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In this last part, Mike Bedford takes a look at some 
of the sophisticated ciphers which are in use today, 
such as the banks and corporations world-wide, 
and which will pave the way to the widespread 

adoption of e-commerce. 

o far in our investigation of code 
making - or cryptography to use the 
proper terminology - we’ve seen a 

progression from ciphers which can be used 
by hand to those which required machines 
to automate the encryption and decryption 
processes. We’ve also seen a trend towards 
automation in code breaking or 
cryptanalysis. Specifically, we saw how the 
first ever electronic computers were 
designed for the sole purpose of cracking 
German wartime ciphers - and these two 
trends continue hand-in-hand. As improving 
technology permits ever more sophisticated 
ciphers to be used, so the code breakers 
also turn to increasingly advanced 
technology. As cryptanalysis goes hi tech, 
then so the code making has to become 
cleverer still. But, whereas 50 years ago the 
hardware used for cryptography was rare, 
expensive, and protected by the Official 
Secrets Act, today it is commonplace. Any 
PC can be used to emulate the wartime 
cipher machines like Enigma or perform 
cryptanalysis in just the same way as the 
Bombe electro-mechanical or the Colossus 
electronic computers. And so there’s been 
another trend in the world of cryptography. 
Since the tools of the trade are now easy to 
get hold of, ciphers are no longer the sole 
domain of spies and the military. Encryption 
is now an important commercial tool, 
especially as the potentially insecure 
Internet is being used to transmit sensitive 
information such as credit card details. This 
month, to bring our investigation of 
cryptography to a close, we’ll take a look at 

some of the sophisticated ciphers which are 
in use today. These are the ciphers which 
are used by banks and corporations world- 
wide and which will pave the way to the 
widespread adoption of e-commerce. 

Data Encryption 
Standard - DES 
The Data Encryption Standard, or DES, was 
developed during the 70s in response to a 
US government initiative for the provision 
of a cheap, secure encryption technology 
for use in the protection of non-classified 
information, which would be available to all 
and appropriate for use in a wide variety of 
applications. 

DES is described as a secret key, block 
product cipher. We’ve already come across 
the term ‘product cipher’ - one which uses 
a combination of substitution and 
transposition - but, if your knowledge of 
ciphers is limited to what you’ve read in the 
first two articles in this series, the other 

terms will be new to you. All the ciphers 
we've seen so far are stream ciphers, that is 
ciphers which operate on a single letter at a 
time. In a block cipher, the algorithm 
operates on a block of data at a time and in 
DES that block is 64 bits or eight ASCII 
characters long. The final term, secret key, is 
an intriguing one. It means exactly what it 

sounds like - that the sender and the 
receiver use a key which is kept secret from 
all other parties in order to maintain secure 
communication. Surprisingly, though, there 
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are other types of cipher where the key is 
not kept secret but we’ll have to leave an 
explanation of this until later in the article. 

The DES algorithm isn’t especially difficult 
to understand - it can readily be implemented 
in hardware, and a high level language 
program runs only to around 300 lines - but 
it is a rather long and protracted process. In 
our description of DES, therefore, I shall 
rely heavily on flow diagrams. I suggest that 
you refer to the diagrams as you work your 
way through the textual description. Figure 
13 is the overall flow diagram of the DES 
encryption process and Figure 14 is a more 
detailed view of what happens in each of 
the boxes in Figure 13 which are labelled 
‘Iteration 1’ to ‘Iteration 16.’ Note that in 
each of these diagrams, blue boxes 
represent the data as it progresses through 
the process, changing from plain text to 
cipher text en route, yellow boxes represent 
keys, and green boxes represent operations. 
To give an example from Figure 13, the 
operation labelled ‘Iteration 1’ takes data LO, 
RO and key K1 as its inputs and generates 

data L1 and R1 as its outputs. You'll notice 
that the flow diagrams show 16 keys labelled 
K1 to K16, each of which is used in one of 
the iterations. In fact, DES requires just the 
one 56-bit key but this is used to generate 
the sixteen 48-bit keys used in each of the 
iterations. We’ll take a look at how these 
sixteen keys are generated once we’ve 
worked through the main encryption 
process. 

Initial Permutation 
As we’ve already seen, DES works on 

blocks of 64-bits. The first stage in the 
encryption process is a transposition - this is 
designated by the box labelled ‘Initial 
Permutation’. This involves jumbling up the 
64 bits according to a fixed transposition 
table. The 64-bit result is then divided into 
32-bit left and right parts, LO and RO which 
are processed in the first iteration to give 
another pair of 32-bit parts, L1 and R1. This 
continues until, after the 16th iteration is 
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complete, L16 and R16 are re-combined and 
finally subjected to the Inverse Initial 
Permutation - another transposition, in fact 
the reverse of the first transposition - to give 
the final cipher text. 

So, now let’s take a look at what goes on 
in each of those 16 iterations. The right- 
hand part of the input data to iteration n, 
Rn-1, is transposed using another fixed table 
call the E-bit selection table. In fact, 16 of 
the bits are also duplicated as part of this 
process, thereby increasing the length to 48 
bits. The result is now XORed with the 48- 
bit key for this particular iteration, Kn. The 
48-bit result is now split into eight groups of 
six bits each. The box labelled Permutation 
P is, in fact, a fixed substitution so each of 
these 6-bit values is substituted for a 
different value, each now 4-bits in length. 
The eight 4-bit values are now re-combined 
to give a 32-bit result, and this is now 
XORed with the left hand part of the input 
data to iteration n, Ln-1, to give the right 
hand part of the output data from the 
iteration, Rn. The left-hand part of the 
output data from iteration n, Ln, is simply 
the right hand part of the input data, Rn- 
1.Turning now to the generation of the Keys 
for each iteration, K1 to K16, we’ll refer to 
Figures 15 and 16. As before, the first figure 
is an overall flow diagram and the second 
shows the detail of what goes on in each 
iteration. I won’t go through these in detail 
—T'll just point out that the boxes labelled 
‘Permuted Choice 1’ and ‘Permuted Choice 
2’ involve a transposition of bits and that the 
second of these also discards some of the 
bits to produce Kn, the 48-bit key.for 
iteration n. 

We haven’t presented all this because we 
expect that many of you will feel inclined to 
write your own DES software - and you’d 
need the details of each of the transposition 
and substitution tables if you were to try. 
The reason for showing you the flow 
diagrams is to illustrate that, despite being 
somewhat convoluted, the process is really 
just a block-oriented extension of techniques 
we've already see. This contrasts with the 
RSA cipher which we’ll look at next. But at 
this stage it’s appropriate to address the 
question of whether this is a 
monoalphabetic or a polyalphabetic cipher. 
After all, we saw in the first part of this 
series that any monoalphabetic cipher - one 
which always causes a particular plain text 
letter to become the same cipher text letter 
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- is not very secure. Specifically, it can be 
cracked by measuring the frequency of 
occurrence of cipher text letters, letter pairs 
and triplets and comparing them to the 
frequency of occurrence in the English 
language. At first sight, DES does appear to 
be monoalphabetic — with the same key, 
one block of input data will always produce 
the same block of output data. However, 
the phrase monoalphabetic doesn’t apply 
since the algorithm operates on blocks of 
64-bits or eight characters at a time rather 
than on a single letter. Whereas a block will 
always encode the same way, if that block 
was composed of eight letter as, for 
example, those eight letters wouldn’t all end 
up represented by the same eight bits in the 
final cipher text. Any attempt to crack a 
code by looking at the frequency of 
occurrence of blocks of eight characters - 
the equivalent of the method we used to 
crack monoalphabetic ciphers - just isn’t an 
option. 

Public Key Ciphers 
DES is described as a private key cipher 

as, for that matter, are all the ciphers we’ve 
seen so far. And in a private key cipher, only 
those parties authorised to encrypt or 
decrypt messages should have knowledge 
of that key. This seems so obvious and so 
much a part of all we’ve seen so far that it 
will probably come as a surprise to learn 
that there is a different class of cipher called 
the public key cipher. But before we look at 
this in more detail, let’s 
give some thought to the 
problems with private key 
ciphers. Let’s assume that 
I want to communicate 

with you over a 
communication channel 
which I know isn’t secure. 
We’ve never 
communicated before so 
we'll need to agree on 
some method of 
encryption. OK, perhaps I 
take the initiative here so I 

encryption standard and I 
pick a key. But now, of 
course, there’s a problem. 
How do I let you know 
the key I’ve picked - 
certainly I can’t transmit it 

Figure 16. 
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to you over that insecure communication 
channel. In practice, the only really secure 
method would be for me to hand the key to 
you in person. But for someone who needs 
to communicate with a number of parties 
world-wide, communicating the keys would 
be a lengthy and expensive process. This 
problem of key distribution is the one 
which public key encryption is designed to 
overcome. 

Another name for a private key cipher is a 
symmetrical key cipher. What this means is 
that the same key is used for encryption and 
decryption as shown in Figure 17. A public 
key cipher, on the other hand, is 
asymmetrical in that one key is used for 
encryption and a different key is used for 
decryption. This scheme is illustrated in 
Figure 18. The two keys are, obviously, 
related, but the cipher is designed such that 
someone can’t work out the one key from 
the other. Strictly speaking, of course, it is 
possible to determine one key from the 
other but it would take a phenomenal 
amount of computing time. When I talk of 
something being impossible, therefore, 
what I really mean is that it’s computationally 
impractical. So let’s now look at how this 
helps overcome the problem of key 
distribution. All parties intending to 
communicate using public key encryption 
generate a pair of keys. Note that, although 
it’s not possible to work out one key from 
the other, it is, of course, possible to 
generate a pair of keys with this strange 
relationship. One of the keys is kept secret 
which is called the private key and is never 
divulged to anyone else, and the other key 
is published. It would be possible, for 
example, for people to publish their public 
key in a directory of e-mail addresses. Now, 
if 1 want to send a message to you, I encrypt 
it using your public key. Only you will now 
be able to decrypt that message since the 
decryption process requires your private 

key. Similarly, to reply, you would encrypt 
the message using my public key and I 
would decrypt it using my private key. Only 
the public keys have to be distributed and 
there’s no need to keep these secret, so the 
problem of key distribution has been 
solved. 

RSA Public Key Cipher 
The most common public key cipher is 

called RSA in recognition of its three 
developers, Rivest, Shamir and Adleman. I’m 
not going to describe the inner workings of 
the RSA cipher at all. Unlike DES, which is 
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long and convoluted but relatively simple 
nonetheless, the mathematics behind 
RSA is horrendously complicated. 
Encryption and decryption of RSA also 
involves about a thousand times more 
computing time than DES which is one of 
the major disadvantages of the public key 
approach. For this reason, a common 
technique is to use a public key scheme 
for the distribution of a key which is then 
used with a separate private key cipher. The 
private key would be used for just the one 
message and then discarded. Figure 19 
shows this hybrid method in use. 

At first sight, it would seem that another 
disadvantage of a public key cipher is that it 
doesn’t allow authentication of the sender. 
With a private key cipher, if you receive a 
message, purportedly from a known party, 
the fact that you’re able to decode it using a 
key known only to you and that party would 
indicated that it had indeed been sent by 
that party. As it stands, of course, no such 
authentication is provided by a public key 
cipher. Anyone could encode a message to 
you using your public key and you’d have 
no way of telling whether the message 
actually came from whom it claims to have 
been sent by. However, a well designed 
public key cipher, such as RSA, does allow a 
sender to electronically ‘sign’ a message in a 
unique way. Let’s see how this works by 
referring to Figure 20. First of all, though, 
we need to take a look at the concept of a 
one-way hash function. This is a function 
which operates on a block of data to 
generate a unique value but for which there 
is no reverse function which would allow 
the original data to be recovered. An 
example is the checksum which is 
appended to the end of a block of data to 
allow the receiver to verify whether or not 
the data had been corrupted during 
transmission. The receiving party calculates 
the checksum from the received data and 
compares it with the checksum calculated 
by the sender and appended to the 
message. A discrepancy indicated data 
corruption. So, to return to the digital 
signature, the sending party encrypts the 
message using the intended recipient’s 
public key using the method Wwe’ve already 
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seen. The sender also performs a one-way 
hash function on the unencrypted text and 
encrypts the result of the hash function 
using his own private key. Now, RSA allows 
messages either to be encrypted using the 
public key and decrypted using the private 
key or vice versa. Encrypting using the 
private key is not normally very useful since 
anyone could then decrypt that message 
using the public key but it is useful in this 
instance. The recipient decrypts the message 
using his own private key and then 
performs the one-way hash function on the 
decrypted message. The recipient now 
decrypts the hash function result sent by 
the other party using that party’s public key. 
If the result is the same as the locally- 
generated hash function result, this proves 
that the message had been sent by the party 
whose public key had been used to decrypt 
the hash function result. The sender is, 
therefore, authenticated. 

Political Wranglings 
In the section on DES, we spoke about a 

key length of 56 bits. In fact, there has been 
quite some controversy over the years about 
the key length of this and other encryption 
algorithms. The standard which formed the 
basis of DES, IBM’s Lucifer, had a 128-bit 
key. Before authorising it for public release, 
though, the National Security Agency — the 
USA's equivalent of MI5 — insisted on a 
reduction to 56 bits. As you could well 
imagine, this made the cipher substantially 
less secure, in fact, a brute force attack 
would manage to crack the 56-bit DES a few 
trillion times quicker than the full 128-bit 
variant. However, as you'll know if you’ve 
followed the political tos-and-fros reported 
in the computer magazines, the US 
government imposed even more stringent 
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limitations on what could be exported. 
Encryption software is considered to fall 
into the same category as munitions for 
export purposes. Accordingly, such software 
can only be shipped from the USA with an 
appropriate export license. Licenses were, 
initially, only granted for products with a 40- 
bit keys - another 64,000 times less secure 
than the 56-bit version. 

The fact that something is illegal, doesn’t 
always prevent it from happening, though, 
as is evidenced by the Zimmermann saga. 
American mathematician Phil Zimmermann, 
developed a system of cryptography called 
PGP or Pretty Good Privacy which had a 
128-bit key and could not, therefore, be 
exported legally. This didn’t deter 
Zimmermann, though, and, in common 
with much of the early Internet community, 
felt that a stand had to be made in the 
interests of free speech. That stand involved 
making the source code of PGP freely 
available over the Internet and it came very 
close to gaining Zimmermann a four year 
spell in a Federal Penitentiary. Another line 
of attack against apparently unjust export 
restrictions was totally legal. Academics and 
hackers everywhere started a consorted 
attack on 40-bit versions of DES and similar 
ciphers. Some of the cryptanalysts were 
flying the ‘free speech’ flag by showing how 
insecure a 40-bit key was, for others the 
motivation was the pure technical challenge 
of cracking a cipher, but it’s also significant 
that for many others the motivation was 
financial — cash prizes were on offer. And 
who was putting up this money? Well, if I 
tell you that the export restrictions were 
causing American software houses to loose 
out to foreign competition, you'll probably 
guess the answer — these companies had a 
vested interest in proving to the NSA that a 
40-bit cipher is virtually useless. So how did 
these amateur cryptanalysts fare? In 1995, 
French student Damien Doligez cracked a 
40-bit cipher in eight days using a 
combination of 120 workstations and a few 
supercomputers. The next year, a group of 
cryptographers estimated that a 40-bit key 
could be cracked in 12 minutes and a 56-bit 
key in 18 months using a $10,000 machine 
consisting of 25 FPGAs. For $10 million, a 
machine with 25,000 FPGA chips could 
crack a 56-bit DES key in 13 hours; one with 
250,000 ASICs could do it in 6 minutes. In 
1997, following RSA Data Security’s 
announcement of cash prizes for the first 
person breaking each cipher of varying key 
lengths, Ian Goldberg, a student at Berkeley, 
walked away with a $1,000 prize of cracking 
the 40-bit RCS cipher in three and a half 
hours using a network of 250 computers 
that tested 100 billion keys per hour. A few 
weeks later, Germano Caronni of the Swiss 
Federal Institute of Technology won the 
$5,000 48-bit prize. Caronni used more than 
3,500 computers networked over the 
Internet to search 1.5 trillion keys per hour. 
The key was found after 13 days. 

Well, to cut a long story short, the US 
government eventually relented about a 
year ago and encryption systems with key 
lengths up to 56-bits can now be exported. 
However, it’s questionable how much more 
secure 56-bit key is today than a 40-bit key 
was when DES was first introduced. More 
recently, a team assembled by the Electronic 
Frontier Foundation cracked the 56-bit DES 
in less than 23 hours. In fact, a bill which 
will abandon all export controls on 
encryption products is in the process of 
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being introduced. Until recently, though, it 
looked as if this bill only stood a chance of 
being approved if it required suppliers of 
products to build in a key recovery 
mechanism. Also referred to as ‘the back 
door’, this is a method, in theory known 
only to the supplier and to certain 
government departments including law 
enforcement agencies, which would permit 
a message to be decrypted without use of 
the key. Needless to say, civil liberty groups 
voiced opposition to this, as 
did other parties concerned 
that the back door could well 
jeopardise security. So, if 
you’re concerned about civil 
liberties you'll be dismayed to 
hear, no doubt, that the British 
government, in its proposed 
forthcoming legislation, looks 
set to require something 
similar. But instead of a back 
door, the proposed solution is 
to use the services of a so- 
called Trusted Third Party. 
Users of encryption products 
would be required to lodge 
their key with this trusted 
third party. In the event of an 
investigation relating to 
criminal or terrorist activity, 
the police and other 
government departments 
would be ably to apply to 
obtain the key from the 

trusted third party. 

Hands-on 
Encryption 

To conclude our 
investigation of the world of 
cryptography, I thought it 
would be appropriate to give 
pointers on where you can get 
hold of cryptographic 
software. ’m not talking here 
of software which could be 
described as a curiosity - 
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software to illustrate 
the use of the various 
historical ciphers we 
looked at earlier in 
this series - I’m talking 
about software which 
can be used for real 
world applications. 
However, if you do 
want to play around 
with some of the 
historical ciphers, 
search engines will list 
a wealth of 
information. Bear in 
mind, though, that if 
you just look for 
words such as cipher, 
encryption, 

cryptography and the 
like you'll get just too 
many references and 
most of them will be 

va to current day 
— cryptography. So try 

looking for 
information on 
specific historical 
ciphers such as Playfair 
or Enigma. 

But to return to my main emphasis, 
practical cryptographic software will, almost 
certainly, be based on the ciphers described 
in this article, that is DES or RSA. And 
commercial products are available from 
companies like Sophos (www.sophos.com) 
who specialise in computer security. In 

addition to encryption for the purpose of 
secure electronic transmission of data, 
packages which will encrypt data as it’s 
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written to your hard disk and decrypt it as 
it’s read back are also available. This, of 
course, provides protection from 
unauthorised access to your PC and secures 
your data in the event of the PC being 
stolen. However, there is also plenty of 
public domain software and shareware 
available for downloading from the Web. If 
you look around I’m sure you'll find plenty 
but here are a couple of examples of free 
software which you may like to take a look 
at. Do bear in mind, though, that you 
should properly virus-check any software 
you download from the Web before you use 
it. Scramdisk, available from 
http://www.scramdisk.clara.net, encrypts the 
data on your hard disk to protect it from 
prying eyes. The software decrypts data on 
the fly but only to a user who can enter the 
appropriate password (i.e. key). And a 
number of packages for file encryption and 
secure e-mailing can be downloaded from 
http://abi.hypermart.net. 

Finally, as a parting shot, I thought you 
might also be interested in taking a look at 
http:/Aveb.mit.edu/network/pgp.html which 
is the Web site from which PGP - the 
software which got Phil Zimmermann into 
so much trouble - can be downloaded. 
However, you won't actually be able to 
obtain the software from that site, not 
unless you make some false declarations, 
that is, since it is still governed by US export 
restrictions. Specifically, in order to be 
provided with complete details of how to 
download the software, you have to 
electronically sign a declaration stating 
either that you’re a US citizen living in the 
USA or that you’re a Canadian citizen living 
in Canada. Personally, I wouldn’t risk 
incurring the wrath of the CIA by making a 
false declaration. 

Figure 8. Logical wiring diagram of the German wartime Enigma machine. 
This is reprinted in colour and applies to the text in Part 2 from last month. 
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