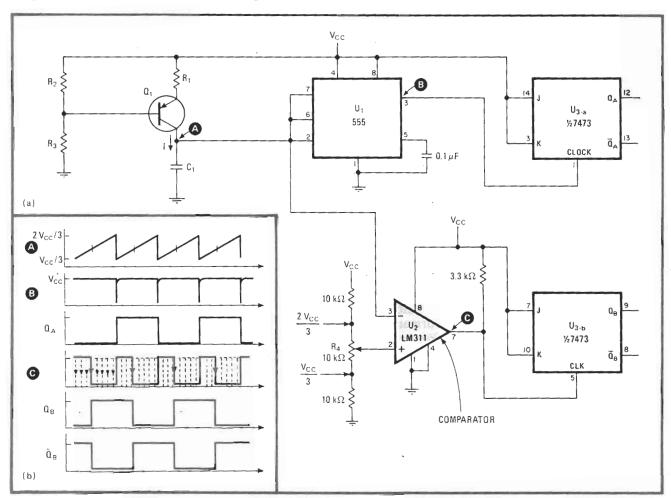
Pulse generator has independent phase control

by Roberto Tovar Medina
Institute of Applied Mathematics, University of Mexico, Mexico


Many phase-locked-loop applications need a circuit to generate signals whose phase can be controlled independent of their other characteristics. Using a 555 timer and a few discrete components, this design provides a pulser with independent phase control between 0° to 180°. In addition, the phase is continuously adjustable.

Timer U_1 (a) together with transistor Q_1 and capacitor C_1 generates a sawtooth signal whose amplitude is be-

tween $V_{cc}/2$ and $2V_{cc}/3$ (b). For every cycle of this sawtooth wave, a short pulse is produced at the output of U_1 . This pulse clocks flip-flop U_{3-a} to generate reference signal Q_a . By comparing the sawtooth signal with a reference voltage provided by potentiometer R_4 , the comparator output clocks flip-flop U_{3-b} to generate pulse Q_b that is phase-shifted with respect to the reference.

Because this phase difference bears a linear relationship to the reference voltage at the noninverting terminal of U_2 , R_4 is calibrated in terms of the phase control, with $V_{cc}/3$ corresponding to 0° and $2V_{cc}/3$ to 180°. Since both Q_b and \overline{Q}_b are available from the output flip-flop, the circuit provides both phase-advance and phase-lag versions of the reference signal.

Designer's casebook is a regular feature in *Electronics*. We invite readers to submit original and unpublished circuit ideas and solutions to design problems. Explain briefly but thoroughly the circuit's operating principle and purpose. We'll pay \$75 for each item published.

Adjusting phase. Using a 555 timer and a few components, this design (a) provides a pulse generator with independent phase control. The output can be either delayed or advanced with respect to the reference at Q_a . R_4 is calibrated in terms of the phase difference, with $V_{cc}/3$ corresponding to 0° and $2V_{cc}/3$ corresponding to 180°. The timing diagram (b) depicts the phase relationship between the reference and the outputs.