1LSB INL, Octal-Channel, Voltage Output DAC with 5ppm Internal Reference	http://www.ti.com/product/DAC80508	http://www.ti.com/pdacs				
DAC8775	16-bit resolution, Quad-Channel, ±10V, ±24mA Voltage and Current Output DAC, with Integrated DC/DC Converter	http://www.ti.com/product/DAC8775	http://www.ti.com/pdacs				
Amplifiers							
OPA388	Precision, Zero-Drift, Zero-Crossover, Rail-to-Rail Input/Output, 2.5-V to 5.5-V Supply	http://www.ti.com/product/OPA388	http://www.ti.com/opamps				
OPA192	Precision, High-Voltage, Rail-to-Rail Input/Output, 4.5-V to 36-V Supply	http://www.ti.com/product/OPA192	http://www.ti.com/opamps				
TLV170	Cost Sensitive, Rail-to-Rail Output, 2.7-V to 36-V Supply	http://www.ti.com/product/TLV170	http://www.ti.com/opamps				

Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

Links to Key Files

TI Designs TIPD102, High-Side V-I Converter, 0-2V to 0-100mA, 1% Full Scale Error Reference Design

TI Designs TIPD215, Less Than 1-W, Quad-Channel, Analog Output Module With Adaptive Power Management Reference Design

TI Designs TIDA-01525, 8-channel, 16-bit, 200mA current output DAC reference design

Source Files for Programmable, Two-Stage, High-Side Current Source – http://ti.com/lit/zip/slac783.

For direct support from TI Engineers use the E2E community:

e2e.ti.com

Other Links:

Precision DAC Learning Center

www.ti.com/pdac