Drive a blue LED from a 3V battery

Sergi Sánchez, Federal Signal Vama SA, Vilassar de Dalt, Spain

Figure 1 This circuit uses the On Semiconductor NCP1729 voltage inverter, $I C_{1}$, to produce enough voltage to drive blue LED D_{1}.

Using a blue LED can pose prob-
lems when available power-supply voltages don't meet or exceed the LED's 3V forward-voltage drop. This Design Idea shows how to drive a blue LED from a 3 V battery or another power supply. The circuit in Figure 1 uses the On Semiconductor (www. onsemi.com) NCP1729 voltage inverter, IC_{1}, to produce enough voltage to drive blue LED D_{1}. Transistor Q_{1} serves as a constant-current limiter for the LED's forward current. When current through the LED and R_{S} increases to a level that develops enough baseemitter voltage to turn on Q_{1}, Q_{1} 's collector draws current from the voltage divider comprising R_{1} and R_{2} and forces IC_{1} to shut down. The voltage inverter restarts when the voltage drop across R_{S} falls below Q_{1} 's base-emitter

LED APPLIED VOLTAGE		
$\mathrm{V}_{\text {BAT }}(\mathrm{V})$	$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{V}_{\mathrm{BE}\left(Q_{1}\right)}(\mathrm{V})$
1.8	-1.5	0.41
2	-1.37	0.46
2.5	-0.79	0.42
3	-0.27	0.4
3.5	0.23	0.41

In this application, the LED exhibits a voltage drop of ap- proximately 3.3 V at 10 mA forwardbias current. Table 1 illustrates the LED's applied voltage, $\mathrm{V}_{\mathrm{BAT}}+\left|\mathrm{V}_{\mathrm{OUT}}\right|$, and Q_{1} 's base-emitter voltage for various battery-voltage values.EDN

