

By Mark McWilliams

EXPERIMENTERS often need to generate square waves for test circuits and other applications. A simple way to do this is with a 555 -timer IC operating in the astable mode. Most manufacturers' spec sheets include graphs to help you choose the resistor values needed to obtain a desired frequency with a given capacitance. The only drawback of this method is that you can't maintain control over the duty cycle of the square wave. This article presents simple formulas and plots for selecting resistor values to control both frequency and duty cycle.

Figure 1 shows the circuit commonly used to produce a 555

Examples:

(1) Given: $f=1000 \mathrm{~Hz}, \quad \mathrm{C}=0.1 \mu \mathrm{~F}$, $D=0.7$
Solution: $\mathrm{C} \times \mathrm{f}=10^{2} \mu \mathrm{~F}-\mathrm{Hz}$;
from equation (B) or Fig. 3,
$R_{B}=4.3 \mathrm{k} \Omega ;$
from equation (A) or Fig. 4, $R_{A} / R_{B}=1.333 ;$
therefore: $R_{A}=(1.333)(4.3 \mathrm{k} \Omega)$

$$
=5.73 \mathrm{k} \Omega
$$

(2) Given: $f=50,000 \mathrm{~Hz}, C=100 \mathrm{pF}$, $D=0.51$
Solution: $\mathrm{C} \times \mathrm{f}=5 \mu \mathrm{~F}-\mathrm{Hz}$;
from equation (B) or Fig. 3, $R_{B}=141 \mathrm{k} \Omega$;
from equation (A) or Fig. 4, $R_{A} / R_{B}=0.041 ;$
therefore; $R_{A}=(0.041)(141 \mathrm{k} \Omega)$

$$
=5.78 \mathrm{k} \Omega
$$

astable waveform such as that shown in Fig. 2. In Fig. 1, the output voltage at pin 3 will be high or on during the charging of capacitor
C through R_{A} and R_{B}. The output will be low or off or near ground potential during the discharging cy cle. The on time is designated as T_{1}

Fig. 2. Output of the circuit
in Fig. 1, with characteristics defined.
Fig. 1. Standard 555 square-wave generator.

Fig. 3. Plot of $C \times f$ vs. R_{s}, which can be used with Fig. 4 to determine circuit values.

Fig. 4. Duty cycle vs. resistance ratio R_{A} / R_{B} based on Eq. (A).
in Fig. 2, and the off time as T_{2}. The total period is thus $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$. The frequency of oscillation is $\mathrm{f}=1 / \mathrm{T}$.

The on time is given by

$$
\mathrm{T}_{1}=0.693\left(R_{A}+R_{B}\right) C
$$

The off time is

$$
\mathrm{T}_{2}=0.693 R_{B} C
$$

Thus

$$
\begin{aligned}
\mathrm{f} & =1 /\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) \\
& =1.443 /\left(R_{A}+2 R_{B}\right) C
\end{aligned}
$$

If we define duty cycle as the ratio of the on time to the total period, then $\mathrm{D}=\mathrm{T}_{1} / \mathrm{T}=\mathrm{T}_{1} /\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)$. Some algebraic manipulation results in two very simple formulas:

Fig. 5. Use this circuit for a duty cycle of 0.5000 .
$R_{A} / R_{B}=(2 \mathrm{D}-1) /(1-\mathrm{D})$ $R_{B}=1.443(1-\mathrm{D}) / C \mathrm{f}$
where f is in Hz, R_{B} and R_{A} are in ohms, C is in farads, and $0.5<$ D <1.

Note that, given a particular capacitor, one can quickly calculate the R_{A} and R_{B} values necessary to achieve a desired frequency and a desired duty cycle.

These two equations are presented graphically in Fig. 3 and Fig. 4. For convenience in plotting, C and f were combined to form one variable, $\mathrm{C} \times \mathrm{f}$. In the plots, the units of $\mathrm{C} \times \mathrm{f}$ are $(\mu \mathrm{F}-\mathrm{Hz})$ and R_{B} is in ohms.

Of course, equations A and B give more accurate answers than the plots but the extra decimal places are meaningless if wide-tolerance capacitors are used.
If a duty cycle of exactly 0.5000 must be produced, it can be done by connecting the timer output at pin 3 to the clock input of a J-K flip-flop. The output of the flip-flop will be a perfectly symmetrical square wave at half the frequency of the timer output. This configuration is shown in Fig. 5 and is independent of the value of R_{A} and R_{B}.

