Single cell flashes white LED

Anthony Smith, Scitech, Biddenham, Bedfordshire, UK

ANY PORTABLE appliances and other products that must operate from a single cell are restricted to working at very low voltages. It is thus difficult to drive white LEDs that typically have a forward voltage of 3 to 5V. The ability to flash the LED with a supply voltage as low as IV presents additional complications. The circuit in the Figure 1 provides a discrete approach to these problems and allows a white LED to flash at a rate set by an RC time constant. Components Q., Q₂, R₂, R₃, and R₃ form a simple Schmitt trigger that, together with R, R,, and C, controls the flashing of the LED. Qa, Qs, L,, and associated components form a voltage booster that steps up the singlecell voltage, V_s, to a level high enough to

drive the LED. Transistor Q, functions as a switch that gates the booster on and off at a rate determined by the Schmitt-trigger section.

To understand how the booster section works, assume that Q₃ is fully on, such that Q,'s emitter is roughly at the batterysupply voltage, V_s. Q₄ and R₈ provide bias for Q_s, which turns on and sinks current,

design ideas

 I_1 , through inductor L_1 . The inductor current ramps up at a rate determined mainly by V_s and the value of L_1 ; during this time, LED_1 and series diode D_1 are reverse-biased. The current continues to ramp up until it reaches a peak value, I_{LPFAK} , Q_5 can sustain no further increase, and the voltage across the inductor at this point reverses polarity. The resulting "flyback" voltage raises LED_1 's anode to a positive voltage higher than V_s , sufficient

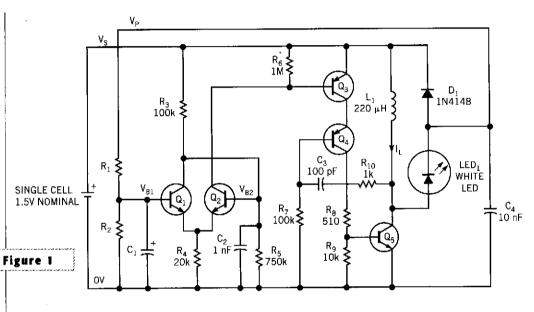
to forward-bias LED₁ and signal diode D₁. The flyback voltage is also coupled through C_3 and R_{10} to Q_4 's base, thus causing Q_4 and, hence, Q_5 to turn off rapidly.

The inductor current now circulates around L₁, LED₁, and D₁, and, as the energy stored in L₁ decays, the current ramps down to zero. At this point, the inductor voltage again reverses polarity and the negative-going change is coupled through C₃, rapidly

turning on Q₄ and, in turn, Q₅. Current again

begins to ramp up in

L₁, and the process repeats. The booster section oscillates at a rate determined by several factors. The important factors determining the rate of oscillation include the values of V_S, L₁, and R₈; the forward-current gain of Q₅; and the forward voltage of LED₁. With the component values in the **figure**, the oscillation frequency is typically 50 to 200 kHz. On each cycle, a pulse of current with a peak value equal to I_{LPEAK} flows through LED₁ and, because this scenario


LED₁ appears to be continuously on.

The low-frequency oscillator formed around the Schmitt trigger turns the booster section on and off at a low rate. To understand how this works, assume that Q₁ is off and Q₂ is on. Provided that Q₂ has reasonably large forward-current gain, you can ignore the effects of its base current and say that V_S and the R₃-R₅ voltage divider set Q₂'s base voltage, V_{B2}.

occurs thousands of times every second,

With the values of R_3 and R_5 in **Figure 1**, V_{B2} is approximately 800 to 900 mV when $V_5 = 1$ V. This voltage produces approximately 300 to 400 mV across R_4 , resulting in a collector current of at least 15 μ A in Q_2 with $R_4 = 20$ k Ω . Q_2 's collector current provides base drive for Q_3 , which saturates, turning on the booster section and illuminating LED₁. When LED₁ is forward-biased, C_4 charges to a positive voltage, V_{c_3} , roughly one diode drop above V_{c_3} .

 R_2 have values of approximately 1 M Ω each and C_1 has a value of 1 μ F or greater, a rate of less than one flash per second is possible. Remember, however, that R_1 and R_2 form a voltage divider that sets Q_1 's base voltage, V_{B1} ; therefore, R_2 must be sufficiently larger than R_1 to ensure that V_{B1} can cross the Schmitt trigger's upper threshold voltage as C_1 charges. With this fact in mind, you can with some trial and error fairly easily find the optimum val-

This circuit provides boosted voltage and flashes a white LED from a single cell.

Timing capacitor C_1 now charges via R_1 at a rate determined mainly by the values of V_p , R_1 , R_2 , and C_1 . Provided that you carefully choose the ratio of R_1 to R_2 , Q_1 's base voltage, V_{B1} , eventually exceeds the quiescent level of V_{B2} (roughly equal to the Schmitt trigger's upper threshold voltage, V_{TU}), causing Q_1 to turn on and Q_2 to turn off. At this point, Q_3 also turns off, thereby disabling the booster section and turning off LED₁.

With LED₁ off, V_p rapidly decays, and C_1 begins to discharge at a rate determined mainly by the values of R_2 and C_1 and by Q_1 's base current. The LED remains off until V_{B2} has fallen below the Schmitt trigger's lower threshold voltage, V_{TL} , at which point Q_1 turns off, Q_2 turns on, and the booster section again activates, illuminating LED₁. Provided that R_1 , R_2 , and C_1 are large enough, LED₁ can flash at a low rate. For example, if R_1 and

ues of R₁, R₂, and C₁ necessary for a given flash rate.

The value of V_p significantly influences the charging and discharging of C₁, and V_p's value hence varies according to the prevailing battery supply voltage, V_s. However, changes in V_{B2} , which also varies with V_s, somewhat balances this dependence. Nevertheless, the flash rate and duty cycle do vary somewhat as the battery voltage falls. For example, with $R_1 = 2.2 \text{ M}\Omega$, $R_2 = 10 \text{ M}\Omega$, and $C_1 = 1 \mu\text{F}$, the test circuit's flash rate at $V_s = 1.5V$ is approximately 0.52 Hz with a duty cycle of 66%. With a $V_{\rm s}$ of 1V, the flash rate increases to approximately 0.75 Hz but with a lower duty cycle of 44%. The Schmitt-trigger thresholds, V_{II} and V_{IU} , are typically approximately 0.7V and 1.2V at $V_s = 1.5V$, falling to approximately 0.6V and 0.8V when Vs is 1V.

The LED's intensity is proportional to

designideas

its average forward current and is thus determined by the peak inductor current, I PEAK, and by the duration of the current pulse through the LED. Provided that L, is properly rated such that it does not saturate, the peak current depends largely on the maximum collector current that Q_s can sustain. For a given supply voltage, this figure depends primarily on Q_s's forward-current gain, and on the value of R, that you can select to give optimum LED brightness at the lowest supply voltage. Experiment with different values of R_o to get the best intensity for a given LED type. Take care, however, that the peak current does not exceed the LED's maximum current rating when V_s is at a maximum. The actual value of L is not critical, but values in the range 100 to 330 µH should provide good performance and reasonable efficiency. The transistor types in the circuit are not critical; the test circuit works well with general-purpose, smallsignal devices having medium to high current gain. If possible, select low-saturation types for Q_3 , Q_4 , and Q_5 , C_2 is not essential to circuit operation but helps to decouple any switching noise at Q_3 's base.

C₄ acts as a charge reservoir and ensures that R, can charge C, from a stable voltage source (V_n) when LED, is on. Because the charging current is likely to be low, C, can be fairly small; a value of 10 nF should be adequate. Note that C4 must connect to the junction of D, and LED, as shown, rather than being charged, via a rectifying diode, from the flyback voltage at Qs's collector. The reasons for this caveat are, first, that this approach ensures that V_p is only a diode drop above Ve, thereby minimizing the value of R, necessary for a given C, charging current. Also, and more important, this approach places the forward voltage of the LED in the path from V_s through L₁ and R₁ to Q,'s base. Because the forward voltage of a white LED is usually at least 3V, this connection prevents Q, from being

turned on via this route, which could otherwise cause the circuit to lock in the "off" state.

At first sight, it might appear that you can turn the booster section on and off by gating current to Q₄'s base, thus obviating the need for Q. However, under certain conditions, once you activate the booster section, the feedback to Q₄'s base via C, and R₁₀ is sufficient to maintain oscillation without feeding any dc bias to Q's base. Therefore, the only reliable way to gate the booster on and off is via Q₃, as shown. The test circuit starts up and operates with V_s as low as 0.9V, although the LED is dim at this voltage. The LED's intensity is good at $V_s = 1.5V$ (equivalent to a fully charged alkaline cell) and remains acceptable with V_s as low as 1V. The circuit should find applications in toys, security devices, miniature beacons, and any other products that must provide a flashing visual indication while operating from a single cell.□