Generate swept sine/cosine waveforms with two filters

John R Ambrose, Mixed Signal Integration, San Jose, CA

-

Demodulators, directional circuits, and other electronics applications often need two sine waves with a 90° difference in phase-a sine wave and its cosine wave. Engineers typically use analog filters to create the phase shift. This approach, however, offers a limited frequency range. Using the circuit in Figure 1, you can make a swept sine/cosine pair at frequencies of less than 1 Hz to 25 kHz .

The Mixed Signal Integration (www.mix-sig.com) MSFS5 selectable lowpass/bandpass switched-capacitor filter removes the harmonics from a square wave you apply to its inputs. The clock for the MSFS5 is 100 times the input square wave. The 74 HC 390 and 74 HC 74 form a divide-by- 25 and a divide-by-two circuit. The Q outputs from the 74 HC 74 connect to the two divide-by-two circuits in the

74HC390A, which produces square waves that are $1 / 100$ of the filter clock's frequency and are 90° out of phase from each other. A square wave at CMOS levels would saturate the filter, so the circuit uses resistor dividers R_{1} through R_{4} to reduce the signal's amplitude.

Figure 2 shows the output of the two filters at 20 kHz with a system clock of 2 MHz . Note that the phase reading on the scope is at -89.85°. When swept in frequency, the phase varies from -89 to -91°. Figure 3 shows a $20-\mathrm{kHz}$ Lissajous pattern.

Measuring the circuit's distortion using a spectrum analyzer and an Audio Precision (www.ap.com) audio analyzer shows a THD (total harmonic distortion) of -49 dB . Testing shows that the circuit has no discontinuity at the filter outputs with either FSK (frequency-shift keying) or FM (frequency modulation). EDN

Figure 2 The phase reading on the scope is -89.85°.

Figure 3 When swept in frequency, the phase varies from -89 to -91°.

Figure 1 This circuit lets you make a swept sine/cosine pair at frequencies of less than 1 Hz to 25 kHz .

