Digital Mark Space

C. Dean

This circuit provides a mark/space ratio at the C_{Out} pin which depends on the binary value set up on B0 and B7. As Q0 to Q7 gradually increases in value, due to incoming clock pulses, $C_{Out} = 0$ if Q0. . .Q7 + B0. .B7 X 11111111 and $C_{Out} = 1$ if Q0. .Q7 + B0. .B7 X 11111111. The higher the value of B0. .B7, the quicker C_{Out} will become 1 after Q0. .Q7 is automatically reset, and the higher the value of the mark space ratio. The proportion of time that C_{Out} is 1 is given by: (Value of B0. .B7) + C_{in} (=0or1)

256

Note that for C_{out} to be permanently

0 C_{in} must be 0 (and B0. . .B7 = 00000000) and that the C_{out} to be permanently 1 C_{in} must be 1 (and B0. . .B7 = 11111111).

The circuit could have its clock input connected to a microprocessor clock, B0... B7 connected to the data bus and C_{Out} to moving coil meter or a red/green LED (RS 587-080). Then the meter reading will be proportional to, or the colour of the LED will depend on, the value of B0...B7.