CECSION CONTRACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF

Build a precise dc floating-current source

D Ramírez, S Casans, C Reig, AE Navarro, and J Sánchez, University of Valencia, Burjassot, Spain

Although well-known to activefilter theorists and designers, GICs (generalized impedance converters) may be less familiar to analog generalists. Comprising a one-port active circuit typically comprising low-cost operational amplifiers, resistors, and capacitors, a GIC transforms capacitive reactance into inductive reactance and thus can substitute for an inductor in a filter that an RLC-transfer function describes. In addition, the flexibility of a GIC's input-impedance equation permits the design of virtual impedances that don't exist as physical components-for example, frequencydependent resistance (Reference 1). The GIC, which its developers introduced 30 years ago, has seen its greatest application in ac-circuit and activefilter applications.

Figure 1 shows a classic GIC circuit

in which the input impedance, Z_{IN} , depends on the nature of impedances Z_1 through Z_5 . The following equation describes the circuit's input impedance:

$$Z_{IN} = \frac{V_{IN}}{I_{IN}} = \frac{Z_1 \times Z_3 \times Z_5}{Z_2 \times Z_4}.$$

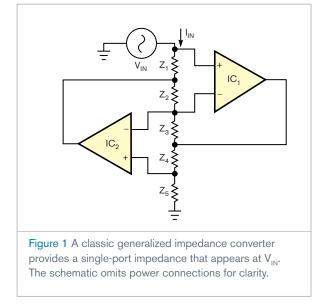
For example, if Z_1 , Z_2 , Z_3 , and Z_5 comprise resistors R_1 , R_2 , R_3 , and R_5 , and Z_4 comprises capacitor C_4 , then the input impedance, Z_{IN} , appears as a virtual inductor of value L_{IN} :

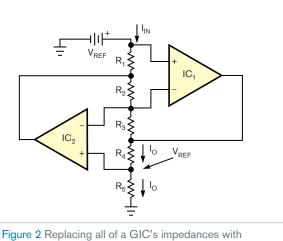
$$L_{\rm IN} = \frac{R_1 \times R_3 \times R_5 \times C_4}{R_2}.$$

Figure 2 shows the GIC circuit in its dc configuration. When you consider the GIC circuit in a purely dc environment, you can envision new applications. For example, you could replace impedances Z_1 through Z_5 with pure resistances R_1 through R_5 . Instead of an

DIs Inside

84 Frequency dithering enhances high-performance ADCs


86 Memory-termination IC balances charges on series capacitors


88 Voltage reference is software-programmable

ac input-voltage source, connect a precision temperature- and time-stable dc reference voltage to the input port. A simple circuit analysis using ideal op amps for IC₁ and IC₂ shows that the reference input voltage, V_{REF} , appears across resistor $R_{5,}$ and, as the following equation shows, a constant current, I_{O} , flows through R_{5} .

$$I_{O} = \frac{V_{REF}}{R_{5}}$$

However, op amp IC₂'s noninverting input diverts a small amount of current from the junction of R_4 and R_5 , and I_0 thus also flows through R_4 . Selecting

designideas

large values for R_1 , R_2 , and R_3 helps minimize current drawn from the reference voltage. For example, the circuit can supply 2 to 10 mA to R_4 and draw only a few tenths of a microampere from the reference source. Using tight-tolerance and low-drift components for V_{REE} and R_5 ensures the stability of I_0 . Applications include providing constant-current drive for Wheatstone-bridge and

platinum-element sensors (Reference 2). In addition, you can replace R_4 with a series of resistive sensors as in an Anderson loop (Reference 3).EDN

REFERENCES

Franco, S, Design with Operational Amplifiers and Analog Integrated Circuits, Third Edition, ISBN 0072-320842, WCB-McGraw-Hill, 2001.

2 Ramírez, Diego, S Casans, and C Reig, "Current loop generated from a generalized impedance converter: a new sensor signal conditioning circuit," Review of Scientific Instruments, Volume 76, No. 1, January 2005. Anderson, KF, "Looking under the (Wheatstone) bridge," Sensors, June 2001, pg 105.