Get accurate Fast Fourier Transforms
with a digital computer. What's needed is a clear understanding
of the practical limitations and tradeoffs.

Large savings in design time can be realized
with Fourier transformations that permit the
analysis of functions in either the time or fre-
quency domain. Their versatility spans the de-
sign spectrum, because the frequency domain is
convenient for linear analysis while the time do-
main is ideal for nonlinear systems. The value of
Fourier transforms as a designer’s tool has been
further increased with the development of the
Fast Fourier Transform (FFT),° with tech-
niques for speeding the FFT,’ and with the grow-
ing availability of computers. But digital com-
puters, of course, can work only with discrete
transforms, and this creates a problem.

The designer must know the precise conditions
under which a computer transform is useful and
reliable. Once these conditions are understood,
not only will the results be reliable but the de-
signer will also be able to specify with confidence
the memory size and amount of data needed to
take the transform of a given type of waveform.

Transforms come in pairs

What is a transform? The word is often mis-
used by engineers. When an engineer talks about
a “transform,” he usually means one member of
a transform pair. But the pair consists of two
functions. And when a set of data is applied to
one function, a second set of data results. This
second set, when applied to the gecond function,
must reconstruct the original data precisely. For
example,

F@) = (1/2) [£({) +T]
and

£(i)=2FE@G) =T
is a transform pair, although not a very useful
one.

The transform pair for the Fourier series of a
funection f(t) of period T is

T/2

Fim)— /M)y f(E)e 2 dt

-T2

Peter K. Bice, Engineer, Hewlett-Packard, Palo Alto,
Calif. 94304.

Q4

A (1)
f(t) =3 F(n)e ™,

n=—00

That this is a transform pair can be readily veri-
fied by plugging one into the other and noting
that an identity results.

Another transform pair, called the Fourier
integral, is defined as follows:

Eo) — (1/2w)/f(t)e—sw= dt
Y (2)
f(t) :fF(w)eJ‘“ de.

This transform pair is also a valid expression for
most cases of f(t).

Transform pairs 1 and 2 are both well known.
Furthermore we are interested in a different kind
of transform pair—the one that can be handled
by a computer. This is because a digital computer
cannot integrate continuous functions, nor can it
operate between infinite limits.

A pair that the computer can handle

A transform pair defined as a Discrete Finite
Transform (DFT) is given by

F(n) = (1/N) 3 £(i) e/, (3)

£(i) =3 F(n)ern,

First, note that the expressions do indeed form
a transform pair: If one is plugged into the
other, an identity results. Second, note that it is
very similar in form to the expressions for the
Fourier series and integral. Thus, by making cer-
tain assumptions about summing instead of inte-
grating and by juggling the limits, we can sub-
stitute the discrete transform pair (Egs. 3) for
either Eqs. 1 or Egs. 2.

When we turn to periodic time functions, we
often want to solve equations like this with a
computer:

T/2

f £ (t) @ oot dt, (4)

-T/2

F(n) = (1/T)
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n=0

n=N/2

n=-N/2

1. Waveform spectrum repeats with a ‘‘period"” N the
number of samples taken. Harmonics higher than N/2
are misleading and must be eliminated by making the

The usual form of the algorithm for solving
this is
N—1

F(n) = (1/N) _f,:f(i")e jinzm/N | (5)

Equations 4 and 5 are very similar. In fact, if
we make a few simple substitutions, they can be
made to be as nearly equal as desired.

First, let's replace the continuous integral with
a sum and the continuous f(t) with a sampled
version, f(iat). This means that

lipcrlod).f = ztlpnrind}
dt — At
t — iat,
where At is the interval between samples of the
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n=3N/2

n=2N

sampling frequency higher than twice the highest har-
monic frequency in the waveform. Unless this is done,
the individual spectra may overlap.

time function f(t) and i is the number of the
sample. Assuming that the entire period consists
of N samples of the time function, we obtain

T — Nat.

If we now abbreviate, for the sake of simplici-
ty, £(iat) as f(i)—the i-th sample of the time
function—and carry out all the substitutions, we
get

F(n) = (1/N) E%Ei)e-iinzw, (6)

which is exactly the Discrete Finite Transform.
Note that we don’t have to make such substi-

tutions into the inverse transform of the Fourier

series. Using the other half of the DFT pair is
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2. Envelope definition improves as the number of sam-
ples increases, as indicated in the spectra of two periodic

sufficient to recover the original data.

In the development of the Fourier series,
F(n), for a periodic waveform, the only compro-
mise that was made so the series could be han-
dled by a digital computer was to substitute a
sample-and-add technique for the integration.
How serious is this compromise?

Accuracy depends on the sampling rate

It is obvious on the surface that it makes no
difference at all if the samples are spaced very
close, but it can be catastrophic if they are
spaced too widely. To get a feel for an appropri-
ate sampling interval, let's substitute n + N in-
stead of n into Eq. 6, the definition of the DFT:

F(Il i N) — (1/N)NE_;E(i)e“JianIN g —ilew
i=a
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square pulses. The waveforms have periods of twice
(left) and six times (right) the constant pulse width.

which reduces to the following equation:
N—1
F(n + N) = (1/N) ?f{(i)e‘“"?'/“', (7
because e?'*" is always unity.
Note that the right-hand sides of Eq. 6 and Eq. 7
are identical. We therefore conclude that
F(n + N) = F(n). (8)
In other words, F'(n) is “periodic” (in the fre-
quency sense) with a “period” of N. Beyond the
first N values of F (n), there is no information to
be gained. In fact, that information is mislead-
ing; F(N) is always the same as F'(0) in a DFT.
To understand this a little better, suppose that
the waveform to be analyzed has no harmonics
numbered higher than N/2. Then the DFT will
result in a periodic spectrum (Fig. 1), where
repetitions of the spectrum do not overlap the
original. In a case such as this—where the har-
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monics above N/2 are zero—the amplitudes of
these harmonics can be accepted as accurate.

Consider the case, however, where higher har-
monics are present. Picture the righthand edge
of the “primary” spectrum in Fig. 1 moving to
the right beyond the n — N/2 line. While this is
happening, the lefthand edge of the ‘“‘secondary”
spectrum will be creeping leftward, eventually
overlapping and adding to lines below the n =
N/2 line. For this reason, higher harmonics—
of even lower than N/2—are not known pre-
cisely. This problem of harmonic overlap is called
“aliasing.”

To cure aliasing, make sure that there are no
harmonices in the input waveform that are higher
than N/2, where N is the number of samples
taken in the period. This requirement can be
met by low-passing the input waveform or by in-
creasing the sampling rate, thus increasing N.

Another way to define the cure for aliasing is
to guarantee that the sampling frequency is at
least twice the highest frequency in the input
waveform (a part of Shannon’s Sampling
Theorem). This is, of course, the same as saying
that there’ll be no harmonies beyond N/2. In-
deed, the fundamental frequency of the input
waveform is 1/(Nat), so that the highest allow-
able frequency is 1/(2At). But 1/At is simply
the sampling frequency, since At is the sampling
interval,

Calculating the Fourier integral on a computer

Now suppose that you want to calculate the
Fourier integral of a function, rather than the
Fourier series just described. Their equations
are:

F (nwo) =(1/T) ff (t) e-inwot dt.
(1 period)
(9

Fourier series:

o
Fourier integral:F(w) =(1/27)ff(t)e-ie* dt.
it
(10)

Since we know how to approximate the Fourier
series on a computer, we can use similar tech-
niques to approximate the Fourier integral.

As we let w, get very small, the discrete values
of nw, approach a continuous variable, w. Allow-
ing w, to get small means letting the duration of
the sampled waveform get very long. As this oc-
curs, the limits on the integration approach in-
finity. Consequently—except for the scale factor
—we can make these two equations approach
each other simply by making the sampling period
long.

This correlation between the Fourier series
and the Fourier integral can be stated in another,
more useful way. Suppose you want to find the
Fourier integral of a square pulse. If you make

ELECTRONIC DESIGN 10, May 10, 1973

a periodic waveform of square pulses and meas-
ure and plot the amplitudes of the harmonics
against their frequencies, these harmonics will
exist at discrete frequencies, and their amplitudes
will lie on a (sin x) /x envelope (Fig. 2).

If another periodic waveform is now created
for pulses of the same shape, but the repetition
rate is made half that of the previous rate—so
there'll be more “dead time” between pulses—
and if the amplitude is doubled, the envelope of
the resulting spectrum will be exactly that of the
previous envelope. But since the fundamental fre-
quency is half what it was, the spectrum lines
will be more closely spaced and the envelope
defined better.

This envelope, which gets filled better and bet-
ter as we increase the length of the period, is
(except for the scale factor) the Fourier integral
of the waveform being analyzed. You need only
decide what is the desired resolution and then
make the measurements accordingly.

To find the proper scale factor, note that

F(0) = (1/2x) f £(t)dt. (11)

This quantity can be :aasily calculated and then
used to scale the resulting spectrum.

Is your computer large enough?

So far the assumption has been that we have
a perfect method for finding the Fourier series.
If you must rely on the DFT to approximate the
series, however, you must remember its inherent
limitations. You must combine a long sampling
period (to get good resolution of the envelope
that defines the Fourier integral) with a high
sampling rate (to prevent aliasing). And since
the sampling rate multiplied by the duration
equals the number of samples taken, you can cal-
culate the size of the transform that can be han-
dled. In other words, the size of the transform
that can be handled depends on the computer
gize and the available computer time. =m

References:

1. Cooley, J. W. and Tukey, J. W., “An Algorithm for
the Machine Calculation of Complex Fourier Series,”
Mathematics of Computers, Vol. XIX, April, 1965, pp.
297-301.

2. Haavind, Robert, “The FFT Computer: Designer’s
Missing Link,” Electronic Design, Dec, 6, 1967, pp. 25-29.

3. Klahn, Richard and Shively, Richard R., “FFT-
Short Cut to Fourier Analysis,” FElectronics, April 15,
1968, pp. 124-129.

4. Bergland, G. D., “A Guided Tour of the Fast
Fourier Transform,” IEEE Spectrum, July, 1969, pp. 41-
52,

5. Singleton, Richard C., “On Computing the Fast
Fourier Transform,” Committee of the ACM; Vol. 10,
No. 10, Oct., 1967.

6. Brigham, E. 0. and Morrow, R. E. “The Fast
Fourier Transform,” IEEE Spectrum, December, 1967,
pp. 63-70.

7. Bice, P. K., “Speed Up the Fast Fourier Trans-
form,"” Electronic Design, April 26, 1970, pp. 66-69.

R7





