Sesigner's casebook ## Scanned keyboard activates eight-tone generator by Albert Helfrick Aircraft Radio and Control Division of Cessna Aircraft Co., Boonton, N. J. This keyboard-activated eight-tone generator owes its simplicity to a single oscillator, which makes possible the scanning of the keyboard and simultaneously functions as the tone generator. As a result, its device count is low and its cost is minimal. Circuit operation is easily understood. The CA3130 operational amplifier, A₁, is configured as a relaxation oscillator, its frequency controlled by R_iC. R_i lies in the 100-to-500-kilohm range, and C is 0.01 microfarad or so for frequencies in the 1-to-10-kilohertz range. The oscil- lator has excellent frequency stability as a result of the operational amplifier's extremely high input impedance and the complementary-metal-oxide-semiconductor output circuit. A_1 drives the 4516 4-bit counter, A_2 . As the counter increments, it scans each input port of two analog multiplexers, A_3 and A_4 . A_3 sequentially places all resistors, R_1 through R_8 , in the oscillator circuit, enabling A_1 to generate exactly one cycle of each frequency determined by each R_iC combination. At no time is there any output from G_i , however. Meanwhile, multiplexer A_4 is scanned to determine whether any keyboard switches are closed. If any switch should be depressed, a logic 1 will emanate from pin 3 of A_4 , freezing the counter and enabling G_1 . A_1 will then oscillate at the frequency determined by the particular value of R that is in the oscillator circuit when the counter halts. Since the counter cannot advance while the key switch is closed, and simultaneously closing any **Scanned tones.** Self-gating oscillator, A_1 , advances counter and with aid of multiplexer A_3 sequentially places R_1-R_8 in series with C so as to control frequency. Op amp's high-input impedance and C-MOS output ensures high oscillator stability. No signal appears at output until a keyboard switch is closed, when A_4 freezes counter and activates G_1 , enabling generation of the single desired frequency. cehe key will have no effect on the output frequency, the circuit has in effect a built-in lock-out feature. The time required for the system to latch to any particular frequency is a function of both the number of frequencies that can be selected and the actual frequen- out to approximately: $t = \frac{1}{f_1} + \frac{1}{f_2} + \dots + \frac{1}{f_n}$ where each fi is equal to 1/0.69 RiC. For eight frequen- cies in the kilohertz range, t equals about 8 milliseconds, which is an acceptable period of time for manual keycies of oscillation. The maximum acquisition time works stroke applications.