Drive a blue LED from a 3V battery

Sergi Sánchez, Federal Signal Vama SA, Vilassar de Dalt, Spain

Using a blue LED can pose problems when available power-supply voltages don't meet or exceed the LED's 3V forward-voltage drop. This Design Idea shows how to drive a blue LED from a 3V battery or another power supply. The circuit in Figure 1 uses the On Semiconductor (www. onsemi.com) NCP1729 voltage inverter, IC₁, to produce enough voltage to drive blue LED D_1 . Transistor Q_1 serves as a constant-current limiter for the LED's forward current. When current through the LED and R_o increases to a level that develops enough baseemitter voltage to turn on Q_1, Q_1 's collector draws current from the voltage divider comprising R₁ and R₂ and forces IC₁ to shut down. The voltage inverter restarts when the voltage drop across R_s falls below Q_1 's base-emitter

BLE 1 LED APPLIED VOLTAGE		
$\mathbf{V}_{BAT}\left(V\right)$	V _{out} (V)	V _{BE(Q1)} (V)
1.8	- 1.5	0.41
2	- 1.37	0.46
2.5	-0.79	0.42
3	-0.27	0.4
3.5	0.23	0.41

turn-on threshold. Pulling transistor Q_2 's base to ground through R_2 turns on the circuit.

In this application, the LED exhibits a voltage drop of ap-

proximately 3.3V at 10 mA forwardbias current. **Table 1** illustrates the LED's applied voltage, $V_{BAT} + |V_{OUT}|$, and Q_1 's base-emitter voltage for various battery-voltage values.**EDN**