
projects led driver

72 elektor - 5/2009

RGB LED Driver
High resolution colour control with
the AAT3129

Fred Splittgerber (Germany)

Seemingly straightforward projects can turn into a ‘money pit’ or ‘component graveyard’ if you are not
careful. This can easily come true if you intend driving colour LEDs in RGB mode with infinitely variable
colour mixing and individual control over the brightness of each LED. Conventional control circuitry tends
to produce quite bulky systems too. On the other hand, using a microcontroller and a specialised IC
keeps the space footprint under control and eliminates all the uncertainties...

Listing every possible application for
infinitely variable control of individ-
ual RGB LEDs is an impossible task.
What is not in dispute is the fact that
the variety of RGB LEDs (one each in
red, green and blue on a single car-
rier or in a single package) has risen

significantly in recent years. Anyone
planning to put these colourful semi-
conductor light sources to practical use
needs to think carefully about the con-
trol electronics to be used.

RGB control
The rules covering LEDs in general
apply also to RGB LEDs, the most fun-
damental being that LEDs need pow-
ering with constant current rather than
constant voltage. This is because the
threshold voltages of LEDs are strictly
temperature-dependent and without
constant current, stable operation is
impossible. Simple logic indicates
that achieving infinitely variable (step-
free) current setting requires the use
of infinitely variable current sources.
If energy saving is important, then
the recommended approach is to use
switched constant current sources
with adjustable duty cycles.
An important characteristic of RGB

LEDs to note is that as a result of
their physical structure, red, green
and blue LEDs display differing for-
ward voltages, ranging from less than
1.5 V for red LEDs up to nearly 4 V for
blue ones. Without some kind of intel-
ligent switching arrangement it’s obvi-
ous that significant energy losses will
arise if your driver circuitry provides
the same voltage for R, G and B LEDs
(which will be far too high for the red
ones). Pulse-width modulated current
sources are totally unsuitable, espe-
cially in battery powered applica-
tions. But before you bash your brains
in looking for suitable solutions based
on switching regulators, take it easy.
Industry has already come up with a
solution for this problem and embed-
ded it in silicon.

AAT3129
As well as its switching regulators
and other power supply ICs, the firm

Specifications
• RGB LED driver module for
universal application
• Straightforward serial control
• Operating voltage from 2.7 V
upwards thanks to charge pumps
• LED maximum current (total) 40
to 180 mA
• 4,096 colours
• 16 stages of total brightness
• Low-interference operation at
constant frequency
• Flicker-free illumination thanks
to 1 MHz PWM frequency

735/2009 - elektor

Analogic Tech has lately brought out
a whole range of chips intended to
simplify the operation of all manner
of LEDs. And with the IC AAT3129 [1]
every control problem that might occur
with RGB LEDs has been eliminated
with a single chip.

The IC has a serial digital control input
and integrated charge pumps with fac-
tors of 1, 1.5 and 2, enabling it to oper-
ate with supply voltages from 2.7 V to
5.5 V. Among other features are built-in
logic for avoiding thermal overload and
— important for battery operation — a
standby mode with current consump-
tion typically less than 0.1 µA. In oper-
ation the IC draws around 1 mA. Maxi-
mum current for the LEDs — shared
across all three LEDs — can amount
to 180 mA. LED brightness is set indi-
vidually in 16 logarithmic stages each,
producing in total 24 ×3 = 4,096 differ-
ent colours. On top of this there are 16
steps of overall brilliance.

The IC operates at a clock rate of
1 MHz and with 12 pins and dimen-
sions of just 2.4 × 3.0 × 1 mm it is
extremely compact. The only external
components required are four small
1 µF ceramic capacitors. A functional
diagram is given in Figure 1. All we
need to complete the circuit is a small
microcontroller to provide the AAT3129
with data.

AS2Cwire
Data for the AAT3129 is presented in
the Simple Serial Control (S2C) pro-
tocol, AS2Cwire [2]. The S2Cwire™
single-wire interface offers a very
straightforward control technique
for programmable power IC devices,
using just a single wire. Data is trans-
mitted as a series of negative-going
pulses having a length of between
50 ns and 75 µs. Between pulses the
level remains High for up to 500 µs.
Greater values are treated as separ-
ator signals between pulse trains (see
data sheet [1]). Sequences with 16 to
21 pulses are interpreted as addresses
for the registers R, G, B, T (total inten-
sity) and M (operational mode) (see
Table 1).
The sequence that follows afterwards
with 1 to 16 pulses is the actual data.
To summarise, the address follows
a High level of >500 µs, after which
comes the data to be transmitted.
Whether a value is to be executed
straightaway or synchronised only
once all the colour values have been

defined, depends on the value placed
in the M register.

Control driver
In order that we can select the colours

and the overall brightness easily with
rotary or slider pots, we need to use
another small microcontroller with a
built-in multi-channel A/D converter.
This transforms the analogue potenti-
ometer values into corresponding dig-
ital values, converts them and passes

Table 1

Register Address Range of values Meaning

R (Intensity, red) 17 1-16
1: unlit
16: maximum brightness

G (Intensity, green) 18 1-16

B (Intensity, blue) 19 1-16

T (Overall intensity) 20 1-16
1: maximum brightness
16: darkest state

M (Operating mode) 21 1-2
1: Value is converted immediately
2: Value is converted after writing
to the T registers

C1

1µ

C2

1µ

CCP

1µ

R G B

CIN

1µ

AAT3129
EN/SET

ISRC

IC1
C1+

C1–

GND

VIN

C2+

C2–

DG

DR

11

10

12

DBCP

4

5

8

3

9

1

72

6

+UB

080178 - 11

EN/SET

Figure 1. Block diagram of an RGB LED driver using the AAT3129.

ATTiny25

IC2

PB5

PB1

PB0

PB2

PB3

PB4

8

4

7

1

2

3

6

5

P1

100k

P2

100k

P3

100k

P4

100k

S1

C1

100n

78L05

IC1

D1

1N4001

C2

100n

C3

10µ
16V

C4

47µ
16V

+U

R

G

B

080178 - 12

ISRC

VCC

GND

EN DR

DG

DB

8

4

1

2

3 5

6

7

AAT3129
breakout

board

+5V

RGB-LED

Figure 2. Control diagram with microcontroller and connector for the breakout board.

projects led driver

74 elektor - 5/2009

the result to the driver IC. The small
8-pin ATtiny controllers from Atmel
make this task a breeze. Four pins are
configured as analogue inputs for R, G,
B and T, whilst a changeover switch
defines the operating mode. Apart
from the two pins for +UB and ground,
just one pin remains, the serial output
that controls the AAT3129 chip. The

ulator this comprises a microcontrol-
ler, four 100-kΩ pots, a switch (operat-
ing with a pull-up resistor integrated
in IC2), an IC socket for connecting a
breakout board and finally another RGB
LED if required. The breakout board is
a small plug-in board equipped with
the AAT3129 chip and the four capaci-
tors mentioned previously.

The circuit is so simple that you can
build it on a scrap of perfboard with-
out difficulty. As not everybody feels
comfortable with soldering the ‘fine-
pitch’ arrangement of the pins of the
AAT3129, the author hit on the idea
of laying out the breakout board men-
tioned for the AAT3129 complete with
the capacitors (and optionally an RGB
LED in PLCC4 form factor) to enable
it to be plugged simply into a DIL IC

socket or a breadboard device or else
soldered onto some 2.54 mm (.1 inch)
pitch Veroboard or perfboard. The cir-
cuit of this breakout board is shown in
Figure 3. You can download the lay-
out files for this tiny board in KiCAD
and Gerber format at the web page
for this article on the Elektor web-
site. This mini PCB does not have to
be used exclusively with the microcon-
troller recommended here and can also
be integrated into other circuits with-
out difficulty. Figure 4 shows a hook-
up corresponding to the circuit in Fig-
ure 2 in which this little PCB is placed
onto perfboard along with an ATtiny25
in a DIL package.

Last but not least
The use of a 78L05 (IC1) means the
whole circuit can be powered using
any direct voltage between 7.5 and
10 V. On account of the broad supply

software for the chosen microcontrol-
ler type, ATtiny 25, is covered here in
a separate inset.

Control circuitry
The control circuitry can be seen in
Figure 2 and described in very few
words. Apart from a 5-V voltage reg-

C1

1µ

C2

1µ

CCP

1µ

R

RGB-LED

G

B

CIN

1µ

AAT3129

DIL
socket

EN/SET

ISRC

IC1
C1+

C1–

GND

VIN

C2+

C2–

DG

DR

11

10

12

DBCP

4

5

8

3

9

1

72

6

+U

080178 - 13

4

5

3

6

2

7

1

8

V
C

C

D
B

D
G

D
R

IS
R

C

E
N

G
N

D

Figure 3. The circuit of the breakout board consists of just the AAT3129, four capacitors and an RGB LED if required.

Figure 4. The author’s trial set-up looks like this, with the breakout board and microcontroller built on a piece of perfboard.

Figure 5. With the ATtiny it is vital to get the fuse settings
correct, as this screenshot illustrates.

755/2009 - elektor

voltage range of the AAT3129 and
ATtiny25 chips, you could also use a
3.3-V voltage regulator — or even omit
the voltage regulator altogether and
power the rest of the electronics direct
from a stabilised 3.3 V supply. In this
case the fuse for the brown-out detec-
tor needs to be matched correctly.
On the breakout board we have pro-
vided a socket for connecting an RGB
LED as well as room for soldering a
PLCC4 RGB LED direct. However, you
should never connect two LEDs in par-
allel, as otherwise the necessary cur-
rent splitting will not be achieved.
If the switch connected to port B1 is
closed, then you will activate the col-
our transformation mode preset in the
firmware, in which the overall bright-
ness is set by variable resistor P4.
When the switch is open circuit the
RGB LED illuminates with constant
brightness with the colours set with
pots P1 to P3.
Source code of some sample firmware
for the ATtiny25 is available for down-
loading free of charge from the Elektor
web page [5] (see also the inset
‘Software’).

(080178-I)

Internet Links
and Literature
[1] AAT3129 Data Sheet:
www.analogictech.com/products/digitalfiles/

AAT3129.pdf

[2] AS2Cwire application notes:
www.analogictech.com/resources/applicati-
ons/appnotes/AN110_S2Cwire_TLAT.pdf

[3] HSV Colour Space and Colour Space
Conversion:
http://en.wikipedia.org/wiki/HSV_color_space

http://www.cambridgeincolour.com/tutorials/
color-space-conversion.htm

[4] GCC Compiler for AVR:
http://winavr.sourceforge.net

[5] www.elektor.com/080178

Software
There are two important things to note in this software written in C. Firstly, the reset pin of
the ATtiny25 is used as an input pin, meaning that the fuse value RSTDISBL (see Figure 5)
must be defined. Once this has been done, no further SPI programming is possible. Special
care is vital, as your nice new controller will turn out useless if it contains any software errors.
Secondly, during colour changes the software optimises the display of uncommon greyscale
hues during the transformation of one colour to another. Colour saturation is calculated ac-
cording to the HSV colour model [3] and the transition between colours of low saturation is
accelerated.

The serial control signal for the AAT3129 is generated using the following function:

	 void	tx_pulses(uint8_t	n){	
	 	 for	(i=n;	i>0;	i--)	{
	 	 	 PIN_AAT=1<<AAT_BIT;		
	 	 	 PIN_AAT=1<<AAT_BIT;	
	 	 }
	 }

This generates ‘n’ pulses on Bit ‘AAT_BIT’ of output ‘PORT_AAT’. This connection needs to
present a ‘high’ level whenever no data is being transmitted. Here is the initialisation of the
Port of the ATtiny25:

	 #define	PIN_AAT		 PINB
	 #define	AAT_BIT	PB0
	 #define	PORT_AAT	 PORTB
	 #define	DDR_AAT	DDRB

	 PORT_AAT|=1<<AAT_BIT;	//	Output	AAT_BIT	=	1
	 DDR_AAT|=1<<AAT_BIT;	//		AAT_BIT	is	Output

Writing to PINx toggles the polarity of the corresponding Bit of PORTx. Instead of writing
‘PIN_AAT=1<<AAT_BIT’	twice we can also write:

	 PORT_AAT&=~(1<<AAT_BIT);	//	AAT_BIT=	0
	 PORT_AAT|=1<<AAT_BIT;	//	AAT_BIT=	1

With a controller clock rate of between 14 kHz and 20 MHz both methods produce the re-
quired negative-going pulses with a duration of from 50 ns to 75 µs.

For the pause that indicates the separation signal between pulse sequences you can set one
of the timers or implement a delay routine. In the latter case writing the intensity ‘10’ to the
red LED looks like this:

	 #include	<util\delay.h>
	 //…
	 #define	CHANNEL_RED	17
	 //…	

	 tx_pulses(CHANNEL_RED);	//	CHANNEL_RED	pulse	select	RED	register	
	 _delay_ms(0.5);
	 tx_pulses(10);	//	Data	RED	register	(brightness	10	from	1-16)
	 _delay_ms(0.5);

If the GCC compiler [4] is used the optimisation option ‘–O2’ must be used.

About the author
Fred Splittgerber has been involved with
hardware-specific programming continu-
ally since the first 8-bit CPUs appeared.
He works as a technical author and
translator.

