

The Essentials of
Data Science
Knowledge Discovery Using R

Chapman & Hall/CRC
The R Series

John M. Chambers
Department of Statistics

Stanford University
Stanford, California, USA

Duncan Temple Lang
Department of Statistics

University of California, Davis
Davis, California, USA

Torsten Hothorn
Division of Biostatistics

University of Zurich
Switzerland

Hadley Wickham
RStudio

Boston, Massachusetts, USA

Aims and Scope
This book series reflects the recent rapid growth in the development and application
of R, the programming language and software environment for statistical computing
and graphics. R is now widely used in academic research, education, and industry.
It is constantly growing, with new versions of the core software released regularly
and more than 10,000 packages available. It is difficult for the documentation to
keep pace with the expansion of the software, and this vital book series provides a
forum for the publication of books covering many aspects of the development and
application of R.

The scope of the series is wide, covering three main threads:
•	 Applications of R to specific disciplines such as biology, epidemiology,

genetics, engineering, finance, and the social sciences.
•	 Using R for the study of topics of statistical methodology, such as linear and

mixed modeling, time series, Bayesian methods, and missing data.
•	 The development of R, including programming, building packages, and

graphics.

The books will appeal to programmers and developers of R software, as well as
applied statisticians and data analysts in many fields. The books will feature
detailed worked examples and R code fully integrated into the text, ensuring their
usefulness to researchers, practitioners and students.

Series Editors

Published Titles

Stated Preference Methods Using R, Hideo Aizaki, Tomoaki Nakatani,
and Kazuo Sato

Using R for Numerical Analysis in Science and Engineering,
Victor A. Bloomfield

Event History Analysis with R, Göran Broström

Extending R, John M. Chambers

Computational Actuarial Science with R, Arthur Charpentier

Testing R Code, Richard Cotton

The R Primer, Second Edition, Claus Thorn Ekstrøm

Statistical Computing in C++ and R, Randall L. Eubank and
Ana Kupresanin

Basics of Matrix Algebra for Statistics with R, Nick Fieller

Reproducible Research with R and RStudio, Second Edition,
Christopher Gandrud

R and MATLAB®David E. Hiebeler

Statistics in Toxicology Using R Ludwig A. Hothorn

Nonparametric Statistical Methods Using R, John Kloke and
Joseph McKean

Displaying Time Series, Spatial, and Space-Time Data with R,
Oscar Perpiñán Lamigueiro

Programming Graphical User Interfaces with R, Michael F. Lawrence
and John Verzani

Analyzing Sensory Data with R, Sébastien Lê and Theirry Worch

Parallel Computing for Data Science: With Examples in R, C++
and CUDA, Norman Matloff

Analyzing Baseball Data with R, Max Marchi and Jim Albert

Growth Curve Analysis and Visualization Using R, Daniel Mirman

R Graphics, Second Edition, Paul Murrell

Introductory Fisheries Analyses with R, Derek H. Ogle

Data Science in R: A Case Studies Approach to Computational
Reasoning and Problem Solving, Deborah Nolan and Duncan Temple Lang

Multiple Factor Analysis by Example Using R, Jérôme Pagès

Customer and Business Analytics: Applied Data Mining for Business
Decision Making Using R, Daniel S. Putler and Robert E. Krider

Flexible Regression and Smoothing: Using GAMLSS in R,
Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris,
and Fernanda De Bastiani

Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,
and Roger D. Peng

Graphical Data Analysis with R, Antony Unwin

Using R for Introductory Statistics, Second Edition, John Verzani

Advanced R, Hadley Wickham

The Essentials of Data Science: Knowledge Discovery Using R,
Graham J. Williams

bookdown: Authoring Books and Technical Documents with R Markdown,
Yihui Xie

Dynamic Documents with R and knitr, Second Edition, Yihui Xie

The Essentials of
Data Science
Knowledge Discovery Using R

Graham J. Williams

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170616

International Standard Book Number-13: 978-1-138-08863-4 (Paperback)
International Standard Book Number-13: 978-1-4987-4000-5 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

For Catharina
Anam Cara

To Sean and Anita
Quiet lights that shine

Blessings

http://taylorandfrancis.com

Preface

From data we derive information and by combining different bits
of information we build knowledge. It is then with wisdom that we
deploy knowledge into enterprises, governments, and society. Data
is core to every organisation as we continue to digitally capture
volumes and a variety of data at an unprecedented velocity. The
demand for data science continues to growing substantially with a
shortfall of data scientists worldwide.

Professional data scientists combine a good grounding in com-
puter science and statistics with an ability to explore through the
space of data to make sense of the world. Data science relies on
their aptitude and art for observation, mathematics, and logical
reasoning.

This book introduces the essentials of data analysis and ma-
chine learning as the foundations for data science. It uses the free
and open source software R (R Core Team, 2017) which is freely
available to anyone. All are permitted, and indeed encouraged, to
read the source code to learn, understand, verify, and extend it.
Being open source we also have the assurance that the software
will always be available. R is supported by a worldwide network
of some of the world’s leading statisticians and professional data
scientists.

Features
A key feature of this book, differentiating it from other textbooks
on data science, is the focus on the hands-on end-to-end process.
It covers data analysis including loading data into R, wrangling
the data to improve its quality and utility, visualising the data to

ix

x Preface

gain understanding and insight, and, importantly, using machine
learning to discover knowledge from the data.

This book brings together the essentials of doing data science
based on over 30 years of the practise and teaching of data sci-
ence. It presents a programming-by-example approach that allows
students to quickly achieve outcomes whilst building a skill set
and knowledge base, without getting sidetracked into the details
of programming.

The book systematically develops an end-to-end process flow
for data science. It focuses on creating templates to support those
activities. The templates serve as a starting point and can readily
incorporate different datasets with minimal change to the scripts
or programs. The templates are incrementally introduced in two
chapters (Chapter 3 for data analysis and Chapter 7 for predictive
machine learning) with supporting chapters demonstrating their
usage.

Production and Typographical Conventions
This book has been typeset by the author using LATEX and R’s
knitr (Xie, 2016). All R code segments included in the book are
run at the time of typesetting the book and the results displayed
are directly and automatically obtained from R itself.

Because all R code and screenshots are automatically gener-
ated, the output we see in the book should be reproducible by the
reader. All code is run on a 64-bit deployment of R on a Ubuntu
GNU/Linux system. Running the same code on other systems
(particularly on 32 bit systems) may result in slight variations
in the results of the numeric calculations performed by R.

Sample code used to illustrate the interactive sessions using
R do not include the R prompt, which by default is “> ”. Nor
do they include the usual continuation prompt, which by default
consists of “+ ”. The continuation prompt is used by R when a
single command extends over multiple lines to indicate that R is
still waiting for input from the user. For our purposes, including

Preface xi

the continuation prompt makes it more difficult to cut-and-paste
from the examples in the electronic version of the book.

R code examples will appear as code blocks like the ex-
ample code block shown over the page. The code block here uses
rattle::rattleInfo() to report on the versions of the R soft-
ware and many packages used at the time of compiling this book.

rattle::rattleInfo()

Rattle: version 5.0.14 CRAN 4.1.0
R: version 3.4.0 (2017-04-21)
##
Sysname: Linux
Release: 4.10.0-22-generic
Version: #24-Ubuntu SMP Mon May 22 17:43:20 UTC 2017
Nodename: leno
Machine: x86_64
Login: gjw
User: gjw
Effective_user: gjw
##
Installed Dependencies
ada: version 2.0-5
amap: version 0.8-14
arules: version 1.5-2
biclust: version 1.2.0
bitops: version 1.0-6
cairoDevice: version 2.24
cba: version 0.2-19
cluster: version 2.0.6
colorspace: version 1.3-2
corrplot: version 0.77
descr: version 1.1.3
doBy: version 4.5-15
dplyr: version 0.7.0
....

In providing example output from commands, at times long
lines and long output will be replaced with ... and respect-
ively. While most examples will illustrate the output exactly as it
appears in R, there will be times where the format will be modified
slightly to fit publication limitations. This might involve removing
or adding blank lines.

xii Preface

The R code as well as the templates are available from the
book’s web site at https://essentials.togaware.com.

Currency
New versions of R are released regularly and as R is free and
open source software a sensible approach is to upgrade whenever
possible. This is common practise in the open source community,
maintaining systems with the latest “patch level” of the software.
This will ensure tracking of bug fixes, security patches, and new
features.

The above code block identifies that version 3.4.0 of R is used
throughout this book.

Acknowledgments
This book is a follow on from the Rattle book (Williams, 2011).
Whilst the Rattle book introduces data mining with limited ex-
posure to the underlying R code, this book begins the journey into
coding with R. As with the Rattle book this book came about from
a desire to share experiences in using and deploying data science
tools and techniques through R. The material draws from the prac-
tise of data science as well as from material developed for teaching
machine learning, data mining, and data science to undergraduate
and graduate students and for professionals developing new skills.

Colleagues including budding and experienced data scientists
have provided the motivation for the sharing of these accessible
templates and reference material. Thank you.

With gratitude I thank my wife, Catharina, and children, Sean
and Anita, who have supported and encouraged my enthusiasm
for open source software and data science.

Graham J. Williams

https://essentials.togaware.com

Contents

Preface ix

List of Figures xvii

List of Tables xix

1 Data Science 1
1.1 Exercises . 12

2 Introducing R 13
2.1 Tooling For R Programming 16
2.2 Packages and Libraries 22
2.3 Functions, Commands and Operators 27
2.4 Pipes . 31
2.5 Getting Help . 40
2.6 Exercises . 41

3 Data Wrangling 43
3.1 Data Ingestion 44
3.2 Data Review . 51
3.3 Data Cleaning 54
3.4 Variable Roles 63
3.5 Feature Selection 66
3.6 Missing Data . 77
3.7 Feature Creation 80
3.8 Preparing the Metadata 85
3.9 Preparing for Model Building 88
3.10 Save the Dataset 92
3.11 A Template for Data Preparation 94
3.12 Exercises . 95

xiii

xiv Contents

4 Visualising Data 97
4.1 Preparing the Dataset 98
4.2 Scatter Plot . 100
4.3 Bar Chart . 102
4.4 Saving Plots to File 103
4.5 Adding Spice to the Bar Chart 103
4.6 Alternative Bar Charts 107
4.7 Box Plots . 111
4.8 Exercises . 118

5 Case Study: Australian Ports 119
5.1 Data Ingestion 120
5.2 Bar Chart: Value/Weight of Sea Trade 123
5.3 Scatter Plot: Throughput versus Annual Growth 130
5.4 Combined Plots: Port Calls 138
5.5 Further Plots . 141
5.6 Exercises . 147

6 Case Study: Web Analytics 149
6.1 Sourcing Data from CKAN 150
6.2 Browser Data . 155
6.3 Entry Pages . 166
6.4 Exercises . 174

7 A Pattern for Predictive Modelling 175
7.1 Loading the Dataset 177
7.2 Building a Decision Tree Model 180
7.3 Model Performance 185
7.4 Evaluating Model Generality 193
7.5 Model Tuning 201
7.6 Comparison of Performance Measures 209
7.7 Save the Model to File 210
7.8 A Template for Predictive Modelling 212
7.9 Exercises . 212

8 Ensemble of Predictive Models 215
8.1 Loading the Dataset 216
8.2 Random Forest 217

Contents xv

8.3 Extreme Gradient Boosting 227
8.4 Exercises . 239

9 Writing Functions in R 241
9.1 Model Evaluation 242
9.2 Creating a Function 243
9.3 Function for ROC Curves 254
9.4 Exercises . 256

10 Literate Data Science 257
10.1 Basic LATEX Template 259
10.2 A Template for our Narrative 260
10.3 Including R Commands 263
10.4 Inline R Code . 265
10.5 Formatting Tables Using Kable 266
10.6 Formatting Tables Using XTable 270
10.7 Including Figures 276
10.8 Add a Caption and Label 281
10.9 Knitr Options 282
10.10Exercises . 283

11 R with Style 285
11.1 Why We Should Care 285
11.2 Naming . 287
11.3 Comments . 291
11.4 Layout . 292
11.5 Functions . 298
11.6 Assignment . 302
11.7 Miscellaneous . 304
11.8 Exercises . 305

Bibliography 307

Index 313

http://taylorandfrancis.com

List of Figures

2.1 RStudio: Initial layout. 17
2.2 RStudio: Ready to program in R. 19
2.3 RStudio: Running the R program. 20
2.4 Daily temperature 3pm. 40

3.1 Target variable distribution 63

4.1 Scatter plot of the weatherAUS dataset 101
4.2 Bar Chart . 102
4.3 Stacked bar chart 104
4.4 A decorated stacked bar chart 105
4.5 A decorated stacked filled bar chart 107
4.6 Multiple bars with overlapping labels 108
4.7 Rotating labels in a plot 108
4.8 Rotating the plot 109
4.9 Reordering labels 110
4.10 A traditional box and wiskers plot 112
4.11 A violin plot . 113
4.12 A violin plot with a box plot overlay 113
4.13 Violin/box plot by location 115
4.14 Visualise the first set of clustered locations 117
4.15 Visualise the second set of clustered locations . . 118

5.1 Faceted dodged bar plot. 128
5.2 Faceted dodged bar plot. 130
5.3 Labelled scatter plot with inset 136
5.4 Labelled scatter plot 138
5.5 Faceted bar plot with embedded bar plot 142
5.6 Horizontal bar chart 143
5.7 Horizontal bar chart with multiple stacks 146
5.8 Simple bar chart with dodged and labelled bars . 147

xvii

xviii List of Figures

6.1 Month by month external browser visits. 163
6.2 Month by month internal browser visits. 164
6.3 Views and visits per month 172
6.4 Views and visits per month (log scale) 173
6.5 Faceted plot of external and internal visits/views 173

7.1 Decision tree variable importance 183
7.2 Decision tree visualisation 184
7.3 ROC curve for decision tree over training dataset 192
7.4 Risk chart for rpart on training dataset. 194
7.5 ROC curve for decision tree over validation dataset 200
7.6 Risk chart for rpart on validation dataset. 200
7.7 An ROC curve for a decision tree on the testing

dataset . 208
7.8 A risk chart for the testing dataset 209

8.1 Random forest variable importance 219
8.2 ROC for random forest over validation dataset . . 223
8.3 Risk chart random forest validation dataset . . . 224
8.4 Random forest ROC over training dataset 225
8.5 Random forest risk chart over training dataset . . 225
8.6 Extreme gradient boosting variable importance . 231
8.7 ROC for extreme gradient boosting 235
8.8 Risk chart for extreme gradient boosting 236

9.1 ROC curve plotted using our own aucplot() . . . 255
9.2 ROC curve with a caption 255

10.1 Creating a new R Sweave document in RStudio. . 260
10.2 Ready to compile to PDF within RStudio. 261
10.3 Resulting PDF Document. 262
10.4 The 3pm temperature for four locations 281

List of Tables

6.1 External versus internal visits. 163
6.2 External versus internal browsers. 165

7.1 Performance measures for decision tree model. . . 209

8.1 Performance measures for the random forest model. 226
8.2 Performance measures extreme gradient boosting 237

10.1 Example xtable. 271
10.2 Remove row numbers. 272
10.3 Decimal points. 273
10.4 Large numbers. 273
10.5 Large numbers formatted. 274
10.6 Extended caption. 275

xix

http://taylorandfrancis.com

1
Data Science

Over the past decades we have progressed toward today’s capab-
ility to identify, collect, and store electronically a massive amount
of data. Today we are data rich, information driven, and knowledge
hungry, though, we may argue, wisdom scant. Data surrounds us
everywhere we look. Data exhibits every facet of everything we
know and do. We are today capturing and storing a subset of this
data electronically, converting the data that surrounds us by di-
gitising it to make it accessible for computation and analysis. We
are digitising data at a rate we have never before been capable of.
There is now so much data captured and even more yet to come
that much of it remains to be analysed and fully utilised.

Data science is a broad tag capturing the endeavour of ana-
lysing data into information into knowledge. Data scientists apply
an ever-changing and vast collection of techniques and technology
from mathematics, statistics, machine learning and artificial in-
telligence to decompose complex problems into smaller tasks to
deliver insight and knowledge. The knowledge captured from the
smaller tasks can then be synthesised with wisdom to form an un-
derstanding of the whole and to drive the development of today’s
intelligent computer-based applications.

The role of a data scientist is to perform the transformations
that make sense of the data in an evidence-based endeavour deliv-
ering the knowledge deployed with wisdom. Data scientists resolve
the obscure into the known.* Such a synthesis delivers real bene-
fit from the science—benefit for business, industry, government,
environment, and humanity in general. Indeed, every organisation
today is or should be a data-driven organisation.

*Science is analytic description, philosophy is synthetic interpretation. Sci-
ence wishes to resolve the whole into parts, the organism into organs, the
obscure into the known. (Durant, 1926)

1

2 1 Data Science

A data scientist brings to a task a deep collection of computer
skills using a variety of tools. They also bring particularly strong
intuitions about how to tackle complex problems. Tasks are under-
taken by resolving the whole into its parts. They explore, visualise,
analyse, and model the data to then synthesise new understand-
ings that come together to build our knowledge of the whole. With
a desire and hunger for continually learning we find that data sci-
entists are always on the lookout for opportunities to improve how
things are done—how to do better what we did yesterday.

Finding such requisite technical skills and motivation in one
person is rare—data scientists are truly scarce and the demand
for their services continues to grow as we find ourselves every day
with more data being captured from the world around us.

In this chapter we introduce the concept of the data scientist.
We identify a progression of skill from the data technician, through
data analyst and data miner, to data scientist. We also consider
how we might deploy a data science capability.

With the goal of capturing knowledge as models of our world
from data we consider the toolkits used by data scientists to do so.
We introduce the most powerful software system for data science
today, called R (R Core Team, 2017). R is open source and free
software that is available to anyone and everyone. It offers us the
freedom to use the software however we desire. Using this software
we can discover, learn, explore, experience, extend, and share the
algorithms for data science.

The Art of Data Science

As data scientists we ply the art of excavating data for know-
ledge discovery (Williams, 2011). As scientists we are also truly
artists. Computer science courses over the past 30 years have
shared the foundations of programming languages, software en-
gineering, databases, artificial intelligence, machine learning, and
now data mining and data science. A consistent theme has been
that what we do as computer and data scientists is an art. Pro-
gramming presents us with a language through which we express
ourselves. We can use this language to communicate in a sophist-
icated manner with others. Our role is not to simply write code

3

for computers to execute systematically but to express our views
in an elegant form which we communicate both for execution by
a computer and importantly for others to read, to marvel, and to
enjoy.

As will become evident through the pages of this book, data
scientists aim to not only turn data and information into intelligent
applications, but also to gain insight and new knowledge from
this data and information and to share these discoveries. Data
scientists must also clearly communicate in such an elegant way so
as to resolve the obscure and to make it known in a form that is
accessible and a pleasure to read—in a form that makes us proud
to share, want to read, and to continue to learn. This is the art of
data science.

The Data Scientist

A data scientist combines a deep understanding of machine learn-
ing algorithms and statistics together with a strong foundation in
software engineering and computer science and a well-developed
ability to program with data. Data scientists cross over a variety of
application domains and use their intuition to drive discoveries. As
data scientists we experiment so as to deploy the right algorithm
implemented within the right tool suite on the right data made
available through the right infrastructure to deliver outcomes for
the right problems.

The journey to becoming a data scientist begins with a solid
background in mathematics, statistics and computer science and
an enthusiasm for software engineering and programming comput-
ers. Their careers often begin as a data technician where skillful use
of SQL and other data technologies including Hadoop are brought
to bear to ingest and fuse data captured from multiple sources.

A data analyst adds further value to the extracted data and
may rely on basic statistical and visual analytics supported by
business intelligence software tools. A data analyst may also
identify data quality issues and iterate with the data technician
to explore the quality and veracity of the data. The role of a data
analyst is to inform so as to support with evidence any decision
making.

4 1 Data Science

The journey then proceeds to the understanding of machine
learning and advanced statistics where we begin to fathom the
world based on the data we have captured and stored digitally.
We begin to program with data in building models of the world
that embody knowledge discoveries that can then improve our un-
derstanding of the world. Data miners apply a variety of tools to
the increasingly larger volumes of data becoming more available in
a variety of formats. By building models of the world—by learning
from our interactions with the world captured through data—we
can begin to understand and to build our knowledge base from
which we can reason about the world.

The final destination is the art of data science. Data scientists
are driven by intuition in exploring through data to discover the
unknown. This is not something that can be easily taught. The
data scientist brings to bear a philosophy to the knowledge they
discover. They synthesise this knowledge in different ways to give
them the wisdom to decide how to communicate and take action.
A continual desire to challenge, grow and learn in the art, and
to drive the future, not being pushed along by it, as the final
ingredient.

It is difficult to be prescriptive about the intangible skills of
a data scientist. Through this book we develop the foundational
technical skills required to work with data. We explore the basic
skill set for the data scientist.

Through hands-on experience we will come to realise that we
need to program with our data as data scientists. Perhaps there
will be a time when intelligent systems themselves can exhibit the
required capabilities and sensitivities of today’s most skilled data
scientists, but it is not currently foreseeable. Our technology will
continue to develop and we will be able to automate many tasks in
support of the data scientist, but that intuition that distinguishes
the skilled data scientist from the prescriptive practitioner will
remain elusive.

To support the data scientists we also develop through this
book two templates for data science. These scripts provide a start-
ing point for the data processing and modelling phases of the data
science task. They can be reused for each new project and will

5

grow for each data scientist over time to capture their own style
and focus.

Creating a Data Science Capability

Creating a data science capability can be cost-effective in terms of
software and hardware requirements. The software for data science
is readily available and regularly improving. It is also generally free
(as in libre) and open source software (FLOSS). Today, even the
hardware platforms need not be expensive as we migrate computa-
tion to the cloud where we can share resources and only consume
resources when required.

The expense in creating a data science capability is in acquiring
expert data scientists—bulding the team. Traditionally informa-
tion technology organisations focused on delivering a centrally con-
trolled platform hosted on premise by the IT Department. Large
and expensive computers running singularly vetted and extremely
expensive statistical software suites were deployed. Pre-specified
requirements were provided through a tender process which often
took many months or even years. The traditional funding mod-
els for many organisations preferred on-premise expenses instead
of otherwise much more cost-effective, flexible and dynamic data
science platforms combing FLOSS with cloud.

The key message from many years of an evolving data science
capability is that the focus must be on the skills of the practitioner
more than the single vendor provided software/hardware platform.
Oddly enough this is quite obvious yet it is quite a challenge for
the era mentality of the IT Department and its role as the director
rather than the supporter of business. Recent years have seen the
message continue to be lost. Slowly though we continue to real-
ise the importance business driving data science rather than IT
technology being the driver.

The principles of the business drivers allowing the data scient-
ists to direct the underlying support from IT, rather than vice-
versa, were captured by the Analyst First* movement in the early
2000s. Whilst we still see the technology first approach driven by

*http://analystfirst.com/core-principles/

http://analystfirst.com/core-principles/

6 1 Data Science

vested interests many organisations are now coming to realise the
importance of placing business driven data science before IT.

The Analyst First movement collected together principles for
guiding the implementation of a data science capability. Some of
the key principles, relevant to our environment today, can be para-
phrased as:

• A data science team can be created with minimal expense;

• Data science, done properly, is scalable;

• The human is the most essential, valuable and rare resource;

• The scientist is the focus of successful data science investment;

• Data science is not information technology;

• Data scientists require advanced/flexible software/hardware;

• There is no “standard operating environment” for data science;

• Data science infrastructure is agile, dynamic, and scalable.

It is perhaps not surprising that large organisations have
struggled with deploying data science. Traditional IT departments
have driven the provision of infrastructure for an organisation
and can become disengaged from the actual business drivers. This
has been their role traditionally, to source software and hardware
for specific tasks as they understand it, to go out to tender for
the products, then provision and support the platform over many
years.

The traditional approach to creating a data science team is
then for the IT department, driven by business demands, to edu-
cate themselves about the technology. Often the IT department
will invite vendors with their own tool suites to tender for a single
solution. A solution is chosen, often without consulting the actual
data scientists, and implemented within the organisation. Over
many years this approach has regularly failed.

It is interesting to instead consider how an open source product

7

like R* has become the tool of choice today for the data scientist.
The open source community has over 30 years of experience in
delivering powerful excellent solutions by bringing together skilled
and passionate developers with the right tools. The focus is on
allowing these solutions to work together to solve actual problems.

Since the early 1990s when R became available its popularity
has grown from a handful of users to perhaps several million users
today. No vendor has been out there selling the product. Indeed,
the entrenched vendors have had to work very hard to retain their
market position in the face of a community of users realising the
power of open source data science suites. In the end they cannot
compete with an open source community of many thousands of
developers and statisticians providing state-of-the-art technology
through free and open source software like R. Today data scientists
themselves are driving the technology requirements with a focus
on solving their own problems.

The world has moved on. We need to recognise that data sci-
ence requires flexibility and agility within an ever-changing land-
scape. Organisations have unnecessarily invested millions in on-
premise infrastructure including software and hardware. Now the
software is generally available to all and the hardware can be
sourced as and only when required.

Within this context then open source software running on com-
puter servers located in the cloud delivers a flexible platform of
choice for data science practitioners. Platforms in the cloud today
provide a completely managed, regularly maintained and updated,
secure and comprehensive environment for the data scientist. We
no longer require significant investment in corporately managed,
dedicated and centrally controlled IT infrastructure.

Closed and Open Source Software

Irrespective of whether software can be obtained freely through a
free download or for a fee from a vendor, an important require-
ment for innovation and benefit is that the software source codes

*R, a statistical software package, is the software we use throughout this
book.

8 1 Data Science

be available. We should have the freedom to review the source
code to ensure the software implements the functions correctly
and accurately and to simply explore, learn, discover, and share.
Where we have the capability we should be able to change and
enhance the software to suit our ever-changing and increasingly
challenging needs. Indeed, we can then share our enhancements
with the community so that we can build on the shoulders of what
has gone before. This is what we refer to by the use of free in free
(as in libre) open source software (FLOSS). It is not a reference
to the cost of the software and indeed a vendor is quite at liberty
to charge for the software.

Today’s Internet is built on free and open source software.
Many web servers run the free and open source Apache soft-
ware. Nearly every modem and router is running the open source
GNU/Linux operating system. There are more installations of the
free and open source Linux kernel running on devices today than
any other operating system ever—Android is a free and open
source operating system running the Linux kernel. For big data
Hadoop, Spark, and their family of related products are all free
and open source software. The free and open source model has
matured significantly over the past 30 years to deliver a well-oiled
machine that today serves the software world admirably. This is
highlighted by the adoption of free and open source practises and
philosophies by today’s major internet companies.

Traditionally commercial software is closed source. This
presents challenges to the effective use and reuse of that software.
Instead of being able to build on the shoulders of those who have
gone before us, we must reinvent the wheel. Often the wheel is re-
implemented a multitude of times. Competition is not a bad thing
per se but closed source software generally hinders progress. Over
the past two decades we have witnessed a variety of excellent ma-
chine learning software products disappear. The efforts that went
into that software were lost. Instead we might recognise business
models that compensate for the investments but share the benefits
and ensure we can build on rather then reinvent.

9

The Data Scientist’s Toolkit

Since the development of the free and open source R statistical
software in 1995 it has emerged to be the most powerful soft-
ware tool for programming over data. Today it provides all of the
capabilities required for turning data into information and then
information into knowledge and then deploying that knowledge to
drive intelligent applications.

R is a key tool within the modern data scientist’s toolkit.
We will often combine the data processing and statistical tools
of R with the powerful command line processing capabilities of
the Linux ecosystem, for example, or with other powerful general
purpose programming languages such as Python and specialist lan-
guages like SQL. The importance of R cannot be understated.

The complementary nature of the open source statistical lan-
guage and the open source operating system combine to make
R on Linux and particularly Ubuntu a most powerful platform
for data science.* We only need to note that cloud offerings of
pre-configured linux-based data science virtual machines are now
common and provide within 5 minutes a new server running a
complete free and open source software stack for the data scient-
ist. The virtual machines running on the cloud can be any of a
variety of sizes and can be resized as required and powered down
when not required and so incurring minimal cost.

We will focus on R as the programming language for the data
scientist, programming with data, using software engineering skills
to weave narratives from the data through analysis. We will pro-
ceed on to the world of R to support hands-on data science and a
process for delivering data science

Future: Massive Ensembles and Extreme Distribution

We finish our introduction with a glimpse of a future world of data.
We envisage massive ensembles of distributed models communic-
ating to support intelligent applications working with extremely
distributed data that exists across a multitude of sources (Zhou
et al., 2014).

*R can also be effectively deployed on Max/OSX and Windows.

10 1 Data Science

For over 20 years Internet companies have separately collected
massive stores of personal and private data from users of their soft-
ware and devices. We have been quite happy to provide our data
to these organisations because of the perceived and actual benefits
from doing so. Data today is apparently owned or at least managed
by Google, Apple, Microsoft, Facebook, Amazon and many others.
Through the services they provide we have been able to discover
old friends, to share our ideas and daily activities publicly, to have
our email filtered of spam and managed for us and available from
a variety of devices. To have our diaries and calendars actively
supporting us and purchase books and music.

With widespread availability of massive volumes of data
coupled with powerful compute today we can build intelligent
applications that learn as they interact with the world. Google
and Microsoft have been leading the way in making use of this
data through the application of artificial intelligence technologies,
and in particular machine learning algorithms and through the
recent emergence of deep learning algorithms. The latter techno-
logy matches massive data with massive computational resources
to learn new types of models that capture impressive capability in
specific areas.

There are two parallel problems that we need to address
though: privacy and distribution. Privacy is a serious concern as
many have argued over many years. Whilst we may be willing to
share our data with today’s organisations and governments, can we
have an ongoing trust of the data custodians and of the principles
of these organisations that may well change over time?

Even now our private data with our agreement is made avail-
able to many organisations, purposefully by sharing it for com-
merce and/or inappropriately through security breeches. The
concept of a centralised collection of personal and private data
is regularly challenged.

We are now seeing a growing interest and opportunity to turn
this centralized mode of data collection on its head, and to return
the focus to privacy first.

Already many governments have strong laws that prohibit or
limit the sharing of data across agencies and between organisations

11

within their jurisdiction. These organisations each have evolving
snapshots of data about an ever-increasing overlap of individu-
als. An individual usually has the right to access this data across
these different organisations. They may be able to access their own
bank data, medical records, government collected tax data, per-
sonal holiday data, history of shopping online, location tracking
data for the past 5 years, personal collection of music and movies,
store of photos, and so much more. All of this data is spread across
a multitude of organisations. Those organisations themselves gen-
erally cannot or do not share the data.

Envisage a world then that begins to see a migration of data
from central stores to personal stores. As we migrate or augment
on-premise stored data to cloud stored data, we will also see ap-
plications that retain much personal data within our own personal
stores but collected on the cloud with unbreakable encryption.
This will result in an extreme data distribution and presents one
of the greatest research challenges for data science in the near
future.

Envisage being able to access all of this data relating to your-
self and bring this data together so that increasingly intelligent
personal applications can know and respond in a very personal
manner. The complete data store and applications live on their
own devices under the owner’s control. The intelligent applica-
tions will interact with a myriad of other personal and corporate
and government intelligent applications across the cloud, retain-
ing privacy supported by intelligent applications from a variety of
organisations adding their own value but in a personal context on
personal devices.

Finale

This is a future scenario to ponder and to create. A world with
eight billion or more individually evolved intelligent applications.
Applications that interact across an incredibly complex but intel-
ligent and interconnected cloud.

Through this book we simply provide the beginnings of a jour-
ney towards data science and knowledge discovery.

12 1 Data Science

1.1 Exercises

Exercise 1.1 What is Data Science?
We have presented one view of data science but there are many
views about what data science is. Explore other definitions of data
science and compare and contrast data science with data mining,
statistics, analytics, and machine learning. Write a short position
brief that summarises the various standpoints and leads to your
view of what data science is about.

Exercise 1.2 Who is a Data Scientist?
A skill set for a data scientist is proposed and as with the term
data science there are many views. Explore other views of the skill
sets that are required for a data scientist. Write a short position
brief that summarises the various standpoints. Include your view
of what a data scientist is.

Exercise 1.3 Data Scientist’s Toolkit
Open source software is extensively deployed in data science. Re-
search the tools that are available, both open and closed source.
Identify and comment upon the pros and cons reported for the
different tools in a short position brief.

Exercise 1.4 Open Source Data
The importance of open source is argued in this chapter. The ar-
gument relates specifically to open source software but is equally
important to open source data. Investigate the importance of open
source data and identify where open source data can readily be
found across the Internet.

Exercise 1.5 Open Source Policy
The concept of open source policy aims to provide transparency in
the assumptions and the modelling conducted to support different
government policy agendas. Discuss the practicality and the be-
nefits of open source models for policy. References might include
Henrion (2007) and Lobo-Pulo (2016).

2
Introducing R

Data scientists spend a considerable amount of time writing pro-
grams to ingest, fuse, clean, wrangle, visualise, analyse, model,
evaluate, and deploy models from data. We rely on having the
right tools to allow us to interact with data at a sophisticated level
which usually involves a language through which we express our
narrative. Throughout this book the concept of formally writing
sentences in such a language is introduced. Through these formal
sentences we tell the story of our data.

Like other classes of language a programming language allows
us to express and communicate ourselves. Programming languages
tend to be more strictly specified than human languages. To some
extent all languages follow rules, referred to as the syntax (which
tells us the rules for constructing sentences in the language) and
semantics (which tells us what the words of the language mean).
Unlike human languages, programming languages require all of
their carefully crafted rules to be precisely followed.

Through this book we will learn a language for programming
with data. There are many programming languages we can choose
from including Python which is well established by computer sci-
entists as a carefully crafted instrument for expressing ourselves. A
less well-crafted programming language and one that has grown or-
ganically through its power to express ideas about data succinctly
has emerged from the statistical community. This language has
borrowed concepts originally from the artificial intelligence com-
munity and significantly from the computer science community
over the years. That language is R (R Core Team, 2017).

Our journey to understanding data progresses by capturing a
narrative around that data through this language. We will write
sentences that delve into the data and deliver insights and un-
derstanding. Our narrative expressed in and resulting from our

13

14 2 Introducing R

programming is built from sentences, paragraphs, and complete
stories.

To begin this journey to data science through R we assume
basic familiarity and experience with the syntax and semantics of
R. This level of understanding can be gained through hands on ex-
perience whilst working with the many resources available on the
Intranet. Particularly recommended is to work through the stand-
ard Introduction to R available from https://cran.r-project.
org/manuals.html. A gentle introduction to programming with
R for data mining is also available through the graphically based
R code generator Rattle (Williams, 2009, 2011).

Our journey will introduce the syntax and semantics of the
language as we proceed. The introduction to R in this book is not
extensive and so it is recommended that when you come across
some syntax or function that is not explained be sure to seek un-
derstanding before continuing.

An important motivation as we proceed through this book is
to develop useful sentences in our language as we go. We call sen-
tences from a programming language code. The codes from the
language express what we ask a computer to do. However, they
also capture what we wish to communicate to other readers. A
collection of sentences written in such a language will constitute
what we call a program.

Examples will be used extensively to illustrate our approach
to programming over data. Programming by example is a great
way to continually learn, by watching and reviewing how others
speak in that language and to pick up the idioms and culture
of a language. Our aim is to immerse ourselves in the process
of writing programs to deliver insights and outcomes from our
data. We encourage programming by example so as to build on the
shoulders of those who have gone before us.

We will learn to use a tool that supports us in our program-
ming. We will also introduce a process to follow in exploring our
own data. The aim is that through learning by immersion and
programming by example we gain an increasing understanding of
the syntax and semantics of the language of data science. And as

https://cran.r-project.org/manuals.html
https://cran.r-project.org/manuals.html

15

we proceed to deliver new insights into our data we will develop a
process that we will find ourselves repeating with new tasks.

The chapters that follow this introduction will fill in much of
the detail and more of the understanding of the language. They
will lead us to understand some of the process of data science and
of the verbs (the action words or commands) that we use in data
science to accomplish our goals—to deliver the outcomes that we
have set for ourselves.

We recognise that R is a large and complex ecosystem for the
practice of data science. It is an evolving language, evolving as
we learn to achieve more with it in better ways. As practition-
ers of the language we will often find ourselves evolving with it,
as new capabilities and simpler grammars become available. We
have certainly seen this with the more recent availability of new
grammar-focused developments of the language.*

As data scientists we will continue to rely on the increasing
wealth of information available as we grow our experiences. There
is a breadth of freely available information on the Internet from
which we can continually learn. Searching the Internet will lead us
to useful code segments that illustrate almost any task we might
think of. Exploring such information as we proceed through the
material in this book is strongly encouraged.

Finally, this book provides a quick start guide to working with
data as data scientists. Once you have established the foundations
introduced here there are many more detailed journeys you can
take to discover the full power of the language you have begun
to learn. You will find yourself travelling through the literature of
R to discover delightful new ways of expressing yourself. This is
the journey to data science. Through data science we will find a
foundation from artificial intelligence and machine learning that
will lead on to intelligent applications.

In this introductory chapter on R we cover some of the basics.
This includes identifying a platform through which we interact
with R called RStudio. We will introduce the concepts of libraries
of packages which considerably extend the language itself to de-
liver an extensive catalogue of capability. An overview of the con-

*https://github.com/tidyverse

https://github.com/tidyverse

16 2 Introducing R

cepts of functions, commands and operators will provide the fun-
damentals for understanding the capabilities of R. We conclude the
chapter by introducing the powerful concept of pipes as a found-
ation for building sophisticated data processing pipelines using a
series of simple operations to achieve something quite complex. We
also point to the extensive collections of R documentation that is
available including both formal documentation and the extensive
crowd sources resources (such as stack overflow).

With these basics in hand the remaining chapters introduce R
programming concepts oriented toward the common tasks of a data
scientist. Whilst these can be followed through sequentially as they
are, a recommended approach is to actually jump to Chapter 10 to
learn about a discipline or a process for doing literate data science.
Through this process we capture our narrative—the story that the
data tells—intertwined with the data that actually supports the
narrative. I would also encourage you to review Chapter 11 where
a style for programming in R is presented. You are encouraged to
strictly follow that style as you begin to develop your own pro-
grams and style.

2.1 Tooling For R Programming
The software application known as the R interpreter is what inter-
prets the programs that we write in R. It will need to be installed
on our computer. Usually we will install R on our own computer
and instructions for doing so are readily available on the Internet.
The R Project* is a good place to start. Most GNU/Linux dis-
tributions provide R packages from their application repositories.
Now is a good time to install R on your own computer.

The free and open source RStudio† software is recommended
as a modern integrated development environment (IDE) for
writing R programs. It can be installed on all of the common
desktop operating systems (Linux, OSX, Windows). It can also

*https://www.r-project.org
†https://www.rstudio.com

https://secure.wikimedia.org/wikipedia/en/wiki/integrated development environment
https://www.r-project.org
https://www.rstudio.com

Tooling For R Programming 17

Figure 2.1: The initial layout of the RStudio window panes showing
the Console pane on the left with the Environment and Help
panes on the right.

be installed on a server running the GNU/Linux operating sys-
tem which then supports browser-based access to R running on a
back-end cloud server.

Figure 2.1 shows the RStudio interface as it might appear for
the first time after it has been installed. The interface includes
an R Console on the left through which we directly communicate
with the R interpreter. The window pane on the top right provides
access to the Environment which includes the data and datasets
that are defined as we interact with R. Initially it is empty. A
History of all the commands we have asked R to run is available
on another tab within the top right pane.

The bottom right pane provides direct access to an extensive
collection of Help. On another tab within this same pane we can
access the Files on our local storage. Other tabs provide access
to Plots, Packages, and a Viewer to access documents that we
might generate from the application.

18 2 Introducing R

In the Help tab displayed in the bottom right pane of Figure 2.1
we can see numerous links to R documentation. The Manual titled
An Introduction to R within the Help tab is a good place to start
if you are unfamiliar with R. There are also links to learning more
about RStudio and these are recommended if you are new to this
environment.

The server version of RStudio runs on a remote computer (e.g.,
a server in the cloud) with the graphical interface presented within
a web browser on our own desktop. The interface is much the
same as the desktop version but all of the commands are run on
the server rather than on our own desktop. Such a setup is useful
when we require a powerful server on which to analyse very large
datasets. We can then control the analyses from our own desktop
with the results sent from the server back to our desktop whilst all
the computation is performed on the server. Typically the server
is a considerably more powerful computer than our own personal
computers.

Often we will be interacting with R by writing code and sending
that code to the R Interpreter so that it can be run (locally or
remotely). It is always good practice to store this code into a file
so that we have a record of what we have done and are able to
replicate the work at a later time. Such a file is called an R Script.
We can create a new R Script by clicking on the relevant icon on the
RStudio toolbar and choosing the appropriate item in the resulting
menu as in Figure 2.2. A keyboard shortcut is also available to do
this: Ctrl+Shift+N (hold the Ctrl and the Shift keys down and
press the N key). A new file editor is presented as the top left pane
within RStudio. The tab will initially be named Untitled1 until
we actually save the script to a file. When we do so we will be
asked to provide a suitable name for the file.

The editor is where we write our R code and compose the pro-
grams that instruct the computer to perform particular tasks. The
editor provides numerous features that are expected in a modern
program editor. These include syntax colouring, automatic indent-
ation to improve layout, automatic command completion, inter-
active command documentation, and the ability to send specific
commands to the R Console to have them run by the R Interpreter.

Tooling For R Programming 19

Figure 2.2: Ready to edit R scripts in RStudio using the Editor
pane on the top left created when we choose to add a new R Script
from the toolbar menu displayed by clicking the icon highlighted in
red.

We can ask RStudio to send R commands to the R Console
through the use of the appropriate toolbar buttons. One line or a
highlighted region can be sent using the Run button found on the
RStudio toolbar as highlighted in Figure 2.3. Having opened a new
R script file we can enter commands like those below. The example
shows four commands that together are a program which instructs
the R interpreter. The first command is install.packages()
which ensures we have installed two requisite software packages
for R. We only need to do this once and the packages are available
from then on when we use R. The second and third commands use
the library() command to make these software packages avail-
able to the current R session. The fourth command produces a plot
using qplot() using data from the weatherAUS dataset provided
by rattle (Williams, 2017). This dataset captures observations of

20 2 Introducing R

Figure 2.3: Running R commands in RStudio. The R programming
code is written into a file using the editor in the top left pane.
With the cursor on the line containing the code we click the Run
button to pass the code on to the R Console to have it run by the
R Interpreter to produce the plot we see in the bottom right pane.

weather-related variables for over 8 years across almost 50 weather
stations in Australia.

install.packages(c("ggplot2", "rattle"))
library(ggplot2)
library(rattle)
qplot(data=weatherAUS, x=MinTemp, y=MaxTemp)

The qplot() command from the ggplot2 (Wickham and Chang,
2016) package allows us to quickly construct a plot—hence its
name. From the weatherAUS dataset we choose to plot the min-
imum daily temperature (MinTemp) on the x-axis against the max-
imum daily temperature (MaxTemp) on the y-axis. The resulting
plot is called a scatter plot and we see the plot in the lower right
pane of Figure 2.3. It’s a rather black blob for now but as we pro-
ceed we will learn a variety of techniques for visualising the data

Tooling For R Programming 21

effectively. Already though we gain insight about the relationship
between the daily minimum and maximum temperatures. There
appears to be a strong linear relationship.

Figure 2.3 also shows the RStudio editor as it appears after
we type the above commands into the R Script file in the top
left pane. We have sent the commands to the R Console to have
it run by R. We have done this by ensuring the cursor within
the R Script editor is on the same line as the command to be
run and then clicking the Run button. We will notice that the
command is sent to the R Console in the bottom left pane and the
cursor advances to the next line within the R Script. After each
command is run any text output by the command is displayed in
the R Console which might simply be informative messages about
a package or warnings and errors that arise in processing the data.
Graphic output is displayed in the Plots tab of the bottom right
pane.*

We have now written our first program in R and can provide
our first observations of the data. It is not too hard to see from the
plot that there appears to be quite a strong relationship between
the minimum temperature and the maximum temperature: with
higher values of the minimum temperature recorded on any partic-
ular day we see higher values of the maximum temperature. There
is also a clear lower boundary that might suggest, as logic would
dictate, that the maximum temperature cannot be less than the
minimum temperature. If we were to observe data points below
this line then we would begin to explore issues with the quality of
the data.

As data scientists we have begun our observation and under-
standing of the data, taking our first steps toward immersing
ourselves in and thereby beginning to understand the data.

*It is opportune for the reader to replicate this program for themselves
using their own installation of R and RStudio.

22 2 Introducing R

2.2 Packages and Libraries
The power of the R ecosystem comes from the ability of the com-
munity of users to themselves extend the language by its nature
as open source software. Anyone is able to contribute to the
R ecosystem and by following stringent guidelines they can have
their contributions included in the comprehensive R archive net-
work, known as CRAN.* Such contributions are collected into what
is called a package. Over the decades many researchers and de-
velopers have contributed thousands of packages to CRAN with
over 10,000 packages available for R from almost as many differ-
ent authors.

A package is how R collects together commands for a partic-
ular task. A command is a verb in the computer language used
to tell the computer to do something. Hence there are very many
verbs available to build our sentences to command R appropri-
ately. With so many packages there is bound to be a package or
two covering essentially any kind of processing we could imagine.
We will also find packages offering the same or similar commands
(verbs) perhaps even with very different meanings.

Beginning with Chapter 3 we will list at the beginning of each
chapter the R packages that are required for us to be able to replic-
ate the examples presented in that chapter. Packages are installed
from the Internet (from the securely managed CRAN package re-
pository) into a local library on our own computer. A library
is a folder on our computer’s storage which contains sub-folders
corresponding to each of the installed packages.

To install a package from the Internet we can use the com-
mand install.packages() and provide to it as an argument the
name of the package to install. The package name is provided as
a string of characters within quotes and supplied as the pkgs=
argument to the command. In the following we choose to in-
stall a package called dplyr (Wickham et al., 2017a)—a very useful
package for data wrangling.

*https://cran.r-project.org.

https://cran.r-project.org

Packages and Libraries 23

Install a package from a CRAN repository.

install.packages(pkgs="dplyr")

Once a package is installed we can access the commands
provided by that package by prefixing the command name with
the package name as in ggplot2::qplot(). This is to say that
qplot() is provided by the ggplot2 package.

Another example of a useful command that we will find
ourselves using often is glimpse() from dplyr. This command can
be accessed in the R console as dplyr::glimpse() once the dplyr
package has been installed. This particular command accepts an
argument x= which names the dataset we wish to glimpse. In the
following R example we dplyr::glimpse() the weatherAUS data-
set from the rattle package.

Review the dataset.

dplyr::glimpse(x=rattle::weatherAUS)

Observations: 138,307
Variables: 24
$ Date <date> 2008-12-01, 2008-12-02, 2008-12-03,...
$ Location <fctr> Albury, Albury, Albury, Albury, Alb...
$ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14...
$ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, ...
....

As a convention used in this book the output from running R
commands is prefixed with “## ”. The “#” introduces a comment in
an R script file and tells R to ignore everything that follows on that
line. We use the “## ” convention throughout the book to clearly
identify output produced by R. When we run these commands
ourselves in R this prefix is not displayed.

Long lines of output are also truncated for our presentation
here. The ... at the end of the lines and the at the end of
the output indicate that the output has been truncated for the
sake of keeping our printed output to an informative minimum.

We can attach a package to our current R session from our
local library for added convenience. This will make the command

24 2 Introducing R

available during this specific R session without the requirement to
specify the package name each time we use the command. Attach-
ing a package tells the R software to look within that package (and
then to look within any other attached packages) when it needs
to find out what the command should do (the definition of the
command). Thus, we can write:

Review the dataset.

glimpse(x=weatherAUS)

We can see which packages are currently attached using
base::search(). The order in which they are listed here cor-
responds to the order in which R searches for the definition of a
command.

base::search()

[1] ".GlobalEnv" "package:stats"
[3] "package:graphics" "package:grDevices"
[5] "package:utils" "package:datasets"
[7] "package:methods" "Autoloads"
[9] "package:base"

Notice that a collection of packages is installed by default. We
can also see a couple of other special objects called (.GlobalEnv
and Autoloads).

A package is attached using the base::library() command
which takes an argument to identify the package= we wish to
attach.

Load packages from the local library into the R session.

library(package=dplyr)
library(package=rattle)

Running these two commands will affect the search path by
placing these packages early within the path.

Packages and Libraries 25

base::search()

[1] ".GlobalEnv" "package:rattle"
[3] "package:dplyr" "package:stats"
[5] "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets"
[9] "package:methods" "Autoloads"
[11] "package:base"

By attaching the dplyr package we can drop the package name
prefix for any commands from the package. Similarly by attach-
ing rattle we can drop the package name prefix from the name of
the dataset. Our previous dplyr::glimpse() command can be
simplified to that which we saw above.

We can actually simplify this a little more. Often for a com-
mand we don’t have to explicitly name all of the arguments. In the
following example we drop the package= and the x= arguments
from the respective commands since the commands themselves
know what to expect implicitly.

Load packages from the local library into the R session.

library(dplyr)
library(rattle)

Review the dataset.

glimpse(weatherAUS)

Observations: 138,307
Variables: 24
$ Date <date> 2008-12-01, 2008-12-02, 2008-12-03,...
$ Location <fctr> Albury, Albury, Albury, Albury, Alb...
$ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14...
$ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, ...
....

A number of packages are automatically attached when R
starts. The first base::search() command above returned a vec-
tor of packages and since we had yet to attach any further pack-
ages those listed are the ones automatically attached. One of

26 2 Introducing R

those is the base (R Core Team, 2017) package which provides
the base::library() command.

In summary, when we interact with R we can usually drop the
package prefix for those commands that can be found in one (or
more) of the attached packages. Throughout the text in this book
we will retain the package prefix to clarify where each command
comes from. However, within the code we will tend to drop the
package name prefix.

A prefix can still be useful in larger programs to ensure we
are using the correct command and to communicate to the hu-
man reader where the command comes from. Some packages do
implement commands with the same names as commands defined
differently in other packages. The prefix notation is then essential
in specifying which command we are referring to.

As noted above the following chapters will begin with a list of
packages to attach from the library into the R session. Below is an
example of attaching five common packages for our work. Attach-
ing the listed packages will allow the examples presented within
the chapter to be replicated. In the code below take note of the use
of the hash (#) to introduce a comment which is ignored by R—R
will not attempt to understand the comments as commands. Com-
ments are there to assist the human reader in understanding our
programs, which is a very important aspect to writing programs.

The packages that we attach are dplyr (Wickham et al., 2017a),
ggplot2 (Wickham and Chang, 2016), magrittr (Bache and Wick-
ham, 2014), rattle (Williams, 2017) and readr (Wickham et al.,
2017b).

Load packages required for this script.

library(dplyr) # Data wrangling and glimpse().
library(ggplot2) # Visualise data.
library(magrittr) # Pipes %>%, %<>%, %T>%, %$%.
library(rattle) # The weatherAUS dataset and normVarNames().
library(readr) # Efficient reading of CSV data.

In starting up an R session (for example, by starting up RStu-
dio) we can enter the above library() commands into an R script

Functions, Commands and Operators 27

file created using the New R Script File menu option in RStu-
dio and then ask RStudio to Run the commands. RStudio will send
each command to the R Console which sends the command on to
the R interpreter. It is the R interpreter that then runs the com-
mands. If R responds that the package is not available, then the
package will need to be installed, which we can do from RStudio’s
Tools menu or by directly using utils::install.packages() as
we saw above. This requires an Internet conenction.

2.3 Functions, Commands and Operators
So far we have introduced the concept of R commands that we
use to instruct the R interpreter to perform particular actions. In
fact such commands are formally referred to as functions and we
generally use this term in the same context as that of functions in
mathematics. A function simply takes a set of inputs and produces
an output. As we work through each chapter many new R functions
will be introduced. We will generally identify each as a function,
a command or an operator.

All R functions take arguments (a set of inputs) and return
values (an output). When we run a function (rather than a com-
mand) we are interested in the value that it returns. Below is a
simple example where we base::sum() two numbers.*

Add two numbers.

sum(1, 2)

[1] 3

As previously we precede the output from the function by the
double hash (##). We will however not see the double hash in the R
Console when we run the functions ourselves. Instead, the output

*It is a good idea to replicate all of the examples presented here in R. In
RStudio simply open an R script file to edit and type the text sum(1, 2) using
the editor. Then instruct RStudio to Run the command in the R Console.

28 2 Introducing R

we see will begin with the [1] which indicates that the returned
value is a vector which starts counting from index 1. A vector
is a collection of items which we can access through a sequential
index—in this case the vector has only one item.

We can store the resulting value (the output) from running
the function (the value being a vector of length 1 containing just
the item 3) into a variable. A variable is a name that we can
use to refer to a specific location in the computer’s memory where
we store data while our programs are running. To store data in
the computer’s memory so that we can later refer to that data
by the specific variable name we use the assignment operator
base::<-.

Add two numbers and assign the result into a variable.

v <- sum(1, 2)

We can now access the value stored in the variable (or actually
stored in the computer’s memory that the variable name refers
to) simply by requesting through the R Console that R “run”
the command v. We do so below with a line containing just v. In
fact, the R interpreter runs the base::print() function to display
the contents of the computer’s memory that v refers to—this is a
convenience that the R interpreter provides for us.

Print the value stored in a variable.

v

[1] 3

print(v)

[1] 3

By indexing the variable with [1] we can ask for the first item
referred to by v. Noting that the variable v is a vector with only
a single item when we try to index a second item we get an NA
(meaning not available or a missing value).

Functions, Commands and Operators 29

Access a particular value from a vector of data.

v[1]

[1] 3

v[2]

[1] NA

For commands (rather than functions) we are generally more
interested in the actions or side-effects that are performed by the
command rather than the value returned by the command. For
example, the base::library() command will attach a package
from the library (the action) and consequently modifies the search
path that R uses to find commands (the side-effect).

Load package from the local library into the R session.

library(rattle)

A command is also a function and does in fact return a value. In
the above example we do not see any value printed. Some functions
in R are implemented to return values invisibly. This is the case
for base::library(). We can ask R to print the value when the
returned result is invisible using base::print().

Demonstrate that library() returns a value invisibly.

l <- library(rattle)
print(l)

[1] "readr" "extrafont" "Hmisc" "Formula"
[5] "survival" "lattice" "magrittr" "xtable"
[9] "rattle" "ggplot2" "tidyr" "stringr"
[13] "dplyr" "knitr" "stats" "graphics"
[17] "grDevices" "utils" "datasets" "base"

We see that the value returned by base::library() is a vec-
tor of character strings. Each character string names a package
that has been attached during this session of R. Notice that the

30 2 Introducing R

vector begins with item [1] and the item counts are shown at
the beginning of each line. We saved the resulting vector into a
variable and can now index the variable to identify packages at
specific locations within the vector.

Load a package and save the value returned.

l <- library(rattle)

Review one of the returned values.

l[7]

[1] "magrittr"

The third type of function is the operator. We use operators
in the flow of an expression. Technically they are called infix op-
erators.

In the following example we use the base::+ infix operator.

Add two numbers using an infix operator.

1 + 2

[1] 3

Internally R converts the operator into a functional prefix form
to be run in the same way as any other function. We can see
this effectively in the following code. We quote the function name
(base::+) to avoid it being interpreted as the infix operator.

Add two numbers using the equivalent functional form.

`+`(1, 2)

[1] 3

The key thing to remember is that all commands and operat-
ors are functions and we instruct R to perform tasks by running
functions.

Pipes 31

2.4 Pipes
We now understand that everything in R is basically a function (or
data). That is, they are actions that take a set of inputs and return
an output—they are the verbs of our language for constructing
sentences. As we proceed we will learn many new functions useful
for the data scientist. However, as data scientists we will construct
longer sentences that string verbs together to deliver the full power
of functions. We combine dedicated and well designed and imple-
mented functions to achieve something more powerful than any
single function might be able to achieve on its own.

In this section we introduce the concept of pipes as a power-
ful operator for combining functions to build sentences that can
deliver results from complex processing with relative simplicity.

The pipe will be familiar to those who have used the Unix and
Linux operating systems. The idea is to pass the output of one
function on to another function as that function’s input through
a sequence of steps. Each function does one task and aims to do
that task very well, very accurately, and very simply from a user’s
point of view. We can then string together many such special-
ist functions to deliver very complex and quite sophisticated data
transformations in an easily accessible manner. Pipes are available
in R through the magrittr.

We will illustrate the concept of pipes by again making use of
the rattle::weatherAUS dataset. We can review the basic con-
tents of the rattle::weatherAUS dataset by printing it.

List all columns for all observations of the dataset.

glimpse(weatherAUS)

Observations: 138,307
Variables: 24
$ Date <date> 2008-12-01, 2008-12-02, 2008-12-03,...
$ Location <fctr> Albury, Albury, Albury, Albury, Alb...
$ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14...
$ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, ...
....

32 2 Introducing R

We might be interested in just a few variables from the dataset.
For that we will dplyr::select() the variables by piping the
dataset into the dplyr::select() function.

Select columns from the dataset.

weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
glimpse()

Observations: 138,307
Variables: 4
$ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14.3, 7...
$ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, 25.0,...
$ Rainfall <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0...
$ Sunshine <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
....

Notice how weatherAUS by itself will list the whole of the data-
set. Piping the whole dataset to dplyr::select() using the pipe
operator magrittr::%>% tells R to send the rattle::weatherAUS
dataset on the left to the dplyr::select() function on the
right. We provided dplyr::select() with an argument listing
the columns we wish to select. The end result returned as the out-
put of the pipeline is a subset of the original dataset containing
just the named columns.

We can easily produce a base::summary() of these numeric
variables. We pipe the dataset produced by dplyr::select() into
base::summary() as below.

Select colums from the dataset and summarise the result.

weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
summary()

MinTemp MaxTemp Rainfall
Min. :-8.50 Min. :-4.80 Min. : 0.000
1st Qu.: 7.60 1st Qu.:17.90 1st Qu.: 0.000
Median :12.00 Median :22.60 Median : 0.000
Mean :12.16 Mean :23.19 Mean : 2.356
3rd Qu.:16.80 3rd Qu.:28.20 3rd Qu.: 0.800

Pipes 33

Max. :33.90 Max. :48.10 Max. :371.000
....

Now suppose we would like to summarise only those obser-
vations where there is more than a little rain on the day of the
observation. To do so we will dplyr::filter() the observations.

Select specific columns and observations from the dataset.

weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
filter(Rainfall >= 1)

MinTemp MaxTemp Rainfall Sunshine
1 17.5 32.3 1.0 NA
2 13.1 30.1 1.4 NA
3 15.9 21.7 2.2 NA
4 15.9 18.6 15.6 NA
5 12.6 21.0 3.6 NA
....

We can see that this sequence of functions operating on the ori-
ginal rattle::weatherAUS dataset returns a subset of that data-
set where all observations have some rain.

We saw earlier in this chapter the assignment operator
base::<- which is used to save a result into the computer’s
memory and give it a name that we can refer to later. We can
use this operator to save the result of the sequence of operations
from the pipe into the computer’s memory.

Select columns/observations and save the result.

rainy_days <-
weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
filter(Rainfall >= 1)

An alternative that makes logical sense within the pipe
paradigm is to use the forward assignment operator base::->
provided by R to save the resulting data into a variable but in-
cluding it within the logical flow through which we think about
the operations being performed.

34 2 Introducing R

Demonstrate use of the forward assignment operator.

weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
filter(Rainfall >= 1) ->

rainy_days

Traditionally in R we have avoided the use of the forward as-
signment operator but here it makes sense. Notice in the above
code that we un-indent the variable name to highlight the im-
portant side effect of the series of commands—the assignment to
rainy_days. Logically it is clear in this sequence of commands
that we begin with a dataset, operate on it through a variety of
functions, and save the result into a variable.

Continuing with our pipeline example, we might want a
base::summary() of the resulting dataset.

Summarise subset of variables for observations with rainfall.

weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
filter(Rainfall >= 1) %>%
summary()

MinTemp MaxTemp Rainfall
Min. :-8.5 Min. :-4.80 Min. : 1.000
1st Qu.: 8.4 1st Qu.:15.50 1st Qu.: 2.200
Median :12.2 Median :19.20 Median : 4.800
Mean :12.7 Mean :20.12 Mean : 9.739
3rd Qu.:17.1 3rd Qu.:24.30 3rd Qu.: 11.200
Max. :28.3 Max. :46.30 Max. :371.000
....

It could be useful to contrast this with a base::summary() of
those observations where there was virtually no rain.

Summarise observations with little or no rainfall.

weatherAUS %>%
select(MinTemp, MaxTemp, Rainfall, Sunshine) %>%
filter(Rainfall < 1) %>%
summary()

Pipes 35

MinTemp MaxTemp Rainfall
Min. :-8.20 Min. :-2.10 Min. :0.00000
1st Qu.: 7.30 1st Qu.:18.90 1st Qu.:0.00000
Median :11.90 Median :23.70 Median :0.00000
Mean :11.99 Mean :24.16 Mean :0.06044
3rd Qu.:16.70 3rd Qu.:29.20 3rd Qu.:0.00000
Max. :33.90 Max. :48.10 Max. :0.90000
....

Any number of functions can be included in a pipeline to
achieve the results we desire. In the following chapters we will see
some examples which string together 10 or more functions. Each
step along the way is generally simple to understand in and of
itself. The power is in what we can achieve by stringing together
many simple steps to produce something quite complex.

For the technically minded we note that what is actually hap-
pening here is that a new syntax is introduced in order to increase
the ease with which we humans can read the code. This is an im-
portant goal as we need to always keep in mind that we write our
code for others (and ourselves later on) to read.

The above example of a pipeline is actually translated by R
into the functional construct we write below. For many of us it
will take quite a bit of effort to parse this traditional functional
form into something we could understand. The pipeline alternative
provides a clearer narrative.

Functional form equivalent to the pipeline above.

summary(filter(select(weatherAUS,
MinTemp, MaxTemp, Rainfall, Sunshine),

Rainfall < 1))

MinTemp MaxTemp Rainfall
Min. :-8.20 Min. :-2.10 Min. :0.00000
1st Qu.: 7.30 1st Qu.:18.90 1st Qu.:0.00000
Median :11.90 Median :23.70 Median :0.00000
Mean :11.99 Mean :24.16 Mean :0.06044
3rd Qu.:16.70 3rd Qu.:29.20 3rd Qu.:0.00000
Max. :33.90 Max. :48.10 Max. :0.90000
....

36 2 Introducing R

Anything that improves the readability of our code is useful.
Indeed we allow the computer to do the hard work of transforming
a simpler sentence into this much more complex looking sentence.

There are several variations of the pipe operator avail-
able. A particularly handy operator is the assignment pipe
magrittr::%<>%. This operator should be the left-most pipe of
any sequence of pipes. In addition to piping the dataset on the
left into the function on the right the result coming out of the
right-hand pipeline is piped back to the original variable. Thus, we
overwrite the original contents in memory with the results from
the pipeline.

A simple example is to replace a dataset with the same data
after removing some observations (rows) and variables (columns).
In the example below we dplyr::filter() and dplyr::select()
the dataset to reduce it to just those observations and variables
of interest. The result is piped backwards to the original dataset
and thus overwrites the original data (which may or may not be a
good thing). We do this on a temporary copy of the dataset and
use the base::dim() function to report on the dimensions (rows
and columns) of the resulting datasets.
Copy the dataset into the variable ds.

ds <- weatherAUS

Report on the dimensions of the dataset.

dim(ds)

[1] 138307 24

Demonstrate an assignment pipeline.

ds %<>%
filter(Rainfall==0) %>%
select(MinTemp, MaxTemp, Sunshine)

Confirm that the dataset has changed.

dim(ds)

[1] 86311 3

Pipes 37

Once again this is so-called syntactic sugar. The functions are
effectively translated by the computer into the following code.

Functional form equivalent to the pipeline above.

ds <- select(filter(weatherAUS, Rainfall==0),
MinTemp, MaxTemp, Sunshine)

Another useful operation is the tee-pipe magrittr::%T>%
which causes the function that follows to be run as a side-pipe
whilst piping the same data into that function and also into the
next function. The output from the function immediately follow-
ing the tee-pipe operator is ignored. A common use case is to
base::print() the result of some data processing steps whilst
continuing on to assign the dataset itself to a variable. We will
often see the following example.

Demonstrate usage of a tee-pipe.

weatherAUS %>%
filter(Rainfall==0) %T>%
{head(.) %>% print()} ->

no_rain

Date Location MinTemp MaxTemp Rainfall Evaporation
1 2008-12-02 Albury 7.4 25.1 0 NA
2 2008-12-03 Albury 12.9 25.7 0 NA
3 2008-12-04 Albury 9.2 28.0 0 NA
4 2008-12-07 Albury 14.3 25.0 0 NA
5 2008-12-08 Albury 7.7 26.7 0 NA
....

In this simple example we could have called utils::head()
with the variable no_rain after the assignment but for more com-
plex pipes there is some elegance in including intermediate output
as part of the single pipeline.

Alternative to using a tee-pipe for a simple pipeline.

weatherAUS %>%
filter(Rainfall==0) ->

no_rain

38 2 Introducing R

head(no_rain)

Date Location MinTemp MaxTemp Rainfall Evaporation
1 2008-12-02 Albury 7.4 25.1 0 NA
2 2008-12-03 Albury 12.9 25.7 0 NA
3 2008-12-04 Albury 9.2 28.0 0 NA
4 2008-12-07 Albury 14.3 25.0 0 NA
5 2008-12-08 Albury 7.7 26.7 0 NA
....

We can also include within the same pipeline a number of op-
erations that describe the data as it is passing through.

Multiple tee-pipes in a single pipeline.

weatherAUS %>%
filter(Rainfall==0) %T>%
{dim(.) %>% comcat()} %T>%
{head(.) %>% print()} ->

no_rain

86,311 24
Date Location MinTemp MaxTemp Rainfall Evaporation
1 2008-12-02 Albury 7.4 25.1 0 NA
2 2008-12-03 Albury 12.9 25.7 0 NA
3 2008-12-04 Albury 9.2 28.0 0 NA
4 2008-12-07 Albury 14.3 25.0 0 NA
....

Here we dplyr::filter() the dataset to retain only those
observations for which the recorded rainfall is zero. Using a tee-
pipe this subset is piped into two branches. The first is bracketed
to allow a sequence of functions to be composed through another
pipeline. The first in the sequence of just two functions obtains the
dimensions of the subset calling upon base::dim() to do so. The
parameter to base::dim() is a period (.) which is used to indicate
the piped dataset within the bracketed sequence. The result of
base::dim() is passed on to rattle::comcat() which simply
formats the incoming data to be more easily readable.

The second branch is also introduced by a tee-pipe so that
effectively we have a three-way flow of our data subset. The second

Pipes 39

sequence takes the utils::head() of the subset and prints that.
The same subset is then piped through the forward assignment on
to the variable no_rain so as to store the subset in memory.

We conclude our introduction to pipes with a more complex
example of a pipeline that processes a dataset and feeds the output
into a plot command which itself is built by adding layers to the
plot.

Identify cities of interest.

cities <- c("Canberra", "Darwin", "Melbourne", "Sydney")

Build the required dataset and plot it.

weatherAUS %>%
filter(Location %in% cities) %>%
filter(Temp3pm %>% is.na() %>% not()) %>%
ggplot(aes(x=Temp3pm, colour=Location, fill=Location)) +
geom_density(alpha=0.55) +
labs(title="Distribution of the Daily Temperature at 3pm",

subtitle="Selective Locations",
caption="Source: Australian Bureau of Meteorology",
x="Temperature Recorded at 3pm",
y="Density")

In the example once again we use the rattle::weatherAUS
dataset and dplyr::filter() it to include those observations
from just four cities in Australia. We also dplyr::filter()
out those observations that have missing values for the variable
Temp3pm. To do this we use an embedded pipeline. The embed-
ded pipeline pipes the Temp3pm data through the base::is.na()
function which tests if the value is missing. These results are then
piped to magrittr::not() which inverts the true/false values so
that we include those that are not missing.

The plot is generated using ggplot2::ggplot() into which
we pipe the processed dataset. We add a geometric layer using
ggplot2::geom_density() which constructs a density plot with
transparency specified through the alpha= argument. We also add
a title and label the axes using ggplot2::labs(). The code pro-
duces the plot shown in Figure 2.4.

40 2 Introducing R

0.00

0.05

0.10

0.15

0.20

10 20 30 40
Temperature Recorded at 3pm

D
en

si
ty

Location
Canberra

Darwin

Melbourne

Sydney

Selective Locations

Distribution of the Daily Temperature at 3pm

Source: Australian Bureau of Meteorology

Figure 2.4: A comparison of the distribution of the daily temperat-
ure at 3pm across 4 Australian cities.

With a few simple steps (and recognising we have introduced
quite a few new functions without explanation) we have produced
a relatively sophisticated plot.

As a data scientist we would now observe and tell a story from
this plot. Our narrative will begin with the observation that Dar-
win has quite a different and warmer pattern of temperatures at
3pm as compared to Canberra, Melbourne and Sydney. Of course,
the geography of Australia would inform the logic of this observa-
tion.

2.5 Getting Help
A key skill of any programmer, including those programming over
data, is the ability to identify how to access the full power of our
tools. The breadth and depth of the capabilities of R means that
there is much to learn around both the basics of R programming
and the multitude of packages that support the data scientist.

R provides extensive in-built documentation with many intro-
ductory manuals and resources available through the RStudio Help

Exercises 41

tab. These are a good adjunct to our very brief introduction here
to R. Further we can use RStudio’s search facility for document-
ation on any action and we will find manual pages that provide
an understanding of the purpose, arguments, and return value of
functions, commands, and operators. We can also ask for help us-
ing the utils::? operator as in:

Ask for documentation on using the library command.

? library

The utils package which provides this operator is another pack-
age that is attached by default to R. Thus, we can drop its prefix
as we did here when we run the command in the R Console.

RStudio provides a search box which can be used to find
specific topics within the vast collection of R documentation.
Now would be a good time to check the documentation for the
base::library() command.

2.6 Exercises

Exercise 2.1 Exploring RStudio
Install R and RStudio onto your own computer. Start RStudio and
work through the Introduction to R manual, repeating the sample
R codes for yourself within the R Console of RStudio, being sure to
save all of the code to file. Document and layout the code according
to the Style guide in Chapter 11. Optional: complete the exercise
using either R markdown or KnitR.

Exercise 2.2 Documentation and Cleansing
Attach the rattle package in RStudio. Obtain a list of the functions
available from the rattle package. Review the documentation for
rattle::normVarNames(). Using one of the open source datasets
identified in the exercises in Chapter 1, load the dataset into R
and apply rattle::normVarNames() to the base::names() of

42 2 Introducing R

the variables within the dataset. Save the code to an R script
file. Optional: complete the exercise using either R markdown or
KnitR.

Exercise 2.3 Interacting with RStudio

1. Create a new R script file to explore a number of visualisa-
tions of various distributions of pairs of variables from the
rattle::weatherAUS dataset. Include at least a plot of the
distribution of WindSpeed9am against Humidity9am.

2. Filter the dataset by different locations and review and compare
the plots.

3. Write a short report of the rattle::weatherAUS dataset based
on the visualisations you produce. The report should also de-
scribe the dataset, including a summary of the number of vari-
ables and observations. Describe each variable and summarise
its distribution. Include the more interesting or relevant plots
in your report.

Exercise 2.4 Telling a narrative.
Load the rattle::weatherAUS dataset into R. Explore the rain-
fall for a variety of locations, generating different plots similar to
the two examples provided in this chapter. Can you determine
any relationship between the values of the variable RainTomorrow
and the other variables. Write a short report of your discoveries
including the R code you develop and sample plots that support
your narrative.

3
Data Wrangling

When we begin with a new data science project we will begin with
understanding the business problem to be tackled. This includes
ensuring all participants in the project understand the goals, the
success criteria, and how the results will be deployed into produc-
tion in the business. We then liaise with the business data tech-
nicians to identify the available data. This is followed by a data
phase where we work with the business data technicians to access
and ingest the data into R. We are then in a position to move on
with our journey to the discovery of new insights driven by the
data. By living and breathing the data in the context of the busi-
ness problem we gain our bearings and feed our intuitions as we
journey.

In this chapter we present and then capture a common series of
steps that we follow as the data phase of data science. As we pro-
gress through the chapter we will build a template* designed to
be reused for journeys through other datasets. As we foreshadowed
in Chapter 2 rather than delving into the intricacies of the R lan-
guage we immerse ourselves into using R to achieve our outcomes,
learning more about R as we proceed.

As we will for each chapter we begin with loading the pack-
ages required for this chapter. Packages used in this chapter
include FSelector (Romanski and Kotthoff, 2016), dplyr (Wick-
ham et al., 2017a), ggplot2 (Wickham and Chang, 2016), lub-
ridate (Grolemund et al., 2016), randomForest (Breiman et al.,
2015), rattle (Williams, 2017), readr (Wickham et al., 2017b), scales
(Wickham, 2016), stringi (Gagolewski et al., 2017), stringr (Wick-

*The template will consist of programming code that can be reused with
little or no modification on a new dataset. The intention is that to get started
with a new dataset only a few lines at the top of the template need to be
modified.

43

44 3 Data Wrangling

ham, 2017a), tibble (Müller and Wickham, 2017), tidyr (Wickham,
2017b) and magrittr (Bache and Wickham, 2014).

Load required packages from local library into the R session.

library(FSelector) # Feature selection: information.gain().
library(dplyr) # Data wrangling, glimpse() and tbl_df().
library(ggplot2) # Visualise data.
library(lubridate) # Dates and time.
library(randomForest) # Impute missing values with na.roughfix().
library(rattle) # weatherAUS data and normVarNames().
library(readr) # Efficient reading of CSV data.
library(scales) # Format comma().
library(stringi) # String concat operator %s+%.
library(stringr) # String operations.
library(tibble) # Convert row names into a column.
library(tidyr) # Prepare a tidy dataset, gather().
library(magrittr) # Pipes %>%, %T>% and equals(), extract().

3.1 Data Ingestion
To begin the data phase of a project we typically need to ingest
data into R. For our purposes we will ingest the data from the
simplest of sources—a text-based CSV (comma separate value)
file. Practically any source format is supported by R through the
many packages available. We can find, for example, support for
ingesting data directly from Excel spreadsheets or from database
servers.

The weatherAUS dataset from rattle will serve to illustrate
the preparation of data for modelling. Both a CSV file and an
R dataset are provided by the package and the dataset is also
available directly from the Internet on the rattle web site. We will
work with the CSV file as the typical pathway for loading data
into R.

Data Ingestion 45

Identifying the Data Source

We first identify and record the location of the CSV file to analyse.
R is capable of loading data directly from the Internet and so
we will illustrate how to load the CSV file from the rattle web
site itself. The location of the file (the so-called URL or universal
resource locator) will be saved as a string of characters in a variable
called dspath—the path to the dataset. This is achieved through
the following assignment which we type into our R script file within
RStudio. The command is then executed in RStudio by clicking the
Run button whilst the cursor is located on the line of code within
the script file.

Idenitfy the source location of the dataset.

dspath <- "http://rattle.togaware.com/weatherAUS.csv"

The assignment operator <- will store the value on the right-
hand side (the string of characters enclosed within quotation
marks) into the computer’s memory and we can later refer to it as
the R variable dspath—that is, we can retrieve the string simply
by reference to the variable dspath.

Reading the Data

Having identified the source of the dataset we can read the data-
set into the memory of the computer using readr::read_csv().
This function returns a data frame (though it is actually an en-
hanced data frame known as a table data frame) which is the
basic data structure used to store a dataset within R. The data is
stored as a table consisting of rows (observations) and columns
(variables). We store the dataset (as a data frame) in the com-
puter’s memory and reference it by the R variable weatherAUS. It
will then be ready to process using R.

Ingest the dataset.

weatherAUS <- read_csv(file=dspath)

Parsed with column specification:

http://rattle.togaware.com/weatherAUS.csv

46 3 Data Wrangling

cols(
.default = col_character(),
Date = col_date(format = ""),
MinTemp = col_double(),
MaxTemp = col_double(),
Rainfall = col_double(),
WindGustSpeed = col_integer(),
WindSpeed9am = col_integer(),
WindSpeed3pm = col_integer(),
Humidity9am = col_integer(),
Humidity3pm = col_integer(),
Pressure9am = col_double(),
Pressure3pm = col_double(),
Cloud9am = col_integer(),
Cloud3pm = col_integer(),
Temp9am = col_double(),
Temp3pm = col_double(),
RISK_MM = col_double()
)
See spec(...) for full column specifications.

Template Variables

To support our goal of creating a reusable template we create
a reference to the original dataset using a template (or generic)
variable. The new variable will be called ds (short for dataset).

Take a copy of the dataset into a generic variable.

ds <- weatherAUS

Both ds and weatherAUS will initially reference the same data-
set within the computer’s memory. As we modify ds those modi-
fications will only affect the data referenced by ds and not the
data referenced by weatherAUS. Effectively an extra copy of the
dataset in the computer’s memory will start to grow as we change
the data from its original form.* From here on we no longer refer

*R avoids making copies of datasets unnecessarily and so a simple assign-
ment does not create a new copy. As modifications are made to one or the
other copy of a dataset then extra memory will be used to store the columns
that differ between the datasets.

Data Ingestion 47

to the dataset as weatherAUS but as ds. This allows the following
steps to be generic—turning the R code into a template requir-
ing only minor modification when used with a different dataset
assigned into ds. Often we will find that we can simply load a dif-
ferent dataset into memory, store it as ds and the following code
remains essentially unchanged.

The next few steps of our template record the name of the
dataset and a generic reference to the dataset.

Prepare the dataset for usage with our template.

dsname <- "weatherAUS"
ds <- get(dsname)

We are a little tricky here in recording the dataset name in the
variable dsname and then using the function base::get() to make
a copy of the original dataset reference and to link it to the generic
variable ds. We could simply assign the data to ds directly as we
saw above. Either way the generic variable ds refers to the same
dataset. The use of base::get() allows us to be generic within
the template.

The use of generic variables within a template for the tasks
we perform on each new dataset will have obvious advantages but
we need to be careful. A disadvantage is that we may be working
with several datasets and accidentally overwrite previously pro-
cessed datasets referenced using the same generic variable (ds).
The processing of the dataset might take some time and so ac-
cidentally losing it is not an attractive proposition. Be careful to
manage the naming of datasets appropriately to avoid any loss of
processed data.

The Shape of the Data

Once the dataset is loaded we seek a basic understanding of
the data—its shape. We are interested in the size of the data-
set in terms of the number of observations (rows) and variables
(columns). We can simply type the variable name that stores the
dataset and will be presented with a summary of the actual con-
tents of the dataset.

48 3 Data Wrangling

Print the dataset.

ds

A tibble: 138,307 x 24
Date Location MinTemp MaxTemp Rainfall Evaporation
<date> <chr> <dbl> <dbl> <dbl> <chr>
1 2008-12-01 Albury 13.4 22.9 0.6 <NA>
2 2008-12-02 Albury 7.4 25.1 0.0 <NA>
3 2008-12-03 Albury 12.9 25.7 0.0 <NA>
4 2008-12-04 Albury 9.2 28.0 0.0 <NA>
5 2008-12-05 Albury 17.5 32.3 1.0 <NA>
6 2008-12-06 Albury 14.6 29.7 0.2 <NA>
7 2008-12-07 Albury 14.3 25.0 0.0 <NA>
8 2008-12-08 Albury 7.7 26.7 0.0 <NA>
9 2008-12-09 Albury 9.7 31.9 0.0 <NA>
10 2008-12-10 Albury 13.1 30.1 1.4 <NA>
... with 138,297 more rows, and 18 more variables:
Sunshine <chr>, WindGustDir <chr>, WindGustSpeed <int>,
WindDir9am <chr>, WindDir3pm <chr>, WindSpeed9am <int>,
WindSpeed3pm <int>, Humidity9am <int>, Humidity3pm <int>,
Pressure9am <dbl>, Pressure3pm <dbl>, Cloud9am <int>,
Cloud3pm <int>, Temp9am <dbl>, Temp3pm <dbl>,
RainToday <chr>, RISK_MM <dbl>, RainTomorrow <chr>

The function base::dim() will provide dimension inform-
ation (observations and variables) as will base::nrow() and
base::ncol(). We use rattle::comcat() to format numbers
with commas.

Basic size information.

dim(ds) %>% comcat()

138,307 24

nrow(ds) %>% comcat()

138,307

ncol(ds) %>% comcat()

24

Data Ingestion 49

A useful alternative for our initial insight into the dataset is to
use tibble::glimpse().

A quick view of the contents of the dataset.

glimpse(ds)

Observations: 138,307
Variables: 24
$ Date <date> 2008-12-01, 2008-12-02, 2008-12-03,...
$ Location <chr> "Albury", "Albury", "Albury", "Albur...
$ MinTemp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, 14...
$ MaxTemp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7, ...
$ Rainfall <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0...
$ Evaporation <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
$ Sunshine <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
$ WindGustDir <chr> "W", "WNW", "WSW", "NE", "W", "WNW",...
$ WindGustSpeed <int> 44, 44, 46, 24, 41, 56, 50, 35, 80, ...
$ WindDir9am <chr> "W", "NNW", "W", "SE", "ENE", "W", "...
$ WindDir3pm <chr> "WNW", "WSW", "WSW", "E", "NW", "W",...
$ WindSpeed9am <int> 20, 4, 19, 11, 7, 19, 20, 6, 7, 15, ...
$ WindSpeed3pm <int> 24, 22, 26, 9, 20, 24, 24, 17, 28, 1...
$ Humidity9am <int> 71, 44, 38, 45, 82, 55, 49, 48, 42, ...
$ Humidity3pm <int> 22, 25, 30, 16, 33, 23, 19, 19, 9, 2...
$ Pressure9am <dbl> 1007.7, 1010.6, 1007.6, 1017.6, 1010...
$ Pressure3pm <dbl> 1007.1, 1007.8, 1008.7, 1012.8, 1006...
$ Cloud9am <int> 8, NA, NA, NA, 7, NA, 1, NA, NA, NA,...
$ Cloud3pm <int> NA, NA, 2, NA, 8, NA, NA, NA, NA, NA...
$ Temp9am <dbl> 16.9, 17.2, 21.0, 18.1, 17.8, 20.6, ...
$ Temp3pm <dbl> 21.8, 24.3, 23.2, 26.5, 29.7, 28.9, ...
$ RainToday <chr> "No", "No", "No", "No", "No", "No", ...
$ RISK_MM <dbl> 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0, 0...
$ RainTomorrow <chr> "No", "No", "No", "No", "No", "No", ...

Normalizing Variable Names

Next we review the variables included in the dataset. The function
base::names() will list the names of the variables (columns).

Identify the variables of the dataset.

names(ds)

[1] "Date" "Location" "MinTemp"

50 3 Data Wrangling

[4] "MaxTemp" "Rainfall" "Evaporation"
[7] "Sunshine" "WindGustDir" "WindGustSpeed"
[10] "WindDir9am" "WindDir3pm" "WindSpeed9am"
[13] "WindSpeed3pm" "Humidity9am" "Humidity3pm"
[16] "Pressure9am" "Pressure3pm" "Cloud9am"
....

The names of the variables within the dataset as supplied to us
may not be in any particular standard form and may use different
conventions. For example, we might see a mix of upper and lower
case letters (WindSpeed9AM) or variable names that are very long
(Wind_Speed_Recorded_Today_9am) or use sequential numbers to
identify each variable (V004 or V010_wind_speed) or use codes
(XVn34_windSpeed) or any number of other conventions. Often we
prefer and it is convenient to simplify the variable names to ease
our processing and to enforce a standard and consistent naming
convention for ourselves. This will help us in interacting the data
without regular reference to how the variables are named.

A useful convention is to map all variable names to lowercase.
R is case sensitive so that doing this will result in different vari-
able names as far as R is concerned. Such normalisation is useful
when different upper/lower case conventions are intermixed in-
consistently in names like Incm_tax_PyBl. Remembering how to
capitalize when interactively exploring the data with thousands of
such variables can be quite a cognitive load. Yet we often see such
variable names arising in practise especially when we import data
from databases which are often case insensitive.

We use rattle::normVarNames() to make a reasonable at-
tempt of converting variables from a dataset into a preferred
standard form. The actual form follows the style we introduce
in Chapter 11. The following example shows the original names
and how they are transformed into a normalized form. Here we
make extensive use of the function base::names() to work with
the variable names.*

*When the name of a variable within a dataset is changed a new copy of
that value of that variable is created so that now ds and weatherAUS will now
be referring to different datasets in memory.

Data Review 51

Review the variables before normalising their names.

names(ds)

[1] "Date" "Location" "MinTemp"
[4] "MaxTemp" "Rainfall" "Evaporation"
[7] "Sunshine" "WindGustDir" "WindGustSpeed"
[10] "WindDir9am" "WindDir3pm" "WindSpeed9am"
[13] "WindSpeed3pm" "Humidity9am" "Humidity3pm"
[16] "Pressure9am" "Pressure3pm" "Cloud9am"
....

Normalise the variable names.

names(ds) %<>% normVarNames()

Confirm the results are as expected.

names(ds)

[1] "date" "location" "min_temp"
[4] "max_temp" "rainfall" "evaporation"
[7] "sunshine" "wind_gust_dir" "wind_gust_speed"
[10] "wind_dir_9am" "wind_dir_3pm" "wind_speed_9am"
[13] "wind_speed_3pm" "humidity_9am" "humidity_3pm"
[16] "pressure_9am" "pressure_3pm" "cloud_9am"
....

Notice the use of the assignment pipe here as introduced in
Chapter 2. Recall that the magrittr::%<>% operator will pipe
the left-hand data to the function on the right-hand side and then
return the result to the left-hand side overwriting the original con-
tents of the memory referred to on the left-hand side. In this case,
the left-hand side refers to the variable names of the dataset.

3.2 Data Review
Once we have loaded the dataset and had our initial review of its
size and cleaned up the variable names the next step is to under-

52 3 Data Wrangling

stand its structure—that is, understand what the data within the
dataset looks like.

Structure

A basic summary of the structure of the dataset is presented using
tibble::glimpse() as we saw above.

Review the dataset.

glimpse(ds)

Observations: 138,307
Variables: 24
$ date <date> 2008-12-01, 2008-12-02, 2008-12-0...
$ location <chr> "Albury", "Albury", "Albury", "Alb...
$ min_temp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, ...
$ max_temp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7...
$ rainfall <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0,...
$ evaporation <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA...
....

From this summary we see the variable names, their data types
and the first few values of the variable. We can see a variety of data
types here, ranging from Date (date), through character (chr)
and numeric (dbl).

We confirm the data looks as we would expect and begin to gain
some insight into the data itself. We might start asking questions
such as whether the date values are a sequence of days as we
might expect. The first few locations are listed as Albury and
so we might ask what the other values are. We see minimum and
maximum temperatures and we note the rainfall and evaporation.
We expect each of these to be numeric though we observe that
evaporation is reported as a character variable (which we will come
back to later). For the sample above we only see missing values
for evaporation. For the numerics we will want to understand the
distributions of the values of the variables.

Data Review 53

Contents

Generally our datasets are very large, with many observations (of-
ten in the millions) and many variables (sometimes in the thou-
sands). We can’t be expected to browse through all of the obser-
vations and variables. Instead we can review the contents of the
dataset using utils::head() and utils::tail() to review the
top six (by default) and the bottom six observations.

Review the first few observations.

head(ds)

A tibble: 6 x 24
date location min_temp max_temp rainfall evaporation
<date> <chr> <dbl> <dbl> <dbl> <chr>
1 2008-12-01 Albury 13.4 22.9 0.6 <NA>
2 2008-12-02 Albury 7.4 25.1 0.0 <NA>
3 2008-12-03 Albury 12.9 25.7 0.0 <NA>
4 2008-12-04 Albury 9.2 28.0 0.0 <NA>
....

Review the last few observations.

tail(ds)

A tibble: 6 x 24
date location min_temp max_temp rainfall evaporation
<date> <chr> <dbl> <dbl> <dbl> <chr>
1 2017-01-25 Uluru 21.3 34.2 0.2 <NA>
2 2017-01-26 Uluru 23.6 35.5 0.0 <NA>
3 2017-01-27 Uluru 24.6 37.9 4.2 <NA>
4 2017-01-28 Uluru 24.7 39.2 0.2 <NA>
....

We can also have a look at some random observations
from the dataset to provide a little more insight. Here we use
dplyr::sample_n() to randomly select 6 rows from the dataset.

set.seed(2)

54 3 Data Wrangling

Review a random sample of observations.

sample_n(ds, size=6)

A tibble: 6 x 24
date location min_temp max_temp rainfall
<date> <chr> <dbl> <dbl> <dbl>
1 2016-04-22 Penrith 13.8 26.8 0.0
2 2015-11-10 MountGambier 12.6 19.1 0.8
3 2015-05-15 Dartmoor 9.1 13.6 1.4
4 2009-09-08 Penrith 6.4 22.4 0.2
....

All the time we are building a picture of the data we are look-
ing at. We note the date appears to be a daily sequence start-
ing from December 2008 and ending in 2017. We also note that
evaporation is often but not always missing.

3.3 Data Cleaning
Identifying Factors

On loading the dataset into R we can see that a few variables
have been identified as having character (string of characters) as
the values they store. Such variables are often called categoric vari-
ables. Within R these are usually represented as a data type called
factor and handled specially by many of the modelling algorithms.
Where the character data takes on a limited number of possible
values we will convert the variable from character into factor
(categoric) so as to take advantage of some special handling.

A factor is a variable that can only take on a specific number
of known distinct values which we call the levels of the factor.
For datasets that we load into R we will not always have examples
of all levels of a factor. Consequently it is not always possible to
automatically list all of the levels required for the definition of a
factor. Thus we load these variables by default as character and
then convert them to factor as required.

From our review of the data so far we start to make some ob-

Data Cleaning 55

servations about the character variables. The first is location. We
note that several locations were reported in the above exploration
of the dataset. We can confirm the number of locations by count-
ing the number of base::unique() values the variable has in the
original dataset.

How many locations are represented in the dataset.

ds$location %>%
unique() %>%
length()

[1] 49

We may not know in general what other locations we will come
across in related datasets and we already have quite a collection of
49 locations. We might normally decide to retain this variable as
a character data type, but for illustrative purposes we will convert
it to a factor.

ds$location %<>% as.factor()

We next review a base::table() of the distribution of the
locations.

table(ds$location)

##
Adelaide Albany Albury
3047 2894 2894
AliceSprings BadgerysCreek Ballarat
2894 2863 2894
Bendigo Brisbane Cairns
....

Two related variables that are class character that might be
better represented as factors are rain_today and rain_tomorrow.
We can review the distribution of their values with the following
code.

56 3 Data Wrangling

Review the distribution of observations across levels.

ds %>%
select(starts_with("rain_")) %>%
sapply(table)

rain_today rain_tomorrow
No 104498 104493
Yes 30279 30283

Here we dplyr::select() from the dataset those variables
that start with the string rain_ and then build a base::table()
over those variables in the subset of the original dataset selected.
We use base::sapply() to apply base::table() to the selec-
ted columns since the function takes a single column from the
dataset as its argument. This function counts the frequency of the
occurence of each value of a variable within the dataset.

We confirm that No and Yes are the only values these two
variables have and so it makes sense to convert them both
to factors. We will keep the ordering as alphabetic and so a
simple call to base::factor() will convert each variable from
character to factor using base::lapply(). Note the use of
base::data.frame() and dplyr::tbl_df() to ensure the data
is in the correct form to overwrite the original columns in the
dataset.
Note the names of the rain variables.

ds %>%
select(starts_with("rain_")) %>%
names() %T>%
print() ->

vnames

[1] "rain_today" "rain_tomorrow"

Confirm these are currently character variables.

ds[vnames] %>% sapply(class)

rain_today rain_tomorrow
"character" "character"

Data Cleaning 57

Convert these variables from character to factor and confirm.

ds[vnames] %<>%
lapply(factor) %>%
data.frame() %>%
tbl_df() %T>%
{sapply(., class) %>% print()}

rain_today rain_tomorrow
"factor" "factor"

We can again obtain a distribution of the variables to confirm
that all we have changed is the data type.

Verify the distribution has not changed.

ds %>%
select(starts_with("rain_")) %>%
sapply(table)

rain_today rain_tomorrow
No 104498 104493
Yes 30279 30283

The three wind direction variables identified as wind_gust_dir,
wind_dir_9am and wind_dir_3pm are also character variables.
We will want to review their distribution of values and can do
so in a similar way. Here we dplyr::select() from the data-
set those variables containing the string _dir and then build
a base::table() over those variables in the selected subset
of the original dataset. We again use base::sapply() with
base::table() to count the frequency of the occurence of each
level of the factors within the dataset.

Review the distribution of observations across levels.

ds %>%
select(contains("_dir")) %>%
sapply(table)

wind_gust_dir wind_dir_9am wind_dir_3pm
E 8628 8622 8024

58 3 Data Wrangling

ENE 7669 7436 7456
ESE 6894 7157 8000
N 8922 11339 8520
NE 6822 7303 7938
NNE 6260 7763 6332
NNW 6301 7680 7516
NW 7791 8404 8306
S 8670 8241 9359
SE 8802 8751 10227
SSE 8707 8573 8857
SSW 8130 7199 7572
SW 8554 7930 8878
W 9577 8128 9733
WNW 7987 7112 8563
WSW 8722 6689 9142

From the table we notice 16 compass directions. All compass
directions are represented and so we will convert these charac-
ter variables into factors. Notice that the values of the variables
are listed in alphabetic order in the above and a simple con-
version to a factor will retain the alphabetic order. We might
know however that the compass orders the directions in a well-
defined manner (from N, NNE, to NW and NNW). With this know-
ledge we will force the levels to have the appropriate ordering and
also let base::factor() know that the levels are ordered with
ordered=TRUE.

Levels of wind direction are ordered compass directions.

compass <- c("N", "NNE", "NE", "ENE",
"E", "ESE", "SE", "SSE",
"S", "SSW", "SW", "WSW",
"W", "WNW", "NW", "NNW")

Note the names of the wind direction variables.

ds %>%
select(contains("_dir")) %>%
names() %T>%
print() ->

vnames

[1] "wind_gust_dir" "wind_dir_9am" "wind_dir_3pm"

Data Cleaning 59

Confirm these are currently character variables.

ds[vnames] %>% sapply(class)

wind_gust_dir wind_dir_9am wind_dir_3pm
"character" "character" "character"

Convert these variables from character to factor and confirm.

ds[vnames] %<>%
lapply(factor, levels=compass, ordered=TRUE) %>%
data.frame() %>%
tbl_df() %T>%
{sapply(., class) %>% print()}

wind_gust_dir wind_dir_9am wind_dir_3pm
[1,] "ordered" "ordered" "ordered"
[2,] "factor" "factor" "factor"

Again we obtain a distribution of the variables to confirm that
all we have changed is the data type.

Verify the distribution has not changed.

ds %>%
select(contains("_dir")) %>%
sapply(table)

wind_gust_dir wind_dir_9am wind_dir_3pm
N 8922 11339 8520
NNE 6260 7763 6332
NE 6822 7303 7938
ENE 7669 7436 7456
E 8628 8622 8024
....

There are two other variables that have been identified as char-
acter data types: evaporation and sunshine. If we look at the
dataset we see they have missing values.

Note the remaining character variables to be dealt with.

cvars <- c("evaporation", "sunshine")

60 3 Data Wrangling

Review their values.

head(ds[cvars])

A tibble: 6 x 2
evaporation sunshine
<chr> <chr>
1 <NA> <NA>
2 <NA> <NA>
3 <NA> <NA>
4 <NA> <NA>
5 <NA> <NA>
6 <NA> <NA>

sample_n(ds[cvars], 6)

A tibble: 6 x 2
evaporation sunshine
<chr> <chr>
1 <NA> <NA>
2 5.8 12
3 2 9
4 1.8 8.4
5 2.2 0
6 4.8 0

The heuristic used to determine the data type when
readr::read_csv() ingests the data only looks at a subset of
all the data before it determines the data types. In this case they
were missing for the early observations and so in the absence of
further information they were represented as character. We need
to convert them to numeric.

Check the current class of the variables.

ds[cvars] %>% sapply(class)

evaporation sunshine
"character" "character"

Convert to numeric.

Data Cleaning 61

ds[cvars] %<>% sapply(as.numeric)

Confirm the conversion.

ds[cvars] %>% sapply(class)

evaporation sunshine
"numeric" "numeric"

We have now dealt with all of the character variables con-
verting them to factors or numerics on a case-by-case basis on
our understanding of the data.

Normalise Factors

Some variables will have levels with spaces, and mixture of cases,
etc. We may like to normalise the levels for each of the categoric
variables. For very large datasets this can take some time and so
we may choose to be selective if there are many factors.

Note which variables are categoric.

ds %>%
sapply(is.factor) %>%
which() %T>%
print() ->

catc

location wind_gust_dir wind_dir_9am wind_dir_3pm
2 8 10 11
rain_today rain_tomorrow
22 24

Normalise the levels of all categoric variables.

for (v in catc)
levels(ds[[v]]) %<>% normVarNames()

To confirm we can review the categoric variables.

glimpse(ds[catc])

62 3 Data Wrangling

Observations: 138,307
Variables: 6
$ location <fctr> albury, albury, albury, albury, alb...
$ wind_gust_dir <ord> w, wnw, wsw, ne, w, wnw, w, w, nnw, ...
$ wind_dir_9am <ord> w, nnw, w, se, ene, w, sw, sse, se, ...
$ wind_dir_3pm <ord> wnw, wsw, wsw, e, nw, w, w, w, nw, s...
....

Ensure Target is a Factor

Many data mining tasks can be expressed as building classification
models. For such models we want to ensure the target is categoric.
Often it is 0/1 and hence is loaded as numeric. In such cases we
could tell our model algorithm to explicitly do classification or else
set the target using base::as.factor() in the formula. Nonethe-
less it is generally cleaner to do this here and note that this code
has no effect if the target is already categoric.

Note the target variable.

target <- "rain_tomorrow"

Ensure the target is categoric.

ds[[target]] %<>% as.factor()

Confirm the distribution.

ds[target] %>% table()

.
no yes
104493 30283

It is always a good idea to visualise the distribution of the
target (and other) variables using ggplot2. We can pipe the dataset
into ggplot2::ggplot() whereby the target is associated through
ggplot2::aes_string() (the aesthetics) with the x-axis of the
plot. To this we add a graphics layer using ggplot2::geom_bar()
to produce the bar chart, with bars having width= 0.2 and a fill=
color of "grey". The resulting plot can be seen in Figure 3.1. With

Variable Roles 63

0

25,000

50,000

75,000

100,000

no yes NA
Rain Tomorrow

C
ou

nt
Distribution of Rain Tomorrow

Source: weatherAUS

Figure 3.1: Target variable distribution. Plotting the distribution is
useful to gain an insight into the number of observations in each
category. As is the case here we often see a skewed distribution.

some surprise we note that there are missing values in the dataset.
We will deal with the missing values (NA) shortly.

ds %>%
ggplot(aes_string(x=target)) +
geom_bar(width=0.2, fill="grey") +
theme(text=element_text(size=14)) +
scale_y_continuous(labels=comma) +
labs(title = "Distribution of Rain Tomorrow",

x = "Rain Tomorrow",
y = "Count",
caption = "Source: weatherAUS")

3.4 Variable Roles
Now that we have a basic idea of the size and shape and contents of
the dataset and have performed some basic data type identification
and cleaning, we are in a position to identify the roles played by

64 3 Data Wrangling

the variables within the dataset. We record the list of available
variables so that we might reference them shortly.

Note the available variables.

ds %>%
names() %T>%
print() ->

vars

[1] "date" "location" "min_temp"
[4] "max_temp" "rainfall" "evaporation"
[7] "sunshine" "wind_gust_dir" "wind_gust_speed"
[10] "wind_dir_9am" "wind_dir_3pm" "wind_speed_9am"
[13] "wind_speed_3pm" "humidity_9am" "humidity_3pm"
[16] "pressure_9am" "pressure_3pm" "cloud_9am"
[19] "cloud_3pm" "temp_9am" "temp_3pm"
[22] "rain_today" "risk_mm" "rain_tomorrow"

By this stage of the project we will usually have identified a
business problem that is the focus of attention. In our case we
will assume it is to build a predictive analytics model to predict
the chance of it raining tomorrow given the observation of today’s
weather. In this case, the variable rain_tomorrow is the target
variable. Given today’s observations of the weather this is what
we want to predict. The dataset we have is then a training dataset
of historic observations. The task in model building is to identify
any patterns among the other observed variables that suggest that
it rains the following day.

We also take the opportunity here to move the target variable
to be the first in the vector of variables recorded in vars. This is
common practice where the first variable in a dataset is the target
and the remainder are the variables that will be used to build a
model. Another common practise is for the target to be the final
column of the dataset.

Place the target variable at the beginning of the vars.

c(target, vars) %>%
unique() %T>%
print() ->

Variable Roles 65

vars

[1] "rain_tomorrow" "date" "location"
[4] "min_temp" "max_temp" "rainfall"
[7] "evaporation" "sunshine" "wind_gust_dir"
[10] "wind_gust_speed" "wind_dir_9am" "wind_dir_3pm"
[13] "wind_speed_9am" "wind_speed_3pm" "humidity_9am"
[16] "humidity_3pm" "pressure_9am" "pressure_3pm"
....

Notice the use of base::unique() simply to remove the ori-
ginal occurrence of the target variable.

Another variable that we observe as relating to the outcome
rather than to today’s observations is risk_mm. From the business
context we would learn that this records the amount of rain that
fell “tomorrow”. We refer to this as a risk variable. It is a measure
of the impact or risk of the outcome we are predicting (whether
it rains tomorrow). The risk is an output variable and should not
be used as an input to the modelling—it is not an independent
variable. In other circumstances it might actually be treated as
the target variable.

Note the risk variable - measures the severity of the outcome.

risk <- "risk_mm"

Finally from our observations so far we note that the variable
date acts as an identifier as does the variable location. Given
a date and a location we have an observation of the remaining
variables. We note these two variables as identifiers. Identifiers
would not usually be used as independent variables for building
predictive analytics models.

Note any identifiers.

id <- c("date", "location")

66 3 Data Wrangling

3.5 Feature Selection
We now move on to identifying variables (features or columns of
the dataset) that are irrelevant or inappropriate for modelling.

IDs and Outputs

We start by noting that we should ignore all identifiers and any
risk variable (which will be an output variable rather than an
input variable). These variables should be ignored in our model-
ling. Always watch out for treating output variables as inputs to
modelling—this is a surprisingly common trap for beginners.

We will build a vector of the names of the variables to ig-
nore. Above we have already recorded the id variables and (op-
tionally) the risk. Here we join them into a new vector using
dplyr::union() which performs a set union operation—that is,
it joins the two arguments together and removes any repeated
variables.

Initialise ignored variables: identifiers and risk.

id %>%
union(if (exists("risk")) risk) %T>%
print() ->

ignore

[1] "date" "location" "risk_mm"

We might also check for variables that have a unique value for
every observation. These are often identifiers and if so they are
candidates for ignoring.

We begin in the following code block by defining a helper func-
tion that given a vector of data it will return the number of unique
values found in that vector. This helper function is then deployed
in the following pipeline to identify those vars which have as many
unique values as there are rows in the dataset. The pipeline is ex-
plained next. This is our first example of defining our own function.

Feature Selection 67

Helper function to count the number of distinct values.

count_unique <- function(x)
{
x %>% unique() %>% length()

}

Heuristic for candidate indentifiers to possibly ignore.

ds[vars] %>%
sapply(count_unique) %>%
equals(nrow(ds)) %>%
which() %>%
names() %T>%
print() ->

ids

character(0)

Add them to the variables to be ignored for modelling.

ignore <- union(ignore, ids) %T>% print()

[1] "date" "location" "risk_mm"

We can step through this code line by line to understand its
workings. To find the candidate identifiers we retain just the vars
from the dataset and pipe this subset of the original dataset ds
through to base::sapply(). The function base::sapply() ap-
plies a supplied function to every column of the provided dataset.
The function we supply is the helper function we defined. The (x)
represents a single column of the dataset at a time. Thus, for each
column we identify the base::unique() values in that column and
then return the base::length() of the vector of unique values.

The base::sapply() sends the vector of lengths (the number
of unique values for each of the columns) on to the next operation
through the pipeline. The follow-on operation tests if the calcu-
lated number of unique values magrittr::equals() the number
of rows in the dataset as calculated using base::nrow(). The res-
ulting vector of logical values is then piped to base::which() to

68 3 Data Wrangling

retain those that are TRUE—those that have as many unique values
as there are rows in the dataset.

Finally, we extract the base::names() of these variables and
store them as the variable ids after printing them for information
purposes.

We have strung together a series of operations here with each
operation piping data on to the next operation. It is worth taking
a little time to understand the sequence as a single sentence in the
grammar of data wrangling. As we interact with our data we
typically build the sequence adding one extra process at a time in
the R Console, confirming the results as we go.

The pipeline has identified no variables as potential identifiers
themselves in this dataset; hence, the character(0) result. Below
we choose observations from a single location and process that
data through the above pipeline to illustrate the selection of date
as having a unique value for every observation.

Engineer the data to illustrate identifier selection.

ods <- ds # Take a backup copy of the original dataset.

ds %<>% filter(location=="sydney")

ds[vars] %>%
sapply(count_unique) %>%
equals(nrow(ds)) %>%
which() %>%
names()

[1] "date"

ds <- ods # Restore the original dataset.

All Missing

We next remove any variable where all of the values are missing.
Our pipeline here counts the number of missing values for each
variable and then lists the names of those variables that have no
values. We introduce another small helper function to count the
number of missing values for a vector.

Feature Selection 69

Helper function to count the number of values missing.

count_na <- function(x)
{
x %>% is.na() %>% sum()

}

Identify variables with only missing values.

ds[vars] %>%
sapply(count_na) %>%
equals(nrow(ds)) %>%
which() %>%
names() %T>%
print() ->

missing

character(0)

Add them to the variables to be ignored for modelling.

ignore %<>% union(missing) %T>% print()

[1] "date" "location" "risk_mm"

Again there are no variables that are completely missing in the
weatherAUS dataset but in general it is worth checking. Below
we engineer a dataset with all missing values for some variables to
illustrate the pipeline in action.
Engineer the dataset to illustrate missing columns.

ods <- ds # Take a backup copy of the dataset.

ds %<>% filter(location=="albury")

ds[vars] %>%
sapply(count_na) %>%
equals(nrow(ds)) %>%
which() %>%
names()

[1] "evaporation" "sunshine"

ds <- ods # Restore the dataset.

70 3 Data Wrangling

Note that it is also adding to our knowledge of this dataset
that there are locations for which some variables are not observed
or recorded. This may play a role in understanding how to model
the data.

Many Missing

It is also useful to identify those variables which are very sparse—
that have mostly missing values. We can decide on a threshold
of the proportion missing above which to ignore the variable as
not likely to add much value to our analysis. For example, we may
want to ignore variables with more than 80% of the values missing:

Identify a threshold above which proportion missing is fatal.

missing.threshold <- 0.8

Identify variables that are mostly missing.

ds[vars] %>%
sapply(count_na) %>%
'>'(missing.threshold*nrow(ds)) %>%
which() %>%
names() %T>%
print() ->

mostly

character(0)

Add them to the variables to be ignored for modelling.

ignore <- union(ignore, mostly) %T>% print()

[1] "date" "location" "risk_mm"

Here again we identify no variables that have a high proportion
of missing observations.

Too Many Levels

Another issue we often come across in our datasets are factors that
have very many levels. We might want to ignore such variables (or

Feature Selection 71

perhaps group them appropriately). Here we simply identify them
and add them to the list of variables to ignore:

Helper function to count the number of levels.

count_levels <- function(x)
{
ds %>% extract2(x) %>% levels() %>% length()

}

Identify a threshold above which we have too many levels.

levels.threshold <- 20

Identify variables that have too many levels.

ds[vars] %>%
sapply(is.factor) %>%
which() %>%
names() %>%
sapply(count_levels) %>%
'>='(levels.threshold) %>%
which() %>%
names() %T>%
print() ->

too.many

[1] "location"

Add them to the variables to be ignored for modelling.

ignore <- union(ignore, too.many) %T>% print()

[1] "date" "location" "risk_mm"

The variable location is identified as having too many levels
and is thus added to the ignore list though since it is already on
that list there is no change to it.

Constants

We should also ignore variables with constant values as they gen-
erally add no extra information to the analysis.

72 3 Data Wrangling

Helper function to test if all values in vector are the same.

all_same <- function(x)
{

all(x == x[1L])
}

Identify variables that have a single value.

ds[vars] %>%
sapply(all_same) %>%
which() %>%
names() %T>%
print() ->

constants

character(0)

Add them to the variables to be ignored for modelling.

ignore <- union(ignore, constants) %T>% print()

[1] "date" "location" "risk_mm"

There are no constants found in this dataset.

Correlated Variables

It is often useful to reduce the number of variables we are model-
ling by identifying and removing highly correlated variables. Such
variables will often record the same information but in different
ways. Correlated variables can often arise when we combine data
from different sources.

First we will identify the numeric variables on which we will
calculate correlations. We start by removing the ignored vari-
ables from the dataset. We then identify the numeric variables
by base::sapply()ing the function base::is.numeric() to the
dataset then find base::which() variables are numeric. The vari-
able names are stored into the variable numc.

Feature Selection 73

Note which variables are numeric.

vars %>%
setdiff(ignore) %>%
magrittr::extract(ds, .) %>%
sapply(is.numeric) %>%
which() %>%
names() %T>%
print() ->

numc

[1] "min_temp" "max_temp" "rainfall"
[4] "evaporation" "sunshine" "wind_gust_speed"
[7] "wind_speed_9am" "wind_speed_3pm" "humidity_9am"
[10] "humidity_3pm" "pressure_9am" "pressure_3pm"
[13] "cloud_9am" "cloud_3pm" "temp_9am"
[16] "temp_3pm"

We can then calculate the correlation between the numeric
variables by selecting the numeric columns from the dataset and
passing that through to stats::cor(). This generates a matrix
of pairwise correlations based on only the complete observations
so that observations with missing values are ignored.

We set the upper triangle of the correlation matrix to NA’s as
they are a mirror of the values in the lower triangle and thus re-
dundant. Notice that with diag=TRUE this includes the diagonals
of the matrix being set to NA as they will always be perfect correl-
ations (1).

Next we ensure the values are positive using base::abs().
We also ensure we have a base::data.frame() which we con-
vert to a dplyr::tbl_df(). The dataset column names need
to be reset appropriately using magrittr::set_colnames(). We
dplyr::mutate() the dataset by adding a new column, then
tidyr::gather() the dataset. Missing correlations are omit-
ted using stats::na.omit(). Finally, the rows are dplyr::
arrange()’d with the highest absolute correlations appearing
first.

For numeric variables generate a table of correlations

74 3 Data Wrangling

ds[numc] %>%
cor(use="complete.obs") %>%
ifelse(upper.tri(., diag=TRUE), NA, .) %>%
abs() %>%
data.frame() %>%
tbl_df() %>%
set_colnames(numc) %>%
mutate(var1=numc) %>%
gather(var2, cor, -var1) %>%
na.omit() %>%
arrange(-abs(cor)) %T>%
print() ->

mc

A tibble: 120 x 3
var1 var2 cor
<chr> <chr> <dbl>
1 temp_3pm max_temp 0.9851472
2 pressure_3pm pressure_9am 0.9620731
3 temp_9am min_temp 0.9069890
4 temp_9am max_temp 0.8936331
5 temp_3pm temp_9am 0.8710598
6 max_temp min_temp 0.7497200
7 temp_3pm min_temp 0.7271346
....

This is quite a complex pipeline. It is worth taking time to
understand the sequence as a single sentence in the grammar of
data wrangling. Importantly it should be noted that we build up
such a command sequence interactively, adding one new command
in the pipeline sequence at a time until we have our final desired
outcome. It is strongly recommended that you replicate building
the sequence one step at a time to review and understand the
result after each step.

From the final result we can identify pairs of variables where
we might want to keep one but not the other variable because
they are highly correlated. We will select them manually since it is
a judgement call. Normally we might limit the removals to those
correlations that are 0.90 or more. We should confirm that the
three most highly correlated variables here make intuitive sense.

Feature Selection 75

Note the correlated variables that are redundant.

correlated <- c("temp_3pm", "pressure_3pm", "temp_9am")

Add them to the variables to be ignored for modelling.

ignore <- union(ignore, correlated) %T>% print()

[1] "date" "location" "risk_mm" "temp_3pm...
[5] "pressure_3pm" "temp_9am"

Removing Variables

Once we have identified all of the variables to ignore we remove
them from our list of variables to use.

Check the number of variables currently.

length(vars)

[1] 24

Remove the variables to ignore.

vars %<>% setdiff(ignore) %T>% print()

[1] "rain_tomorrow" "min_temp" "max_temp"
[4] "rainfall" "evaporation" "sunshine"
[7] "wind_gust_dir" "wind_gust_speed" "wind_dir_9am"
[10] "wind_dir_3pm" "wind_speed_9am" "wind_speed_3pm"
[13] "humidity_9am" "humidity_3pm" "pressure_9am"
[16] "cloud_9am" "cloud_3pm" "rain_today"

Confirm they are now ignored.

length(vars)

[1] 18

76 3 Data Wrangling

Algorithmic Feature Selection

There are many R packages available to support the preparation
of our datasets and over time you will find packages that suit
your needs. As you do so they can be added to your version of
the template for data wrangling. For example, a useful package is
FSelector which provides functions to identify subsets of variables
that might be most effective for modelling. We can use this (and
other packages) to further assist us in reducing the variables for
modelling.

As an example we can use FSelector::cfs() to identify a
subset of variables to consider for use in modelling by using cor-
relation and entropy.

Construct the formulation of the modelling to undertake.

form <- formula(target %s+% " ~ .") %T>% print()

rain_tomorrow ~ .

Use correlation search to identify key variables.

cfs(form, ds[vars])

[1] "sunshine" "humidity_3pm" "rain_today"

Notice the use of the stringi::%s+% operator as a convenience
to concatenate strings together to produce a formula that indicates
we will model the target variable using all of the other variables
of the dataset.

A second example lists the variable importance using
FSelector::information.gain() to advise a useful subset of
variables.

Use information gain to identify variable importance.

information.gain(form, ds[vars]) %>%
rownames_to_column("variable") %>%
arrange(-attr_importance)

variable attr_importance

Missing Data 77

1 humidity_3pm 0.113700324
2 sunshine 0.058452293
3 rainfall 0.056252382
4 cloud_3pm 0.053338637
5 rain_today 0.044860122
6 humidity_9am 0.039193871
7 cloud_9am 0.036895020
8 pressure_9am 0.028837842
9 wind_gust_speed 0.025299064
10 max_temp 0.014812106
11 wind_dir_9am 0.008286797
12 evaporation 0.006114435
13 wind_gust_dir 0.005849817
14 min_temp 0.005012095
15 wind_speed_3pm 0.004941750
16 wind_dir_3pm 0.004717975
17 wind_speed_9am 0.003778012

The two measures are somewhat consistent in this case. The
variables identified by FSelector::cfs() are mostly the more im-
portant variables identified by FSelector::information.gain().
However rain_today is a little further down on the information
gain list.

3.6 Missing Data
A common task is to deal with missing values. Here we remove
observations with a missing target. As with any missing data we
should also analyse whether there is any pattern to the missing
targets. This may be indicative of a systematic data issue rather
than simple randomness. It is important to investigate further why
the data is systematically missing. Often this will also lead to a
better understanding of the data and how it was collected.

Check the dimensions to start with.

dim(ds)

[1] 138307 24

78 3 Data Wrangling

Identify observations with a missing target.

missing_target <- ds %>% extract2(target) %>% is.na()

Check how many are found.

sum(missing_target)

[1] 3531

Remove observations with a missing target.

ds %<>% filter(!missing_target)

Confirm the filter delivered the expected dataset.

dim(ds)

[1] 134776 24

Missing values in the input variables are also an issue for
some but not all algorithms. For example, the traditional ensemble
model building algorithm randomForest::randomForest() omits
observations with missing values by default whilst rpart::rpart()
has a particularly well-developed approach to dealing with missing
values.

In the previous section we removed variables with many missing
values noting that this is not always appropriate. We may want to
instead impute missing values in the data (noting also that it is
not always wise to do so as it is effectively inventing data).

Here we illustrate a process for imputing missing values using
randomForest::na.roughfix(). As the name suggests, this func-
tion provides a basic algorithm for imputing missing values. We
will demonstrate the process but then restore the original dataset
rather than have the imputations included in our actual dataset.

Backup the dataset so we can restore it as required.

ods <- ds

Count the number of missing values.

Missing Data 79

ds[vars] %>% is.na() %>% sum() %>% comcat()

278,293

Impute missing values.

ds[vars] %<>% na.roughfix()

Confirm that no missing values remain.

ds[vars] %>% is.na() %>% sum() %>% comcat()

0

Restore the original dataset.

ds <- ods

An alternative might be to remove observations that have miss-
ing values. We use stats::na.omit() to identify the rows to omit
based on the vars to be included for modelling. The list of rows to
omit is stored as the na.action attribute of the returned object.
We can then remove these observations from the dataset. We start
again by keeping a copy of the original dataset to restore later. We
also initialise a list of row indicies that we will (omit) from the
dataset.

Backup the dataset so we can restore it as required.

ods <- ds

Initialise the list of observations to be removed.

omit <- NULL

Review the current dataset.

ds[vars] %>% nrow()

[1] 134776

ds[vars] %>% is.na() %>% sum() %>% comcat()

80 3 Data Wrangling

278,293

Identify any observations with missing values.

mo <- attr(na.omit(ds[vars]), "na.action")

Record the observations to omit.

omit <- union(omit, mo)

If there are observations to omit then remove them.

if (length(omit)) ds <- ds[-omit,]

Confirm the observations have been removed.

ds[vars] %>% nrow() %>% comcat()

54,757

ds[vars] %>% is.na() %>% sum()

[1] 0

Restore the original dataset.

ds <- ods
omit <- NULL

By restoring the dataset to its original contents to continue
with our analysis we are deciding not to omit any observations at
this time.

3.7 Feature Creation
Another important task for the data scientist is to create new fea-
tures from the provided data where appropriate. We will illustrate
with two examples. Note that we will often iterate over the feature
creation process many times during the life cycle of a project. New

Feature Creation 81

derived features will become identified as we gain insights into the
data and through our modelling.

Derived Features

From a review of the data we note that each observation has a
date associated with it. Unless we are specifically performing time
series analysis (and indeed this would be an appropriate analysis
to consider for this dataset) some derived features may be useful
for our model building rather than using the specific dates as input
variables.

Here we add two derived features to our dataset: year and sea-
son. The decision to add these was made after we initially began
exploring the data and building our initial predictive models. Feed-
back from our domain expert suggested that the changing pattern
over the years is of interest and that predicting rain will often
involve seasonal adjustments.

The dataset is dplyr::mutate()’d to add these two fea-
tures. The year is a simple extraction from the date using
base::format(). To compute the season we extract the month
base::as.integer() which is then an index to base::switch()
to a specific season depending on the month.

ds %<>%
mutate(year = factor(format(date, "%Y")),

season = format(ds$date, "%m") %>%
as.integer() %>%
sapply(function(x)

switch(x,
"summer", "summer", "autumn",
"autumn","autumn", "winter",
"winter", "winter", "spring",
"spring", "spring", "summer")) %>%

as.factor()) %T>%
{select(., date, year, season) %>% sample_n(10) %>% print()}

A tibble: 10 x 3
date year season
<date> <fctr> <fctr>
1 2014-11-13 2014 spring
2 2014-10-15 2014 spring

82 3 Data Wrangling

3 2010-12-18 2010 summer
4 2010-02-06 2010 summer
5 2016-01-07 2016 summer
6 2015-01-01 2015 summer
7 2009-11-22 2009 spring
8 2013-09-28 2013 spring
9 2009-06-09 2009 winter
10 2012-05-27 2012 autumn

The final line of code prints a random sample of the original and
new features. It is critical to confirm the results are as expected—a
sanity check.

The introduced variables will have different roles which are
recorded appropriately.

vars %<>% c("season")
id %<>% c("year")

Model-Generated Features

In addition to developing features derived from other features we
will sometimes find it useful to include model-generated features.
A common one is to cluster observations or some aggregation of
observations into similar groups. We then uniquely identify each
group (for example, by numbering each group) and add this group-
ing as another column or variable within our dataset.

A cluster analysis (also called segmentation) provides a simple
mechanism to identify groups and allows us to then visualise within
those groups, for example, rather than trying to visualise the whole
dataset at one time. We will illustrate the process of a cluster
analysis over the numeric variables within our dataset. The aim of
the cluster analysis is to group the locations so that within a group
the locations will have similar values for the numeric variables and
between the groups the numeric variables will be more dissimilar.
The traditional clustering algorithm is stats::kmeans().

In the following code block we specify the number of
clusters that we wish to create, storing that as the variable
NCLUST. We then select the numc (numeric) variables from

Feature Creation 83

the dataset ds, dplyr::group_by() the location and then
dplyr::summarise_all() variables. As an interim step we store
for later use the names of the locations. We then continue by re-
moving location from the dataset leaving just the numeric vari-
ables. The variables are then rescaled so that all values across
the different variables are in the same range. This rescaling is
required for cluster analysis so as not to introduce bias due to
very differently scaled variables. The stats::kmeans() cluster
analysis is then performed. We base::print() the results and
magrittr::extract2() just the cluster number for each location.

Reset the random number generator seed for repeatablity.

set.seed(7465)

Cluster the numeric data per location.

NCLUST <- 5

ds[c("location", numc)] %>%
group_by(location) %>%
summarise_all(funs(mean(., na.rm=TRUE))) %T>%
{locations <<- .$location} %>% # Store locations for later.
select(-location) %>%
sapply(function(x) ifelse(is.nan(x), 0, x)) %>%
as.data.frame() %>%
sapply(scale) %>%
kmeans(NCLUST) %T>%
print() %>%
extract2("cluster")->

cluster

K-means clustering with 5 clusters of sizes 4, 22, 10, 8, 5
##
Cluster means:
min_temp max_temp rainfall evaporation sunshine
1 -0.6271436 -0.5345409 0.061972675 -1.2699891 -1.21861982
2 -0.3411683 -0.5272989 -0.007762188 0.1137179 0.09919753
....

head(cluster)

[1] 3 2 2 3 4 2

84 3 Data Wrangling

The cluster numbers are now associated with each location as
stored within the vector using their base::names(). We can then
dplyr::mutate() the dataset by adding the new cluster number
indexed by the location for each observation.

Index the cluster vector by the appropriate locations.

names(cluster) <- locations

Add the cluster to the dataset.

ds %<>% mutate(cluster="area" %>%
paste0(cluster[ds$location]) %>%
as.factor)

Check clusters.

ds %>% select(location, cluster) %>% sample_n(10)

A tibble: 10 x 2
location cluster
<fctr> <fctr>
1 richmond area2
2 cobar area3
3 mount_gambier area2
4 nhil area4
5 sydney area2
6 launceston area2
7 mount_ginini area1
8 wollongong area2
9 gold_coast area4
10 hobart area2

The introduced variable’s role in modelling is recorded appro-
priately.

vars %<>% c("cluster")

A quick sanity check will indicate that basically the clustering
looks okay, grouping locations that the domain expert agrees are
similar in terms of weather patterns.

Preparing the Metadata 85

Check that the clustering looks okay.

cluster[levels(ds$location)] %>% sort()

mount_ginini newcastle penrith
1 1 1
salmon_gums albany albury
1 2 2
ballarat bendigo canberra
2 2 2
....

3.8 Preparing the Metadata
Metadata is data about the data. We now record data about our
dataset that we use later in further processing and analysis.

Variable Types

We identify the variables that will be used to build analytic mod-
els that provide different kinds of insight into our data. Above we
identified the variable roles such as the target, a risk variable and
the ignored variables. From an analytic modelling perspective we
also identify variables that are the model inputs (also called the
independent variables). We record then both as a vector of char-
acters (the variable names) and a vector of integers (the variable
indicies).

vars %>%
setdiff(target) %T>%
print() ->

inputs

[1] "min_temp" "max_temp" "rainfall"
[4] "evaporation" "sunshine" "wind_gust_dir"
[7] "wind_gust_speed" "wind_dir_9am" "wind_dir_3pm"
[10] "wind_speed_9am" "wind_speed_3pm" "humidity_9am"
[13] "humidity_3pm" "pressure_9am" "cloud_9am"

86 3 Data Wrangling

[16] "cloud_3pm" "rain_today" "season"
[19] "cluster"

The integer indices are determined from the base::names() of
the variables in the original dataset. Note the use of USE.NAMES=
from base::sapply() to turn off the inclusion of names in the
resulting vector to keep the result as a simple vector.

inputs %>%
sapply(function(x) which(x == names(ds)), USE.NAMES=FALSE)%T>%
print() ->

inputi

[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 22 26 27

For convenience we also record the number of observations:

ds %>%
nrow() %T>%
comcat() ->

nobs

134,776

Next we report on the dimensions of various data subsets
primarily to confirm that the dataset appears as we expect:
Confirm various subset sizes.

dim(ds) %>% comcat()

134,776 27

dim(ds[vars]) %>% comcat()

134,776 20

dim(ds[inputs]) %>% comcat()

134,776 19

dim(ds[inputi]) %>% comcat()

134,776 19

Preparing the Metadata 87

Numeric and Categoric Variables

Sometimes we need to identify the numeric and categoric vari-
ables for separate handling. Many cluster analysis algorithms, for
example, only deal with numeric variables. Here we identify them
both by name (a character string) and by index. Note that when
using the index we have to assume the variables remain in the same
order within the dataset and all variables are present. Otherwise
the indicies will get out of sync.

Identify the numeric variables by index.

ds %>%
sapply(is.numeric) %>%
which() %>%
intersect(inputi) %T>%
print() ->

numi

[1] 3 4 5 6 7 9 12 13 14 15 16 18 19

Identify the numeric variables by name.

ds %>%
names() %>%
extract(numi) %T>%
print() ->

numc

[1] "min_temp" "max_temp" "rainfall"
[4] "evaporation" "sunshine" "wind_gust_speed"
[7] "wind_speed_9am" "wind_speed_3pm" "humidity_9am"
[10] "humidity_3pm" "pressure_9am" "cloud_9am"
[13] "cloud_3pm"

Identify the categoric variables by index.

ds %>%
sapply(is.factor) %>%
which() %>%
intersect(inputi) %T>%
print() ->

cati

88 3 Data Wrangling

[1] 8 10 11 22 26 27

Identify the categoric variables by name.

ds %>%
names() %>%
extract(cati) %T>%
print() ->

catc

[1] "wind_gust_dir" "wind_dir_9am" "wind_dir_3pm"
[4] "rain_today" "season" "cluster"

3.9 Preparing for Model Building
Our end goal is to build a model based on the data we have pre-
pared. A model will capture knowledge about the world that the
data represents. The final two tasks in preparing our data for
modelling are to specify the form of the model to be built and
to identify the actual observations from which the model is to be
built. For the latter task we will partition the dataset into three
subsets. Whilst this is primarily useful for model building, it may
sometimes be useful to explore a random subset of the whole data-
set so that our interactions are more interactive, particularly when
dealing with large datasets.

Formula to Describe the Model

A formula is used to identify what it is that we will model from
the supplied data. Typically we identify a target variable which
we will model based on other input variables. We can construct
a stats::formula() automatically from a dataset if the first
column of the dataset is the target variable and the remaining
columns are the input variables. A simple selection of the columns
in this order will generate the initial formula automatically. Earlier
we engineered the variable vars to be in the required order.

Preparing for Model Building 89

ds[vars] %>%
formula() %>%
print() ->

form

rain_tomorrow ~ min_temp + max_temp + rainfall + evaporati...
sunshine + wind_gust_dir + wind_gust_speed + wind_dir_...
wind_dir_3pm + wind_speed_9am + wind_speed_3pm + humid...
humidity_3pm + pressure_9am + cloud_9am + cloud_3pm + ...
season + cluster
<environment: 0x5640bab65ef8>

The notation used to express the formula begins with the name
of a target (rain_tomorrow) followed by a tilde (~) followed by the
variables that will be used to model the target, each separated by
a plus (+). The formula here indicates that we aim to build a
model that captures the knowledge required to predict the out-
come rain_tomorrow from the provided input variables (details
of today’s weather). This kind of model is called a classification
model and can be compared to regression models, for example,
which predict numeric outcomes. Specifically, with just two values
to be predicted, we call this binary classification. It is generally
the simplest kind of modelling task but also a very common task.

Training, Validation and Testing Datasets

Models are built using a machine learning algorithm which learns
from the dataset of historic observations. A common methodology
for building models is to partition the available data into a train-
ing dataset and a testing dataset. We will build (or train) a
model using the training dataset and then test how good the model
is by applying it to the testing dataset. Typically we also introduce
a third dataset called the validation dataset. This is used during
the building of the model to assist in tuning the algorithm through
trialling different parameters to the machine learning algorithm. In
this way we search for the best model using the validation dataset
and then obtain a measure of the performance of the final model
using the testing dataset.

The original dataset is partitioned randomly into the three sub-

90 3 Data Wrangling

sets. To ensure we can repeatably reproduce our results we will first
initiate a random number sequence with a randomly selected seed.
In this way we can replicate the examples presented in this book
by ensuring the same random subset is selected each time. We will
initialise the random number generator with a specific seed using
base::set.seed(). For no particular reason we choose 42.
Initialise random numbers for repeatable results.

seed <- 42
set.seed(seed)

We are now ready to partition the dataset into the two or three
subsets. The first is typically a 70% random sample for building
the model (the training dataset). The second and third consist
of the remainder, used to tune and then estimate the expected
performance of the model (the validation and testing datasets).

Rather than actually creating three subsets of the dataset, we
simply record the index of the observations that belong to each of
the three subsets.
Partition the full dataset into three.

nobs %>%
sample(0.70*nobs) %T>%
{length(.) %>% comcat()} %T>%
{sort(.) %>% head(30) %>% print()} ->

train

94,343
[1] 1 4 7 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 26
[20] 28 31 32 33 35 37 40 41 42 43 45

nobs %>%
seq_len() %>%
setdiff(train) %>%
sample(0.15*nobs) %T>%
{length(.) %>% comcat()} %T>%
{sort(.) %>% head(15) %>% print()} ->

validate

20,216
[1] 2 3 6 20 25 27 29 34 39 44 49 65 66 71 81

Preparing for Model Building 91

nobs %>%
seq_len() %>%
setdiff(union(train, validate)) %T>%
{length(.) %>% comcat()} %T>%
{head(.) %>% print(15)} ->

test

20,217
[1] 5 8 30 36 38 48

We take a moment here to record the actual target values across
the three datasets as these will be used in the evaluations per-
formed in later chapters. A secondary target variable is noted,
referred to as the risk variable. This is a measure of the impact or
size of the outcome and is common in insurance, financial risk and
fraud analysis. For our sample dataset, the risk variable is risk_mm
which reports the amount of rain recorded tomorrow.

Notice the correspondence between risk values (the amount of
rain) and the target, where 0.0 mm of rain corresponds to the
target value no. In particular though also note that small amounts
of rain (e.g., 0.2 mm and 0.4 mm) are treated as no rain.

Cache the various actual values for target and risk.

tr_target <- ds[train,][[target]] %T>%
{head(., 20) %>% print()}

[1] no no no no no no no no no no no no no no
[15] no no no no yes no
....

tr_risk <- ds[train,][[risk]] %T>%
{head(., 20) %>% print()}

[1] 0.0 0.0 0.0 0.0 0.4 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.2 1.0
[15] 0.2 0.0 0.0 0.0 1.2 0.0
....

va_target <- ds[validate,][[target]] %T>%
{head(., 20) %>% print()}

92 3 Data Wrangling

[1] yes no no no no no no no no no yes no no no
[15] no yes no no no yes
....

va_risk <- ds[validate,][[risk]] %T>%
{head(., 20) %>% print()}

[1] 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.8 0.0 1.6 0.0 0.2 0.0
[15] 0.0 3.0 0.4 0.0 0.0 5.2
....

te_target <- ds[test,][[target]] %T>%
{head(., 20) %>% print()}

[1] no no no no no no yes no no no yes yes no no
[15] no no no no no yes
....

te_risk <- ds[test,][[risk]] %T>%
{head(., 20) %>% print()}

[1] 0.2 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 1.2 5.8 0.0 0.0
[15] 0.0 0.0 0.0 0.0 0.0 6.2
....

3.10 Save the Dataset
Having transformed our dataset in a variety of ways, cleaned it,
wrangled it, and added new variables, we will now save the data
and its metadata into a binary RData file. Saving it as a binary
compressed file saves both storage space and time on reloading the
dataset. Loading a binary dataset is generally faster than loading
a CSV file.

Save data into a appropriate folder.

fpath <- "data"

Timestamp for the dataset.

Save the Dataset 93

dsdate <- "_" %s+% format(Sys.Date(), "%Y%m%d") %T>% print()

[1] "_20170615"

Use a fixed timestamp to name our file for convenience here.

dsdate <- "_20170702"

Filename for the saved dataset.

dsfile <- dsname %s+% dsdate %s+% ".RData"

Full path to the dataset.

fpath %>%
file.path(dsfile) %T>%
print() ->

dsrdata

[1] "data/weatherAUS_20170702.RData"

Save relevant R objects to the binary RData file.

save(ds, dsname, dspath, dsdate, nobs,
vars, target, risk, id, ignore, omit,
inputi, inputs, numi, numc, cati, catc,
form, seed, train, validate, test,
tr_target, tr_risk, va_target, va_risk, te_target, te_risk,
file=dsrdata)

Check the resulting file size in bytes.

file.size(dsrdata) %>% comma()

[1] "5,568,471"

Notice that in addition to the dataset (ds) we also store the col-
lection of metadata. This begins with items such as the name of
the dataset, the source file path, the date we obtained the dataset,
the number of observations, the variables of interest, the target
variable, the name of the risk variable (if any), the identifiers, the
variables to ignore and observations to omit. We continue with

94 3 Data Wrangling

the indicies of the input variables and their names, the indicies
of the numeric variables and their names, and the indicies of the
categoric variables and their names.

Each time we wish to use the dataset we can now simply
base::load() it into R. The value that is invisibly returned by
base::load() is a vector naming the R objects loaded from the
binary RData file.

load(dsrdata) %>% print()

[1] "ds" "dsname" "dspath" "dsdate"
[5] "nobs" "vars" "target" "risk"
[9] "id" "ignore" "omit" "inputi"
[13] "inputs" "numi" "numc" "cati"
[17] "catc" "form" "seed" "train"
[21] "validate" "test" "tr_target" "tr_risk"
[25] "va_target" "va_risk" "te_target" "te_risk"

A call to base::load() returns its result invisibly since we are
primarily interested in its side-effect. The side-effect is to read the
R binary data from storage and to make it available within our
current R session.

3.11 A Template for Data Preparation
Throughout this chapter we have worked towards constructing a
standard template for ourselves for a data preparation report. In-
deed, whenever we begin a new project the template will provide
a useful starting point. The introduction of generic variables facil-
itates this approach to quickly begin any new analysis.

A template based on this chapter for data preparation is avail-
able from https://essentials.togaware.com. There we can find
a template that will continue to be refined over time and will in-
corporate improvements and advanced techniques that go beyond
what has been presented here. An automatically derived version
including just the R code is available there together with the LATEX
compiled PDF version.

https://essentials.togaware.com

Exercises 95

Notice that we would not necessarily perform all of the steps
we have presented in this chapter. Normalizing the variable names
or imputing imputing missing values, omitting observations with
missing values, and so on may well depend on the context of the
analysis. We will pick and choose as is appropriate to our situation
and specific datasets. Also, some data-specific transformations are
not included in the template and there may be other transforms
we need to perform that we have not covered here.

3.12 Exercises

Exercise 3.1 Exploring the Weather
We have worked with the Australian weatherAUS dataset
throughout this chapter. For this exercise we will explore the data-
set further.

1. Create a data preparation script beginning with the template
available from https://essentials.togaware.com and rep-
licate the data processing performed in this chapter.

2. Investigate the dplyr::group_by() and dplyr::summarise()
functions, combined through a pipeline using magrittr::%>%
to identify regions with considerable variance in their weather
observations. The use of stats::var() might be a good start-
ing point.

Exercise 3.2 Understanding Ferries
A dataset of ferry crossings on Sydney Harbour is available
as https://essentials.togaware.com/ferry.csv.* We will use
this dataset to exercise our data template.

*The original source of the Ferry dataset is http://www.bts.nsw.gov.au/
Statistics/Ferry/default.aspx?FolderID=224. The dataset is available
under a Creative Commons Attribution (CC BY 3.0 AU) license.

https://essentials.togaware.com
https://essentials.togaware.com/ferry.csv
http://www.bts.nsw.gov.au/Statistics/Ferry/default.aspx?FolderID=224
http://www.bts.nsw.gov.au/Statistics/Ferry/default.aspx?FolderID=224

96 3 Data Wrangling

1. Create a data preparation script beginning with the template
available from https://essentials.togaware.com/data.R.

2. Change the sample source dataset within the template to down-
load the ferry dataset into R.

3. Rename the variables to become normalized variable names.

4. Create two new variables from sub_route, called origin and
destination.

5. Convert dates as appropriate and convert other character vari-
ables into factors where it is sensible to do so.

6. Work through the template to prepare and then explore the
dataset to identify any issues and to develop initial observa-
tions.

Create a report on your investigations and share a narrative to
communicate your discoveries from the dataset.

https://essentials.togaware.com/data.R

4
Visualising Data

One of the most important tasks for any data scientist is to visu-
alise data. Presenting data visually will often lead to new insights
and discoveries, as well as providing clear evidence of any issues
with the data. A visual presentation is also often the most effective
means for communicating insight to the business problem owners.

R offers a comprehensive suite of tools to visualise data, with
ggplot2 (Wickham and Chang, 2016) being dominate amongst
them. The ggplot2 package implements a grammar for writing sen-
tences describing the graphics. Using this package we construct a
plot beginning with the dataset and the aesthetics (e.g., x-axis
and y-axis) and then add geometric elements, statistical opera-
tions, scales, facets, coordinates, and numerous other components.

In this chapter we explore data using ggplot2 to gain new in-
sights into our data. The package provides an extensive collection
of capabilities offering an infinite variety of visual possibilities. We
will present some basics as a launching pad for plotting data but
note that further opportunities abound and are well covered in
many other resources and online.

Packages used in this chapter include GGally (Schloerke et al.,
2016), RColorBrewer (Neuwirth, 2014), dplyr (Wickham et al.,
2017a), ggplot2 (Wickham and Chang, 2016), gridExtra (Auguie,
2016), lubridate (Grolemund et al., 2016), magrittr (Bache and
Wickham, 2014), randomForest (Breiman et al., 2015), rattle (Wil-
liams, 2017), scales (Wickham, 2016), stringi (Gagolewski et al.,
2017), and stringr (Wickham, 2017a).

Load required packages from local library into the R session.

library(GGally) # Parallel coordinates.
library(RColorBrewer) # Choose different colors.
library(dplyr) # Data wrangling.

97

98 4 Visualising Data

library(ggplot2) # Visualise data.
library(gridExtra) # Layout multiple plots.
library(lubridate) # Dates and time.
library(magrittr) # Pipelines for data processing.
library(randomForest) # Deal with missing data.
library(rattle) # weatherAUS dataset and normVarNames().
library(scales) # Include commas in numbers.
library(stringi) # String concat operator %s+%.
library(stringr) # Strings: str_replace().

4.1 Preparing the Dataset
We use the modestly large weatherAUS dataset from rattle (Wil-
liams, 2017) to illustrate the capabilities of ggplot2. For plots that
generate large images we might use random subsets of the same
dataset to allow replication in a timely manner. We begin by
loading the dataset saved through the template we developed in
Chapter 3.

Build the filename used to previously store the data.

fpath <- "data"
dsname <- "weatherAUS"
dsdate <- "_20170702"
dsfile <- dsname %s+% dsdate %s+% ".RData"

fpath %>%
file.path(dsfile) %>%
print() ->

dsrdata

[1] "data/weatherAUS_20170702.RData"

Load the R objects from file and list them.

load(dsrdata) %>% print()

[1] "ds" "dsname" "dspath" "dsdate"
[5] "nobs" "vars" "target" "risk"

Preparing the Dataset 99

[9] "id" "ignore" "omit" "inputi"
[13] "inputs" "numi" "numc" "cati"
[17] "catc" "form" "seed" "train"
[21] "validate" "test" "tr_target" "tr_risk"
[25] "va_target" "va_risk" "te_target" "te_risk"

We will perform missing value imputation but note that this is
not something we should be doing lightly (inventing new data).
We do so here simply to avoid warnings that would otherwise
advise us of missing data when using ggplot2. Note the use of
randomForest::na.roughfix() to perform missing value im-
putation as discussed in Chapter 3. Alternatively we could remove
observations with missing values using stats::na.omit().

Count the number of missing values.

ds[vars] %>% is.na() %>% sum() %>% comcat()

278,293

Impute missing values.

ds[vars] %<>% na.roughfix()

Confirm that no missing values remain.

ds[vars] %>% is.na() %>% sum() %>% comcat()

0

We are now in a position to visually explore our dataset. We
begin with a textual dplyr::glimpse() of the dataset for refer-
ence.

glimpse(ds)

Observations: 134,776
Variables: 27
$ date <date> 2008-12-01, 2008-12-02, 2008-12-0...
$ location <fctr> albury, albury, albury, albury, a...
$ min_temp <dbl> 13.4, 7.4, 12.9, 9.2, 17.5, 14.6, ...
$ max_temp <dbl> 22.9, 25.1, 25.7, 28.0, 32.3, 29.7...

100 4 Visualising Data

$ rainfall <dbl> 0.6, 0.0, 0.0, 0.0, 1.0, 0.2, 0.0,...
$ evaporation <dbl> 4.8, 4.8, 4.8, 4.8, 4.8, 4.8, 4.8,...
$ sunshine <dbl> 8.5, 8.5, 8.5, 8.5, 8.5, 8.5, 8.5,...
$ wind_gust_dir <ord> w, wnw, wsw, ne, w, wnw, w, w, nnw...
$ wind_gust_speed <dbl> 44, 44, 46, 24, 41, 56, 50, 35, 80...
$ wind_dir_9am <ord> w, nnw, w, se, ene, w, sw, sse, se...
$ wind_dir_3pm <ord> wnw, wsw, wsw, e, nw, w, w, w, nw,...
$ wind_speed_9am <int> 20, 4, 19, 11, 7, 19, 20, 6, 7, 15...
$ wind_speed_3pm <dbl> 24, 22, 26, 9, 20, 24, 24, 17, 28,...
$ humidity_9am <int> 71, 44, 38, 45, 82, 55, 49, 48, 42...
$ humidity_3pm <int> 22, 25, 30, 16, 33, 23, 19, 19, 9,...
$ pressure_9am <dbl> 1007.7, 1010.6, 1007.6, 1017.6, 10...
$ pressure_3pm <dbl> 1007.1, 1007.8, 1008.7, 1012.8, 10...
$ cloud_9am <dbl> 8, 5, 5, 5, 7, 5, 1, 5, 5, 5, 5, 8...
$ cloud_3pm <dbl> 5, 5, 2, 5, 8, 5, 5, 5, 5, 5, 5, 8...
$ temp_9am <dbl> 16.9, 17.2, 21.0, 18.1, 17.8, 20.6...
$ temp_3pm <dbl> 21.8, 24.3, 23.2, 26.5, 29.7, 28.9...
$ rain_today <fctr> no, no, no, no, no, no, no, no, n...
$ risk_mm <dbl> 0.0, 0.0, 0.0, 1.0, 0.2, 0.0, 0.0,...
$ rain_tomorrow <fctr> no, no, no, no, no, no, no, no, y...
$ year <fctr> 2008, 2008, 2008, 2008, 2008, 200...
$ season <fctr> summer, summer, summer, summer, s...
$ cluster <fctr> area2, area2, area2, area2, area2...

4.2 Scatter Plot
Our first plot is a simple scatter plot which displays points
scattered over a plot. A difficulty with scatter plots (and indeed
with many types of plots) is that for large datasets we end up
with rather dense plots. For illustrative purposes we will identify
a random subset of just 1,000 observations to plot. We thus avoid
filling the plot completely with points as might otherwise happen
as in Figure 2.3.

ds %>%
nrow() %>%
sample(1000) ->

sobs

Scatter Plot 101

0

10

20

30

40

0 10 20
min_temp

m
ax

_t
em

p rain_tomorrow
no

yes

Figure 4.1: Scatter plot of the weatherAUS dataset.

We are now ready to generate the plot. We choose just the
random sample of rows whose indices are stored in the vari-
able sobs. This subset is piped through to ggplot2::ggplot()
which initialises the plot. To the plot we add points using
ggplot2::geom_point(). The resulting plot is displayed in Fig-
ure 4.1.

ds %>%
extract(sobs,) %>%
ggplot(aes(x=min_temp, y=max_temp, colour=rain_tomorrow)) +
geom_point()

The call to ggplot2::ggplot() includes as its argument the
aesthetics of the plot. We identify for the x= axis the variable
min_temp and for the y= axis the variable max_temp as the y-
axis. In addition to minimally identifying the x and y mapping
we add a colour= option to distinguish between those days where
rain_tomorrow is true from those where it is false.

102 4 Visualising Data

0

5000

10000

n nne ne ene e ese se sse s ssw sw wsw w wnw nw nnw

wind_dir_3pm

co
un

t

Figure 4.2: Bar chart showing the relative occurrence of different
wind directions as recorded at 3pm.

Having set up the aesthetics of the plot we can add a graph-
ical layer. The simplest is just to plot the points (x, y) coloured
appropriately. All that is required is to add (i.e., “+”) a call to
ggplot2::geom_point().

4.3 Bar Chart
Another common plot is the bar chart which displays the count of
observations using bars. Such plots are generated by ggplot2 using
ggplot2::geom_bar(). Figure 4.2 is generated with:

ds %>%
ggplot(aes(x=wind_dir_3pm)) +
geom_bar()

Here we only require an x-axis to be specified which in
our example is wind_dir_3pm. To the base plot created by
ggplot2::ggplot() we add a so-called bar geometric to construct
the required plot. The resulting plot shows the frequency of the
levels of the categoric variable wind_dir_3pm across the whole
dataset.

Saving Plots to File 103

4.4 Saving Plots to File
Generating a plot is one thing but we will want to make use of the
plot possibly in multiple ways. Once we have a plot displayed we
can save the plot to file quite simply using ggplot2::ggsave().
The format is determined automatically by the name of the file to
which we save the plot. Here, for example, we save the plot as a
PDF that we might include in other documents or share with a
colleague for discussion.

ggsave("barchart.pdf", width=11, height=7)

Notice the use of width= and height=. The default values are
those of the current plotting window so for saving the plot we have
specified a particular width and height. By trial and error or by
experience we have found the proportions used here to suit our
requirements.

There is some art required in choosing a good width and height
as we discuss in Chapter 10. By increasing the height or width
any text that is displayed on the plot essentially stays the same
size. Thus by increasing the plot size the text will appear smaller.
By decreasing the plot size the text becomes larger. Some experi-
mentation is often required to get the right size for any particular
purpose.

4.5 Adding Spice to the Bar Chart
A bar chart can be enhanced in many ways to demonstrate differ-
ent characteristics of the data. A stacked bar chart is commonly
used to identify the distribution of the observations over another
variable, like the target variable. Our target is rain_tomorrow and
we obtain a stacked bar chart by filling the bars with colour based
on this variable using fill=. This is implemented as follows with
the result displayed in Figure 4.3.

104 4 Visualising Data

0

5000

10000

n nne ne ene e ese se sse s ssw sw wsw w wnw nw nnw

wind_dir_3pm

co
un

t rain_tomorrow
no

yes

Figure 4.3: Stacked bar chart.

ds %>%
ggplot(aes(x=wind_dir_3pm, fill=rain_tomorrow)) +
geom_bar()

There are many options available to tune how we present our
plots using ggplot2. In a similar way to building pipelines of func-
tions to achieve our data processing as we saw in Chapters 2 and 3,
we build our plots incrementally. We will illustrate a number of op-
tions in the following codes as we build a more interesting present-
ation of the data as in Figure 4.4. Be sure to replicate the plot by
adding one line of the following code at a time and studying its
impact before moving on to the next line/option/layer. We detail
some of the options below.

blues2 <- brewer.pal(4, "Paired")[1:2] %T>% print()

[1] "#A6CEE3" "#1F78B4"

ds$location %>%
unique() %>%
length() %T>%
print() ->

num_locations

[1] 49

Adding Spice to the Bar Chart 105

0

5,000

10,000

n nne ne ene e ese se sse s ssw sw wsw w wnw nw nnw

Wind Direction 3pm

N
um

be
r o

f D
ay

s

Tomorrow
No Rain

Rain

Observations from 49 weather stations

Rain Expected by Wind Direction at 3pm

Source: Australian Bureau of Meteorology

Figure 4.4: A decorated stacked bar chart.

ds %>%
ggplot(aes(x=wind_dir_3pm, fill=rain_tomorrow)) +
geom_bar() +
scale_fill_manual(values = blues2,

labels = c("No Rain", "Rain")) +
scale_y_continuous(labels=comma) +
theme(legend.position = c(.95, .85),

legend.title = element_text(colour="grey40"),
legend.text = element_text(colour="grey40"),
legend.background = element_rect(fill="transparent")) +

labs(title = "Rain Expected by Wind Direction at 3pm",
subtitle = "Observations from " %s+%

num_locations %s+%
" weather stations",

caption = "Source: Australian Bureau of Meteorology",
x = "Wind Direction 3pm",
y = "Number of Days",
fill = "Tomorrow")

The most obvious change is to the colouring which is suppor-
ted by RColorBrewer::brewer.pal(). This is used to generate
a dark/light pair of colours that are softer in presentation. We
use only the first two colours from the generated palette of four
colours.

In reviewing the original plot we might also notice that the y
scale is in the thousands and yet no comma is used to emphasise
that. It is always a good idea to include commas in large num-

106 4 Visualising Data

bers to denote the thousands and avoid misreading. We do so by
specifying that the y scale labels should use scales::comma().
We also include more informative labels through the use of
ggplot2::labs().

The new plot is arguably more appealing and marginally more
informative than the original. We might note though that the most
interesting question we can ask in relation to the data behind this
plot is whether there is any differences in the distribution between
rain and no rain across the different wind directions. Our chosen
plot does not facilitate answering this question. A simple change
to ggplot2::geom_bar() by adding position="fill" results in
Figure 4.5. Notice that we moved the legend back to its original
position as there is now no empty space within the plot.

ds %>%
ggplot(aes(x=wind_dir_3pm, fill=rain_tomorrow)) +
geom_bar(position="fill") +
scale_fill_manual(values = blues2,

labels = c("No Rain", "Rain")) +
scale_y_continuous(labels=comma) +
theme(legend.title = element_text(colour="grey40"),

legend.text = element_text(colour="grey40"),
legend.background = element_rect(fill="transparent")) +

labs(title = "Rain Expected by Wind Direction at 3pm",
subtitle = "Observations from " %s+%

num_locations %s+%
" weather stations",

caption = "Source: Australian Bureau of Meteorology",
x = "Wind Direction 3pm",
y = "Number of Days",
fill = "Tomorrow")

Observe now that indeed wind direction appears to have an
influence on whether it rains the following day. Northerly winds
appear to have a higher proportion of following days on which it
rains. Any such observation requires further statisical confirmation
to be sure.

Alternative Bar Charts 107

0.00

0.25

0.50

0.75

1.00

n nne ne ene e ese se sse s ssw sw wsw w wnw nw nnw

Wind Direction 3pm

N
um

be
r o

f D
ay

s

Tomorrow
No Rain

Rain

Observations from 49 weather stations

Rain Expected by Wind Direction at 3pm

Source: Australian Bureau of Meteorology

Figure 4.5: A decorated stacked filled bar chart.

4.6 Alternative Bar Charts
There are a variety of options available to tune how we present
a bar chart using ggplot2::ggplot(). We illustrate here dealing
with a few more bars in the plot by visualising the mean temper-
ature at 3pm for locations in the dataset.

We start with the plot shown in Figure 4.6. The plot has x=
location and y= temp_3pm with a fill= set to the location.
The choice of fill simply results in each bar being rendered with
a different colour but adds no real value to the plot other than,
arguably, its appeal. To this basic setup we add a stat= summary
and calculate the bars as the mean value of the y axis variable
using fun.y=.

ds %>%
ggplot(aes(x=location, y=temp_3pm, fill=location)) +
geom_bar(stat="summary", fun.y="mean") +
theme(legend.position="none")

There are 49 locations represented in the dataset resulting in
quite a clutter of location names along the x axis. The obvious
solution is to rotate the labels which we achieve by modifying the
ggplot2::theme() through setting the axis.text= to be rotated
by an angle= of 90◦. The result is shown in Figure 4.7.

108 4 Visualising Data

0

10

20

30

sgnirps_ecila yrubla ynabla edialeda enabsirb ogidneb tarallab keerc_syregdab oc raboc arrebnac snriac � tsaoc_dlog niwrad roomtrad ruobrah_s enruoblem notsecnual enirehtak traboh eerom arudlim tropria_enruoblem eltsacwen ininig_tnuom reibmag_tnuom dnalsi_klofron daeh_haron lihn htrep htirnep faar_ecraep aptooirun elas dnomhcir dnaltrop tropria_htrep tropria_yendys yendys smug_nomlas urulu gnonareggut ellivsnwot nwotmailliw ainostaw eloplaw aggaw_aggaw witchcli� remoow gnognollow e

location

te
m

p_
3p

m

Figure 4.6: Multiple bars with overlapping labels.

0

10

20

30

ad
el

ai
de

al
ba

ny
al

bu
ry

al
ic

e_
sp

rin
gs

ba
dg

er
ys

_c
re

ek
ba

lla
ra

t
be

nd
ig

o
br

is
ba

ne
ca

irn
s

ca
nb

er
ra

co
ba

r
co

�s
_h

ar
bo

ur
da

rt
m

oo
r

da
rw

in
go

ld
_c

oa
st

ho
ba

rt
ka

th
er

in
e

la
un

ce
st

on
m

el
bo

ur
ne

m
el

bo
ur

ne
_a

irp
or

t
m

ild
ur

a
m

or
ee

m
ou

nt
_g

am
bi

er
m

ou
nt

_g
in

in
i

ne
w

ca
st

le
nh

il
no

ra
h_

he
ad

no
rf

ol
k_

is
la

nd
nu

rio
ot

pa
pe

ar
ce

_r
aa

f
pe

nr
ith

pe
rt

h
pe

rt
h_

ai
rp

or
t

po
rt

la
nd

ric
hm

on
d

sa
le

sa
lm

on
_g

um
s

sy
dn

ey
sy

dn
ey

_a
irp

or
t

to
w

ns
vi

lle
tu

gg
er

an
on

g
ul

ur
u

w
ag

ga
_w

ag
ga

w
al

po
le

w
at

so
ni

a
w

ill
ia

m
to

w
n

w
itc

hc
li�

e
w

ol
lo

ng
on

g
w

oo
m

er
a

location

te
m

p_
3p

m

Figure 4.7: Rotating labels in a plot.

ds %>%
ggplot(aes(location, temp_3pm, fill=location)) +
geom_bar(stat="summary", fun.y="mean") +
theme(legend.position="none") +
theme(axis.text.x=element_text(angle=90))

Instead of flipping the labels we could flip the coordinates and
produce a horizontal bar chart as in Figure 4.8. Rotating the plot
allows more bars to be readily added down the page than we might
across the page. It is also easier for us to read the labels left to
right rather than bottom up. However the plot is less compact.

Alternative Bar Charts 109

adelaide
albany
albury

alice_springs
badgerys_creek

ballarat
bendigo

brisbane
cairns

canberra
cobar

co�s_harbour
dartmoor

darwin
gold_coast

hobart
katherine

launceston
melbourne

melbourne_airport
mildura

moree
mount_gambier

mount_ginini
newcastle

nhil
norah_head

norfolk_island
nuriootpa

pearce_raaf
penrith

perth
perth_airport

portland
richmond

sale
salmon_gums

sydney
sydney_airport

townsville
tuggeranong

uluru
wagga_wagga

walpole
watsonia

williamtown
witchcli�e

wollongong
woomera

0 10 20 30

temp_3pm

lo
ca

tio
n

Figure 4.8: Rotating the plot.

ds %>%
ggplot(aes(location, temp_3pm, fill=location)) +
geom_bar(stat="summary", fun.y="mean") +
theme(legend.position="none") +
coord_flip()

We would also naturally be inclined to expect the labels to
appear in alphabetic order rather than the reverse as it appears
by default. One approach is to reverse the order of the levels
in the original dataset. We can use dplyr::mutate() within a

110 4 Visualising Data

woomera
wollongong

witchcli�e
williamtown

watsonia
walpole

wagga_wagga
uluru

tuggeranong
townsville

sydney_airport
sydney

salmon_gums
sale

richmond
portland

perth_airport
perth

penrith
pearce_raaf

nuriootpa
norfolk_island

norah_head
nhil

newcastle
mount_ginini

mount_gambier
moree

mildura
melbourne_airport

melbourne
launceston

katherine
hobart

gold_coast
darwin

dartmoor
co�s_harbour

cobar
canberra

cairns
brisbane
bendigo
ballarat

badgerys_creek
alice_springs

albury
albany

adelaide

0 10 20 30

temp_3pm

lo
ca

tio
n

Figure 4.9: Reordering labels.

pipeline to temporarily do this and pass the modified dataset on
to ggplot2::ggplot(). The result can be seen in Figure 4.9.

ds$location %>%
levels() %>%
rev() ->

loc

ds %>%
mutate(location=factor(location, levels=loc)) %>%
ggplot(aes(location, temp_3pm, fill=location)) +
stat_summary(fun.y="mean", geom="bar") +
theme(legend.position="none") +

Box Plots 111

coord_flip()

4.7 Box Plots
A box plot, also known as a box and whiskers plot, is another
tool to visualise the distribution of our data. The box plot of Fig-
ure 4.10 shows the median value (the midpoint) of the variable as
the horizontal line within the box. The box itself contains half the
observations with one quarter of the remaining observations shown
below and one quarter of the remaining observations shown above
the box. Specific points are displayed as outliers at the extremes.
An outlier is a value that is some distance from the bulk of the
data. We use ggplot2::geom_boxplot() to add a box plot to out
canvas.

ds %>%
ggplot(aes(x=year, y=max_temp, fill=year)) +
geom_boxplot(notch=TRUE) +
theme(legend.position="none")

Here the aesthetics for ggplot2::ggplot() are set with x=
year and y= max_temp. Colour is added using fill= year. The
colour (arguably) improves the visual appeal of the plot—it con-
veys little if any information. Since we have included fill= we
must also turn off the otherwise included but redundant legend
through the ggplot2::theme() with a legend.position= none.

Now that we have presented the data we begin our observations
of the data. It is noted that the first and last verticals look different
to the others due to the data likely being truncated. Our task is
to confirm this indeed is a fact of the data itself. The 2017 data is
truncated to the beginning of the year in this particular dataset.
It is clear that the year has begun with very hot temperatures,
remembering that being from Australia this data is recorded for a
summer month.

A variation of the box plot is the violin plot. The violin plot
adds information about the distribution of the data. The resulting

112 4 Visualising Data

0

10

20

30

40

50

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

year

m
ax

_t
em

p

Figure 4.10: A traditional box and wiskers plot.

shape often reflects that of a violin. In Figure 4.11 we again use
colour to improve the visual appeal of the plot.

ds %>%
ggplot(aes(x=year, y=max_temp, fill=year)) +
geom_violin() +
theme(legend.position="none")

The amount of information we capture in the plot is increased
by overlaying a box plot onto the violin plot. This could result in
information overload or else it might convey concisely the story
that the data tells. Often we need to make a trade off.

ds %>%
ggplot(aes(x=year, y=max_temp, fill=year)) +
geom_violin() +
geom_boxplot(width=.5, position=position_dodge(width=0)) +
theme(legend.position="none")

Box Plots 113

0

10

20

30

40

50

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

year

m
ax

_t
em

p

Figure 4.11: A violin plot.

0

10

20

30

40

50

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

year

m
ax

_t
em

p

Figure 4.12: A violin plot with a box plot overlay.

114 4 Visualising Data

We can also readily split our plot across locations. The resulting
plot (Figure 4.13) is a little crowded but we get an overall view
across all of the different weather stations. Notice that we also
rotated the x-axis labels so that they don’t overlap.

ds %>%
ggplot(aes(x=year, y=max_temp, fill=year)) +
geom_violin() +
geom_boxplot(width=.5, position=position_dodge(width=0)) +
theme(legend.position="none") +
theme(axis.text.x=element_text(angle=45, hjust=1)) +
facet_wrap(~location, ncol=5)

By creating this plot we can identify further issues exhibited
by the data. For example, it is clear that three weather stations
have fewer observations than the others as their plots are obvi-
ously truncated on the left. This may be a data collection issue or
simply that those weather stations are newly installed. The actual
reasoning may or may not be important but it is important to
question and to understand what we observe from the data. Of-
ten we will identify systemic issues with the data that need to be
addressed in modelling.

We notice also the issue we identified earlier of apparently few
observations before 2009 with only the location Canberra having
any observations in 2007. In seeking an explanation we come to
understand this was simply the nature of how the data was collec-
ted from the Bureau. In any modelling over all locations we may
decide to eliminate pre-2009 observations.

Further observing the characteristics of the data we note that
some locations have quite minimal variation in their maximum
temperatures over the years (e.g., Darwin) whilst others can swing
between extremes. We also observe that most outliers appear to be
at the warmer end of the scale rather than the colder end. There is
also a collection of locations which appear to have no outliers. And
so on. We are beginning on a journey of discovery—to discover our
data—to live and breathe the data (Williams, 2011).

We follow up our observations with modelling to cluster the loc-
ations, for example, according to the visual patterns we have just

Box Plots 115

williamtown witchcli�e wollongong woomera

tuggeranong uluru wagga_wagga walpole watsonia

sale salmon_gums sydney sydney_airport townsville

penrith perth perth_airport portland richmond

nhil norah_head norfolk_island nuriootpa pearce_raaf

mildura moree mount_gambier mount_ginini newcastle

hobart katherine launceston melbourne melbourne_airport

cobar co�s_harbour dartmoor darwin gold_coast

ballarat bendigo brisbane cairns canberra

adelaide albany albury alice_springs badgerys_creek

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

year

m
ax

_t
em

p

Figure 4.13: Violin/box plot by location.

116 4 Visualising Data

observed. In particular, as our datasets increase in size (this cur-
rent dataset has just 134,776 observations) we often need to subset
the data in various ways in order to visualise the observations.

A cluster analysis provides a simple mechanism to identify
groups and allows us to then visualise within those groups. We
illustrated the process of a cluster analysis over the numeric vari-
ables in Chapter 3. The aim of the cluster analysis, introducing a
new feature, was to group the locations so that within a group the
locations have similar values for the numeric variables and between
the groups the numeric variables are more dissimilar. The result-
ing feature cluster allocated each location to a region and we
can use that here.

We will construct a plot using exactly the same sequence of
commands we used for Figure 4.13. On the principle of avoiding
repeating ourselves we create a function to capture the sequence
of commands and thus allow multiple plots to be generated by
simply calling the function rather than writing out the code each
time.

For convenience define a function to generate the plot.

myplot <- function(ds, n)
{
ds %>%

filter(cluster==n) %>%
ggplot(aes(x=year, y=max_temp, fill=year)) +
geom_violin() +
geom_boxplot(width=.5, position=position_dodge(width=0)) +
theme(legend.position="none") +
theme(axis.text.x=element_text(angle=45, hjust=1)) +
facet_wrap(~location)

}

We can now plot specific clusters with the results in Fig-
ures 4.14 and 4.15.

Visualise specific cluster of locations.

myplot(ds, "area4")

Box Plots 117

walpole witchcli�e

nhil norah_head tuggeranong

badgerys_creek dartmoor gold_coast

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

10

20

30

40

10

20

30

40

10

20

30

40

year

m
ax

_t
em

p

Figure 4.14: Visualise the first set of clustered locations.

Visualise specific cluster of locations.

myplot(ds, "area5")

Being a grammar for graphics, or essentially a language in
which to express our graphics, there is an infinite variety of possib-
ilities with ggplot2. We will see further examples in the following
chapters and extensively on the Internet.

As we explore the dataset and observe and question the char-
acteristics of the dataset, we will move from visual observation to
programmatic exploration and statistical confirmation.

118 4 Visualising Data

katherine townsville

brisbane cairns darwin

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

20

30

40

20

30

40

year

m
ax

_t
em

p

Figure 4.15: Visualise the second set of clustered locations.

4.8 Exercises

Exercise 4.1 Dashboard
Your computer collects information about its usage as log files.
Identify some log files that you have access to on your own com-
puter. Build a dashboard using ggplot2 to provide informative
plots of the information contained in the log data. Include at least
a bar plot and line chart, illustrating activity over time. Explore
options for how you might turn these plots into a live dashboard.

Exercise 4.2 Visualising Ferries
In the Chapter 3 exercises we introduced the ferry dataset. Con-
tinue your observations of that dataset through a visual explor-
ation. Build on the narrative developed there to produce an en-
hanced narrative that includes visualisations that support the nar-
rative.

5
Case Study: Australian Ports

Our understanding of programming and the particularities of a
language like R is enhanced through programming by example.
This is an effective approach to learning the tools of data science.
Building on the foundations so far, which have introduced the ba-
sics of loading, wrangling, exploring and visualising data, we now
present as an example the data science analysis behind an inform-
ation sheet published by the Australian government. Our focus is
on basic data wrangling and data visualisation to gain insights
which lead to a narrative. Visual presentations are extremely ef-
fective and we demonstrate a variety of useful presentations used in
the information sheet using R and ggplot2 (Wickham and Chang,
2016).

The data used is based on a 2014 study by the Australian Bur-
eau of Infrastructure, Transport and Regional Economics titled
Ports: Jobs Generation in a Context of Regional Development*
(BITRE, 2014). The data is not large, emphasising that data sci-
ence is about the analysis of data to provide insights to support
our narratives and not always about big data. The data was ori-
ginally sourced from the Australian Bureau of Statistics and is
approximated here from the published report for illustrative pur-
poses. The government study analysed the potential of sea ports
across Australia for future development and considered the impact
on jobs for the surrounding regions. Many plots used in the inform-
ation sheet were generated using ggplot2—we illustrate here code
to reproduce these plots.

The information sheet presents a narrative supported by the
data and the plots. The narrative is comprehensive and we do not
attempt to retell it here. Rather the aim is to demonstrate the

*http://www.bitre.gov.au/publications/2014/files/is_056.pdf.

119

http://www.bitre.gov.au/publications/2014/files/is_056.pdf

120 5 Case Study: Australian Ports

process of analysing the data and provide the practical tools used
to support the narrative. The information sheet is an illustration
of the output from the data scientist.

Packages used in this chapter include directlabels (Hocking,
2017), dplyr (Wickham et al., 2017a), ggplot2 (Wickham and
Chang, 2016), magrittr (Bache and Wickham, 2014), rattle (Wil-
liams, 2017), readr (Wickham et al., 2017b), readxl (Wickham
and Bryan, 2017), scales (Wickham, 2016), stringi (Gagolewski
et al., 2017), stringr (Wickham, 2017a) and tidyr (Wickham,
2017b),

Load required packages from local library into R session.

library(directlabels) # Dodging labels for ggplot2.
library(dplyr) # Data wrangling.
library(ggplot2) # Visualise data.
library(magrittr) # Use pipelines for data processing.
library(rattle) # normVarNames().
library(readr) # Modern data reader.
library(readxl) # Read Excel spreadsheets.
library(scales) # Include commas in numbers.
library(stringi) # The string concat operator %s+%.
library(stringr) # String manpiulation.
library(tidyr) # Tidy the dataset.

5.1 Data Ingestion
The data for this chapter is collected together into an Excel spread-
sheet.* We’ve captured the data in a typical scenario that is com-
mon for those augmenting their analysis using Excel with analyses
using R. It is increasingly important that we are able to readily
access such data and the readxl::read_excel() function facilit-
ates the data ingestion.

The dataset can be readily downloaded to the local computer
using utils::download.file() if we are connected to the In-

*http://essentials.togaware.com/ports.xlsx.

http://essentials.togaware.com/ports.xlsx

Data Ingestion 121

ternet. We do so here saving the downloaded file into a location
recorded in dspath.

Idenitfy the source location of the dataset.

dsurl <- "http://essentials.togaware.com/ports.xlsx"

Local location of the downloaded file.

dspath <- "cache/ports.xlsx"

Download the file from the Internet.

download.file(dsurl, destfile=dspath, mode="wb")

All of the tables that we are interested in are collected together
within the first sheet of the spreadsheet. It is not well organised but
purposely reflects how we often receive data—data within spread-
sheets are not always well designed. Indeed the spreadsheet here
is rather haphazard as a typical user might quickly bring together
to create basic graphics in Excel.

We will extract the various tables of data from the spreadsheet
with specific cell ranges for each plot. We could use Excel or Libre
Office Calc to manipulate the data and improve the structure to
facilitate data extraction in R but instead we will do all of the data
wrangling in R itself.

A potential advantage of not modifying the spreadsheet struc-
ture is that the spreadsheet owner may provide an update of the
numbers within the tables and we would not want to manually
restructure their sheet each time. Of course we might suggest to
them to restructure their source spreadsheet but we assume not for
now—such advise is not always welcome regardless of how wise it
is. Nonetheless we retain the principle of minimising manual effort
and the principle of automating processes.

We will load the spreadsheet into R and explore it to determine
the appropriate cell ranges for the tables of data we are interested
in. A spreadsheet may contain multiple sheets and we are able to
list them using readxl::excel_sheets().

http://essentials.togaware.com/ports.xlsx

122 5 Case Study: Australian Ports

List the populated sheets.

excel_sheets(path=dspath)

[1] "Sheet1"

A single sheet is found and it has its default name of Sheet1.
This is the sheet we read into R.

Ingest the dataset.

ports <- read_excel(path=dspath, sheet=1, col_names=FALSE)

Prepare the dataset for usage with our template.

dsname <- "ports"
ds <- get(dsname) %T>% print()

A tibble: 117 x 18
X__1 X__2 X__3 X__4 X__5
<chr> <chr> <chr> <chr> <chr>
1 1 2 3 4 5
2 <NA> Adelaide Brisbane Burnie Dampier
3 2011-12 15.5 37 4 176
4 AvgAnnualGrowth10yr 4.9 6 3.5 6.5
5 <NA> <NA> <NA> <NA> <NA>
6 Mixed Bulk <NA> <NA> <NA>
7 Melbourne Dampier <NA> <NA> <NA>
8 Brisbane Gladstone <NA> <NA> <NA>
9 Port Kembla Hay Point <NA> <NA> <NA>
10 Devonport Newcastle <NA> <NA> <NA>
... with 107 more rows, and 13 more variables: X__6 <chr>,
X__7 <chr>, X__8 <chr>, X__9 <chr>, X__10 <chr>,
X__11 <chr>, X__12 <chr>, X__13 <chr>, X__14 <chr>,
X__15 <chr>, X__16 <chr>, X__17 <chr>, X__18 <chr>

We also base::print() the dataset here using the tee-pipe
operator for an initial view of the data that has been ingested.

We can begin to see the structure of the sheet and the issues we
face with wrangling the data into shape. Essentially an exploration
of the dataset using Microsoft Excel or Libre Office Calc or with
RStudio using utils::View() and working with the data owner
will guide us in identifying the location of the embedded tables. In

Bar Chart: Value/Weight of Sea Trade 123

the following we will process the various datasets in the same order
as the figures in the Australian Government information sheet.

5.2 Bar Chart: Value/Weight of Sea Trade
The first two figures of interest in the information sheet (Figures 2
and 3) show the dollar value and the weight of imports and exports
through sea ports over a period of 11 years. As the spreadsheet
contains multiple tables in the sheet that we have ingested, our
task is to extract the table of interest into a data frame containing
just the data from that table.

The table is found to range over rows 71 to 93 and consist of
the first four columns. We ignore the first row of column names.

Confirm the row and column span for the table of interest.

ds[72:93, 1:4]

A tibble: 22 x 4
X__1 X__2 X__3 X__4
<chr> <chr> <chr> <chr>
1 2001-02 Australia 99484 85235
2 <NA> 17 Ports 84597 83834
3 2002-03 Australia 93429 94947
4 <NA> 17 Ports 80170 93566
5 2003-04 Australia 89303 93467
6 <NA> 17 Ports 76163 92045
7 2004-05 Australia 106341 108923
8 <NA> 17 Ports 92091 106860
9 2005-06 Australia 130856 122211
10 <NA> 17 Ports 112278 118779
... with 12 more rows

The data relates to the dollar value of imports and exports
through 17 different sea ports around Australia. We need to un-
derstand the data through the use of plots but will need to wrangle
the data to do so. As a starting point we note that the columns
have rather generic names like X__1 and X__2. We can define

124 5 Case Study: Australian Ports

new column names in consultation with the data owner using
magrittr::set_names().

Wrangle the dataset: Rename columns informatively.

ds[72:93, 1:4] %>%
set_names(c("period", "location", "export", "import"))

A tibble: 22 x 4
period location export import
<chr> <chr> <chr> <chr>
1 2001-02 Australia 99484 85235
2 <NA> 17 Ports 84597 83834
3 2002-03 Australia 93429 94947
4 <NA> 17 Ports 80170 93566
5 2003-04 Australia 89303 93467
6 <NA> 17 Ports 76163 92045
7 2004-05 Australia 106341 108923
....

We now delve into the meaning and structure of the dataset.
The location is either all Australian ports or just the 17 that
are of interest for the analysis. These are the 17 largest ports in
Australia according to the data owner.

The dollar value of the export and import through either
all Australian ports or the 17 largest ports is reported in mil-
lions of dollars. Checking the dataset we see that export and
import are currently character data types rather than the nu-
meric values we would expect. We can fix that quite easily using
dplyr::mutate().

Wrangle the dataset: Add in numeric variable conversion.

ds[72:93, 1:4] %>%
set_names(c("period", "location", "export", "import")) %>%
mutate(
export = as.numeric(export),
import = as.numeric(import)

)

A tibble: 22 x 4
period location export import

Bar Chart: Value/Weight of Sea Trade 125

<chr> <chr> <dbl> <dbl>
1 2001-02 Australia 99484 85235
2 <NA> 17 Ports 84597 83834
3 2002-03 Australia 93429 94947
4 <NA> 17 Ports 80170 93566
5 2003-04 Australia 89303 93467
6 <NA> 17 Ports 76163 92045
7 2004-05 Australia 106341 108923
....

Every second value of the period column is missing. This is
typical of spreadsheet data where the table has an implied value of
the cell above. We can use a simple indexing trick to replicate the
period appropriately. The functions base::seq(), base::rep(),
and base::sort() are quite handy here. We want to index the
period column to repeat every second value so we want to ef-
fectively generate an index start from 1 then repeating the 1 fol-
lowed by 3, 3, 5, 5, and so on up to 21. We combine this with
magrittr::extract2() and magrittr::extract().*

Generate indicies that will be useful for indexing the data.

seq(1,21,2) %>% rep(2) %>% sort()

[1] 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19
[20] 19 21 21

Confirm this achieves the desired outcome.

ds[72:93, 1:4] %>%
set_names(c("period", "location", "export", "import")) %>%
extract2("period") %>%
extract(seq(1,21,2) %>% rep(2) %>% sort())

[1] "2001-02" "2001-02" "2002-03" "2002-03" "2003-04"
[6] "2003-04" "2004-05" "2004-05" "2005-06" "2005-06"
[11] "2006-07" "2006-07" "2007-08" "2007-08" "2008-09"
....

Review the code above and be sure to understand how it has
*The function extract() is defined in multiple packages and we use the

definition from magrittr here.

126 5 Case Study: Australian Ports

achieved the results and why this is useful. We will see that we can
now dplyr::mutate() the dataset by replacing the original values
of period with the appropriately repeated values of period. We
add this step to the data wrangling sequence.

Wrangle the dataset: Repair the period column.

ds[72:93, 1:4] %>%
set_names(c("period", "location", "export", "import")) %>%
mutate(
export = as.numeric(export),
import = as.numeric(import),
period = period[seq(1, 21, 2) %>% rep(2) %>% sort()]

)

A tibble: 22 x 4
period location export import
<chr> <chr> <dbl> <dbl>
1 2001-02 Australia 99484 85235
2 2001-02 17 Ports 84597 83834
3 2002-03 Australia 93429 94947
4 2002-03 17 Ports 80170 93566
5 2003-04 Australia 89303 93467
6 2003-04 17 Ports 76163 92045
....

We will now continue processing the dataset to reshape it into
a form that suits the plot that we wish to generate. The required
plot is a bar chart comparing the export and import totals for
Australia and the largest 17 ports over a specific period of time. A
common step is to “rotate” the dataset using tidyr::gather()
as we do here. Prior to the tidyr::gather() the dataset has the
four columns named period, location, export, and import. The
result of the tidyr::gather() is a dataset with four columns
named period, location, type, and value. The variable type
has the values Import and Export and value is the numeric dollar
value. This process is often referred to as reshaping the dataset.

Wrangle the dataset: Reshape the datset.

ds[72:93, 1:4] %>%
set_names(c("period", "location", "export", "import")) %>%

Bar Chart: Value/Weight of Sea Trade 127

mutate(
export = as.numeric(export),
import = as.numeric(import),
period = period[seq(1, 21, 2) %>% rep(2) %>% sort()]

) %>%
gather(type, value, -c(period, location))

A tibble: 44 x 4
period location type value
<chr> <chr> <chr> <dbl>
1 2001-02 Australia export 99484
2 2001-02 17 Ports export 84597
3 2002-03 Australia export 93429
4 2002-03 17 Ports export 80170
5 2003-04 Australia export 89303
6 2003-04 17 Ports export 76163
....

Our dataset is now looking rather tidy—it is in a form whereby
we can readily pipe it into various plotting commands. In prepar-
ation for this we will define a colour scheme that is used con-
sistently throughout the information sheet. We record the colours
used here.* The approach is to generate a theme for the style used
and to then add that theme into each plot. The choice of colours
for plots is specified using ggplot2::scale_fill_manual().

Identify specific colors required for the organisaitonal style.

cols <- c('#F6A01A', # Primary Yellow
'#0065A4', # Primary Blue
'#455560', # Primary Accent Grey
'#B2BB1E', # Secondary Green
'#7581BF', # Secondary Purple
'#BBB0A3', # Secondary Light Grey
'#E31B23', # Secondary Red
'#C1D2E8') # Variant Grey

Create a ggplot2 theme using these colours.

*The actual colours used were provided by the author of the information
sheet and developed by David Mitchell of the Bureau of Infrastructure, Trans-
port and Regional Economics, based on the Department’s themes, and used
with permission.

128 5 Case Study: Australian Ports

2001-02 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

0

50

100

150

200

Bi
lli

on
 d

ol
la

rs

export

import

Figure 5.1: Faceted dodged bar plot comparing the import and export
dollar value across multiple years aggregated over the largest 17
ports and all Australian ports, respectively.

theme_bitre <- scale_fill_manual(values=cols)

The following sequence of commands will wrangle the original
data into a tidy dataset that is piped into ggplot2::ggplot() to
generate a plot onto which various layers are added. The result
can be seen in Figure 5.1.

ds[72:93, 1:4] %>%
set_names(c("period", "location", "export", "import")) %>%
mutate(
export = as.numeric(export),
import = as.numeric(import),
period = period[seq(1, 21, 2) %>% rep(2) %>% sort()]

) %>%
gather(type, value, -c(period, location)) %>%
ggplot(aes(x=location, y=value/1000, fill=type)) +
geom_bar(stat="identity", position=position_dodge(width=1)) +
facet_grid(~period) +
labs(y="Billion dollars", x="", fill="") +
theme(axis.text.x=element_text(angle=45, hjust=1, size=10)) +
theme_bitre

Obviously there is quite a lot happening in this sequence of
commands. For the data wrangling we have worked through each
step and added it into the pipeline one step at a time. Whist the
resulting sequence looks complex, each step was quite straightfor-
ward. This is typical of the process of building our pipelines.

Bar Chart: Value/Weight of Sea Trade 129

The plot command is also usually built in the same way
whereby we add new layers or elements to plot one step at
a time. The initial plot function itself identifies the aesthetics
(ggplot2::aes()) having the location as the x-axis and the
value divided by 1,000 as the y-axis. The fill= aesthetic spe-
cifies how to colour the plot. Here we choose to base the colour on
the type (an import or an export).

We then added a ggplot2::geom_bar() to create a bar chart.
The ggplot2::facet_grid() splits the plot into separate plots
based on the period. We then change the label for the y-axis and
remove labels on the x-axis and the legend. Finally we rotate the
labels on the x-axis by 45◦ and then choose the colours for the fill.

Notice that this plot is different from that in the original
information sheet. The bars are not stacked. Rather we use
position= to specify they should be dodged. This allows the im-
port pattern to be better understood from a common baseline
rather than the varying baseline when the bars are stacked. Non-
etheless the aim in the information sheet is to review the total
value of the combined imports and exports and so the stacked
bars are useful in that context.

Figure 3 of the information sheet is quite similar but this time
the measure is the weight of the international sea trade. The data-
set is similarly formatted in the spreadsheet and so we process it
in the same way to generate Figure 5.2.

ds[96:117, 1:4] %>%
set_names(c("period", "location", "export", "import")) %>%
mutate(
export = as.numeric(export),
import = as.numeric(import),
period = period[seq(1, 21, 2) %>% rep(2) %>% sort()]

) %>%
gather(type, value, -c(period, location)) %>%
ggplot(aes(x=location, y=value/1000, fill=type)) +
geom_bar(stat="identity",position=position_dodge(width = 1)) +
facet_grid(~period) +
labs(y="Million tonnes", x="", fill="") +
theme(axis.text.x=element_text(angle=45, hjust=1, size=10)) +
theme_bitre

130 5 Case Study: Australian Ports

2001-02 2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2011-12

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

17 Ports

Austr
alia

0

250

500

750

1000
M

ill
io

n
to

nn
es

export

import

Figure 5.2: Faceted dodged bar plot comparing the import and export
total weight across multiple years aggregated over the largest 17
ports and all Australian ports, respectively.

5.3 Scatter Plot: Throughput versus Annual Growth
Figure 4 of the information sheet presents a scatter plot charting
the latest year’s sea port throughput against the port’s annual
average growth rate. The first two tables in the spreadsheet are
relevant to this plot. They record information about the 2011–12
throughput of each port and the port’s 10-year annual average
growth. Once again we need to wrangle this dataset into a form
that is suitable for analyzing. We start with the first of the datasets
identified as rows 3 and 4, with row 2 containing the port names.

Confirm the table of interest from the dataset.

ds[2:4, 2:18]

A tibble: 3 x 17
X__2 X__3 X__4 X__5 X__6 X__7 X__8
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 Adelaide Brisbane Burnie Dampier Darwin Devonport Fremantle
2 15.5 37 4 176 11 3 28
3 4.9 6 3.5 6.5 35 4 4.6
... with 10 more variables: X__9 <chr>, X__10 <chr>,
X__11 <chr>, X__12 <chr>, X__13 <chr>, X__14 <chr>,
X__15 <chr>, X__16 <chr>, X__17 <chr>, X__18 <chr>

To tidy this dataset we will transpose it using base::t() and

Scatter Plot: Throughput versus Annual Growth 131

then ensure it remains a data frame by piping the result into
dplyr::data_frame() and then dplyr::tbl_df(). Row names
are excluded from the resulting data frame (row.names=NULL) and
by setting stringsAsFactors=FALSE we keep strings as strings
rather then converting them to factors.
Wrangle the dataset: Transpose and retain as a dataset.

ds[2:4, 2:18] %>%
t() %>%
data.frame(row.names=NULL, stringsAsFactors=FALSE) %>%
tbl_df()

A tibble: 17 x 3
X1 X2 X3
<chr> <chr> <chr>
1 Adelaide 15.5 4.9
2 Brisbane 37 6
3 Burnie 4 3.5
....

Meaningful column names can be added using the convenient
support function magrittr::set_names(). The three columns are
the port name, the throughput for 2011–12, and the 10-year annual
average growth rate.

Wrangle the dataset: Add renaming columns informatively.

ds[2:4, 2:18] %>%
t() %>%
data.frame(row.names=NULL, stringsAsFactors=FALSE) %>%
tbl_df() %>%
set_names(c("port", "weight", "rate"))

A tibble: 17 x 3
port weight rate
<chr> <chr> <chr>
1 Adelaide 15.5 4.9
2 Brisbane 37 6
3 Burnie 4 3.5
....

Using dplyr::mutate() we turn the numeric columns which
are currently treated as character to numeric.

132 5 Case Study: Australian Ports

Wrangle the dataset: Add in numeric variable conversion.

ds[2:4, 2:18] %>%
t() %>%
data.frame(row.names=NULL, stringsAsFactors=FALSE) %>%
tbl_df() %>%
set_names(c("port", "weight", "rate")) %>%
mutate(
weight = as.numeric(weight),
rate = as.numeric(rate)

)

A tibble: 17 x 3
port weight rate
<chr> <dbl> <dbl>
1 Adelaide 15.5 4.9
2 Brisbane 37.0 6.0
3 Burnie 4.0 3.5
....

We then have a tidy dataset consisting of 17 observations (in-
dexed by port) of two variables (weight and rate).

An extra feature of Figure 4 of the information sheet is that
the ports are grouped into mixed and bulk ports. This information
is contained in another table within the spreadsheet corresponding
to rows 5 to 16 and columns 1 and 2 (with row 5 being the column
names).

Identify port types from appropriate data in the sheet.

ds[6, 1:2]

A tibble: 1 x 2
X__1 X__2
<chr> <chr>
1 Mixed Bulk

ds[7:17, 1:2]

A tibble: 11 x 2
X__1 X__2
<chr> <chr>
1 Melbourne Dampier

Scatter Plot: Throughput versus Annual Growth 133

2 Brisbane Gladstone
3 Port Kembla Hay Point
....

We can turn this into a data table listing the ports under their
particular category.

Construct a port type table.

ds[7:17, 1:2] %>%
set_names(ds[6, 1:2])

A tibble: 11 x 2
Mixed Bulk
<chr> <chr>
1 Melbourne Dampier
2 Brisbane Gladstone
3 Port Kembla Hay Point
4 Devonport Newcastle
5 Sydney Port Hedland
6 Geelong Port Walcott
7 Adelaide <NA>
8 Fremantle <NA>
9 Darwin <NA>
10 Burnie <NA>
11 Townsville <NA>

We can see that the Bulk column lists fewer ports than the
Mixed column and thus we have missing values (NA) in the
table. We will need to omit these from the final dataset using
stats::na.omit() which we do below. First though we will use
tidyr::gather() to tidy the dataset into two columns, one for
the type of port and the other for the port name. This is a more
useful data structure.

Tidy the dataset into a more useful structure.

ds[7:17, 1:2] %>%
set_names(ds[6, 1:2]) %>%
gather(type, port) %>%
na.omit()

A tibble: 17 x 2

134 5 Case Study: Australian Ports

type port
<chr> <chr>
1 Mixed Melbourne
2 Mixed Brisbane
3 Mixed Port Kembla
4 Mixed Devonport
5 Mixed Sydney
6 Mixed Geelong
7 Mixed Adelaide
8 Mixed Fremantle
9 Mixed Darwin
10 Mixed Burnie
11 Mixed Townsville
12 Bulk Dampier
13 Bulk Gladstone
14 Bulk Hay Point
15 Bulk Newcastle
16 Bulk Port Hedland
17 Bulk Port Walcott
....

We now have two source datasets that we can join into a single
dataset using a dplyr::left_join(). This kind of operation will
be familiar to database users.

Wrangle the dataset: Join to port type.

ds[2:4, 2:18] %>%
t() %>%
data.frame(row.names=NULL, stringsAsFactors=FALSE) %>%
tbl_df() %>%
set_names(c("port", "weight", "rate")) %>%
mutate(
weight = as.numeric(weight),
rate = as.numeric(rate)

) %>%
left_join(ds[7:17, 1:2] %>%

set_names(ds[6, 1:2]) %>%
gather(type, port) %>%
na.omit(),

by="port")

A tibble: 17 x 4
port weight rate type

Scatter Plot: Throughput versus Annual Growth 135

<chr> <dbl> <dbl> <chr>
1 Adelaide 15.5 4.9 Mixed
2 Brisbane 37.0 6.0 Mixed
3 Burnie 4.0 3.5 Mixed
....

We are now ready to reproduce Figure 4. With only a relatively
small number of data points a scatter plot is a good choice as we
can see in Figure 5.3. We have had to include some significant plot-
ting features to achieve an effective presentation of the data here.
The resulting code as a single block again is quite intimidating.
However, stepping through the process, one element at a time, as
we do in developing our code, each step is generally simple.

ds[2:4, 2:18] %>%
t() %>%
data.frame(row.names=NULL, stringsAsFactors=FALSE) %>%
tbl_df() %>%
set_names(c("port", "weight", "rate")) %>%
mutate(
weight = as.numeric(weight),
rate = as.numeric(rate)

) %>%
left_join(ds[7:17, 1:2] %>%

set_names(ds[6, 1:2]) %>%
gather(type, port) %>%
na.omit(),

by="port") %>%
mutate(type=factor(type, levels=c("Mixed", "Bulk"))) %>%
filter(port != "Darwin") ->

tds

tds %>%
ggplot(aes(x=weight, y=rate)) +
geom_point(aes(colour=type, shape=type), size=4) +
xlim(0, 300) + ylim(0, 13) +
labs(shape="Port Type",

colour="Port Type",
x="Throughput 2011-12 (million tonnes)",
y="Throughput average annual growth rate") +

geom_text(data=filter(tds, type=="Bulk"),
aes(label=port), vjust=2) +

annotate("rect", xmin=0, xmax=45, ymin=3, ymax=6.5,

136 5 Case Study: Australian Ports

Dampier
Gladstone

Hay Point

Newcastle

Port Hedland

Port Walcott

See inset

0

5

10

0 100 200 300

Throughput 2011-12 (million tonnes)

Th
ro

ug
hp

ut
 a

ve
ra

ge
 a

nn
ua

l g
ro

w
th

 ra
te

Port Type Mixed Bulk

Figure 5.3: Labelled scatter plot with inset.

alpha = .1) +
annotate("text", label="See inset", x=28, y=3.3, size=4) +
theme(legend.position="bottom")

After our initial gasp at seeing the complex sequence we can
look at the detail—the process is made up of mostly simple steps.
There are a couple of “tricks” here we should explain and we then
again emphasise that the generation of this sequence of commands
was an iterative process, building up one simple step at a time to
achieve something quite complex.

The “tricks” were developed through several iterations of gen-
erating and reviewing the plot. The first was that we identified
Darwin as an outlier which caused the plot to be poorly distrib-
uted. We decided to dplyr::filter() it out.

We also find the need to label just a subset of the points as
the mixed ports are rather close together and labelling would be
problematic. Instead we save the tidy dataset to a variable tds
rather than piping it directly to ggplot2::ggplot(). In this way

Scatter Plot: Throughput versus Annual Growth 137

we might also reuse the dataset as required. We filter this dataset
within ggplot2::geom_text() to label just a subset of the points.

Now we can take time to step through the ggplot2::ggplot()
layers. First note how we map the x-axis and y-axis to specific
variables. The layers then begin with ggplot2::geom_point()
with the colour and shape of the points reflecting the type of the
port: mixed or bulk. Shape is used in addition to colour as not
everyone can distinguish colours as well. The size of the points is
also increased.

The points within the scatter plot are labelled with the name
of the port using ggplot2::geom_text(). As noted it was not
practical to label the cluster of points representing the mixed ports
so that region is shaded. We identify that an inset is available as
a secondary plot shown in Figure 5.4.

For the secondary plot we again start with the saved tidy data-
set tds, filter out points we do not wish to plot, overwriting tds
so we can again use subsets of the dataset for labelling points
differently.

above <- c("Townsville", "Fremantle")

tds %<>% filter(port != "Darwin" & type == "Mixed")

tds %>%
ggplot(aes(x=weight, y=rate, label=port)) +
geom_point(aes(colour=type, shape=type), size=4) +
labs(shape="Port Type", colour="Port Type") +
xlim(0, 40) + ylim(3, 6) +
labs(x="Throughput 2011-12 (million tonnes)",

y="Throughput average annual growth rate") +
geom_text(data=filter(tds, !port%in%above), vjust= 2.0) +
geom_text(data=filter(tds, port%in%above), vjust=-1.0) +
theme(legend.position="bottom")

The secondary plot focuses only on the mixed ports. At this
scale there is plenty of room to label the points although we need
to place a couple of the labels above the points rather than be-
low. We also dplyr::filter() the original dataset to only in-
clude the Mixed ports, apart from Darwin. The assignment pipe
magrittr::%<>% is used to overwrite the original temporary copy

138 5 Case Study: Australian Ports

Adelaide

Brisbane

Burnie

Devonport Geelong

Melbourne

Port Kembla

Sydney

Fremantle

Townsville

3

4

5

6

0 10 20 30 40

Throughput 2011-12 (million tonnes)

Th
ro

ug
hp

ut
 a

ve
ra

ge
 a

nn
ua

l g
ro

w
th

 ra
te

Port Type Mixed

Figure 5.4: Labelled scatter plot.

of the dataset in tds which we no longer need. We would do so
to refer to the whole dataset within ggplot2::geom_text() to
simplify the coding. The remainder of the code is then similar to
the previous scatter plot.

5.4 Combined Plots: Port Calls
Figure 5 in the information sheet combines two plots into one.
This is advisable only where the data are closely related. The plot
shows the number of ship calls to each port over 12 years. The
plot is faceted by the port and so there are 17 separate plots. This
leaves space in the bottom right for a secondary plot to show the
average annual growth rate for each port. We might argue that
this either overloads the plot or makes effective use of available
space. We observe the latter here.

Combined Plots: Port Calls 139

The calls data for the main plot is included in the spreadsheet
as rows 20 to 36 and columns 1 to 13 with row 19 being the column
names. We will build the calls dataset with the appropriate column
names replacing the first with a more informative name.

Wrangle the dataset: Name columns informatively.

ds[20:36, 1:13] %>%
set_names(c("port", ds[19, 2:13]))

A tibble: 17 x 13
port `2001-02` `2002-03` `2003-04` `2004-05`
<chr> <chr> <chr> <chr> <chr>
1 Port Hedland 623 673 547 914
2 Melbourne 2628 2902 2935 3061
3 Newcastle 1452 1345 1382 1546
....

To tidy the dataset we tidyr::gather() the periods into a
column and dplyr::mutate() the calls base::as.integer()s.

Wrangle the dataset: Add dataset reshape and convert integer.

ds[20:36, 1:13] %>%
set_names(c("port", ds[19, 2:13])) %>%
gather(period, calls, -port) %>%
mutate(calls=as.integer(calls))

A tibble: 204 x 3
port period calls
<chr> <chr> <int>
1 Port Hedland 2001-02 623
2 Melbourne 2001-02 2628
3 Newcastle 2001-02 1452
....

From the data we can also calculate the average annual growth
using a formulation involving base::exp() and base::log().
This is required for the second plot.

Wrangle the dataset: Add avg calculatation.

ds[20:36, 1:13] %>%

140 5 Case Study: Australian Ports

set_names(c("port", ds[19, 2:13])) %>%
select(port, 2, 13) %>%
set_names(c('port', 'start', 'end')) %>%
mutate(
start = as.integer(start),
end = as.integer(end),
avg = 100*(exp(log(end/start)/11)-1)

)

A tibble: 17 x 4
port start end avg
<chr> <int> <int> <dbl>
1 Port Hedland 623 3920 18.200143
2 Melbourne 2628 3446 2.494151
3 Newcastle 1452 3273 7.668592
....

We now have the data required for the two plots. The two
constituent plots are separately generated and saved in memory
as the two R variables p1 and p2.

Build the main faceted plot.

p1 <-
ds[20:36, 1:13] %>%
set_names(c("port", ds[19, 2:13])) %>%
gather(period, calls, -port) %>%
mutate(calls=as.integer(calls)) %>%
ggplot(aes(x=period, y=calls)) +
geom_bar(stat="identity", position="dodge", fill="#6AADD6") +
facet_wrap(~port) +
labs(x="", y="Number of Calls") +
theme(axis.text.x=element_text(angle=90, hjust=1, size=8)) +
scale_y_continuous(labels=comma)

Generate the second plot.

p2 <-
ds[20:36, 1:13] %>%
set_names(c("port", ds[19, 2:13])) %>%
select(port, 2, 13) %>%
set_names(c('port', 'start', 'end')) %>%

Further Plots 141

mutate(
start = as.integer(start),
end = as.integer(end),
avg = 100*(exp(log(end/start)/11)-1)

) %>%
ggplot(aes(x=port, y=avg)) +
geom_bar(stat="identity",

position="identity",
fill="#6AADD6") +

theme(axis.text.x=element_text(angle=45, hjust=1, size=8),
axis.text.y=element_text(size=8),
axis.title=element_text(size=10),
plot.title=element_text(size=8),
plot.background = element_blank()) +

labs(x="",
y="Per cent",
title="Average Annual Growth, 2001-02 to 2012-13")

The use of grid::viewport() now allows us to insert one plot
over another resulting in Figure 5.5.

Combine the plots into a single plot.

print(p1)
print(p2, vp=viewport(x=0.72, y=0.13, height=0.28, width=0.54))

5.5 Further Plots
The information sheet goes on to produce a variety of other plots
to support the narrative presented. Below we illustrate the coding
that can be used to generate a number of these plots. As noted
earlier, the narrative or the story that is told and supported by
the analysis is left to the information sheet itself (BITRE, 2014).

For each of the plots the programming code presented here is
complete. The overall data wrangling and visualisation code may
appear quite complex for each but it is important to yet again
emphasise that the final code is developed step-by-step. Only the
final sequence of code is presented to wrangle the data and to

142 5 Case Study: Australian Ports

Sydney Townsville

Melbourne Newcastle Port Hedland Port Kembla Port Walcott

Devonport Fremantle Geelong Gladstone Hay Point

Adelaide Brisbane Burnie Dampier Darwin

20
01

-0
2

20
02

-0
3

20
03

-0
4

20
04

-0
5

20
05

-0
6

20
06

-0
7

20
07

-0
8

20
08

-0
9

20
09

-1
0

20
10

-1
1

20
11

-1
2

20
12

-1
3

20
01

-0
2

20
02

-0
3

20
03

-0
4

20
04

-0
5

20
05

-0
6

20
06

-0
7

20
07

-0
8

20
08

-0
9

20
09

-1
0

20
10

-1
1

20
11

-1
2

20
12

-1
3

20
01

-0
2

20
02

-0
3

20
03

-0
4

20
04

-0
5

20
05

-0
6

20
06

-0
7

20
07

-0
8

20
08

-0
9

20
09

-1
0

20
10

-1
1

20
11

-1
2

20
12

-1
3

20
01

-0
2

20
02

-0
3

20
03

-0
4

20
04

-0
5

20
05

-0
6

20
06

-0
7

20
07

-0
8

20
08

-0
9

20
09

-1
0

20
10

-1
1

20
11

-1
2

20
12

-1
3

20
01

-0
2

20
02

-0
3

20
03

-0
4

20
04

-0
5

20
05

-0
6

20
06

-0
7

20
07

-0
8

20
08

-0
9

20
09

-1
0

20
10

-1
1

20
11

-1
2

20
12

-1
3

0

1,000

2,000

3,000

4,000

0

1,000

2,000

3,000

4,000

0

1,000

2,000

3,000

4,000

0

1,000

2,000

3,000

4,000

N
um

be
r o

f C
al

ls

0
5

10
15
20

Adelaide

Bris
bane

Burn
ie

Dampier

Darw
in

Devonport

Fremantle

Geelong

Gladsto
ne

Hay Point

Melbourn
e

Newca
stl

e

Port
Hedland

Port
Kembla

Port
Walco

tt

Sydney

To
wnsv

ille

Pe
r c

en
t

Average Annual Growth, 2001-02 to 2012-13

Figure 5.5: Faceted bar plot with embedded bar plot.

produce the plot. Taken one step at a time we can often build
up to the full plot quite simply and are able to understand the
simplicity of each step as we build up to quite complex processing.

The next three figures from the information sheet are sideways
bar charts and we’ll reproduce one of them here (Figure 7a). As
always we begin by wrangling the data to produce a tidy dataset.
We plot the percentages in each of the occupation groups. The
data can be found in rows 48 to 56 over two columns. We wrangle
the data as usual and generate the plot using ggplot2::ggplot()
shown in Figure 5.6.

ds[48:56, 1:2] %>%
set_names(c("occupation", "percent")) %>%
mutate(
percent = as.numeric(percent),
occupation = factor(occupation,

levels=occupation[order(percent)])
) %>%

Further Plots 143

Not stated, unapplicable

Sales Workers

Community and Personal Service Workers

Managers

Labourers

Clerical and Administrative Workers

Professionals

Machinery Operators and Drivers

Technicians and Trades Workers

0 5 10 15 20

Per cent

Figure 5.6: Horizontal bar chart.

ggplot(aes(x=occupation, y=percent)) +
geom_bar(stat="identity", fill="#6AADD6", width=0.8) +
theme(axis.title.x=element_text(size=10)) +
labs(x="", y="Per cent") +
coord_flip()

Notice how we ensure the order of the occupations within the
plot to correspond to the percentage representation. The second
dplyr::mutate() transforms occupation into a factor with
levels having the order based on the percentage.

Another interesting aspect of the plot is the use of the conveni-
ent ggplot2::coord_flip() which rotates the plot. This gener-
ates the sideways bars.

Figure 8 of the information sheet is a visually interesting ho-
rizontal bar chart with annotations. We take this in two steps
because the labelling requires further processing of the data. The
wrangled dataset is saved as the variable tds.

tds <-
ds[39:40, 2:9] %>%
set_names(ds[38, 2:9]) %>%
mutate(type=c("Mixed Ports", "Bulk Ports")) %>%
gather(occupation, percent, -type) %>%
mutate(
percent = as.numeric(percent),
occupation = factor(occupation,

144 5 Case Study: Australian Ports

levels=c("Managers",
"Professionals",
"Technicians and Trades Workers",
"Community and Personal Service Workers",
"Clerical and Administrative Workers",
"Sales Workers",
"Machinery Operators and Drivers",
"Labourers"))

) %T>%
print()

A tibble: 16 x 3
type occupation percent
<chr> <fctr> <dbl>
1 Mixed Ports Managers 12.2
2 Bulk Ports Managers 8.6
3 Mixed Ports Professionals 15.1
....

To be able to annotate the plot with the percentages we need
to identify the correct positions for each one. Here we construct a
data frame which has the locations of the labels (x and y) together
with the labels themselves (v).

mv <-
tds %>%
filter(type=="Mixed Ports") %>%
extract2("percent") %>%
rev()

my <- (mv/2) + c(0, head(cumsum(mv), -1))

bv <-
tds %>%
filter(type=="Bulk Ports") %>%
extract2("percent") %>%
rev()

by <- (bv/2) + c(0, head(cumsum(bv), -1))

lbls <-
data.frame(x=c(rep(1, length(mv)), rep(2, length(bv))),

y=c(by, my),
v=round(c(bv, mv))) %T>%

Further Plots 145

print()

x y v
1 1 6.85 14
2 1 21.15 15
3 1 29.80 2
4 1 37.10 12
5 1 45.40 4
....

The data to generate the plot is now ready. The plot is a simple
bar chart with stacked bars (the default) with each bar labelled
by its size and coloured according to the theme. We flip the bar
chart to have it horizontal and reverse the y values to match the
legend.

tds %>%
ggplot(aes(x=type, y=percent, fill=occupation)) +
geom_bar(stat="identity", width=0.5) +
labs(x="", y="Per cent", fill="") +
annotate("text",

x=lbls$x,
y=lbls$y,
label=lbls$v,
colour="white") +

coord_flip() +
scale_y_reverse() +
theme_bitre

Figure 9 of the information sheet compares the proporation of
employees working full time or long hours at the different types of
ports (bulk versus mixed versus combined). Figure 5.8 reproduces
the plot.

ds[43:45, 1:3] %>%
set_names(c("type", ds[42, 2:3])) %>%
gather(var, count, -type) %>%
mutate(
count = as.integer(count),
type = factor(type,

levels=c("Bulk", "Mixed", "Australia"))
) %T>%

146 5 Case Study: Australian Ports

2 51 4192 4 219 51

4 81 4181 5 3121 51

Bulk Ports

Mixed Ports

52 057 05100

Per cent

Managers

Professionals

Technicians and Trades Workers

Community and Personal Service Workers

Clerical and Administrative Workers

Sales Workers

Machinery Operators and Drivers

Labourers

Figure 5.7: Horizontal bar chart with multiple stacks.

print() ->
tds

A tibble: 6 x 3
type var count
<fctr> <chr> <int>
1 Bulk Share of full time workers 88
2 Mixed Share of full time workers 83
3 Australia Share of full time workers 68
....

lbls <- data.frame(x=c(.7, 1, 1.3, 1.7, 2, 2.3),
y=tds$count-3,
lbl=round(tds$count))

tds %>%
ggplot(aes(x=var, y=count)) +
geom_bar(stat="identity", position="dodge", aes(fill=type)) +
labs(x="", y="Per cent", fill="") + ylim(0, 100) +
geom_text(data=lbls,

aes(x=x, y=y, label=lbl),
colour="white") +

theme_bitre

Throughout this chapter we have presented significant sample
code. We have reinforced that the development of the final code
we see here for each plot is an iterative process where step-by-

Exercises 147

88
83

68

47

21
17

0

25

50

75

100

Share of full time workers Share working more than 49 hours

Pe
r c

en
t Bulk

Mixed

Australia

Figure 5.8: Simple bar chart with dodged and labelled bars.

step we have added processing of the dataset to achieve one action
at a time. Combined we end up with quite complex operations
to produce powerful plots that then support the narrative of the
report.

5.6 Exercises

Exercise 5.1 Simple Bar Chart
Figure 7a of the BITRE report is a simple horizontal bar chart and
was reproduced above as Figure 5.6. Using that code as a template
reproduce Figures 6 and 7b of the report.

Exercise 5.2 Stacked Bar Chart
Figure 8a of the BITRE report is a stacked bar chart and was

148 5 Case Study: Australian Ports

reproduced above as Figure 5.7. Using that code as a template
reproduce Figures 8b and 11 of the report.

Exercise 5.3 Scatter Plots
Figure 10 of the BITRE report contains two scatter plots similar
to that of Figure 4 of the report which we reproduced above as
Figure 5.3. Using that code as a template reproduce Figure 10.

6
Case Study: Web Analytics

Open data is a focus for many governments who have identified the
value to society and business in making data available for anyone to
access and analyse. The Australian government, like many others,
makes open data available through the data.gov.au repository. The
Australian Taxation Office publishes a variety of open data on the
repository including web log data. For our purposes we will use
this web log data as another use case for a data scientist.

Many data repositories today provide application programmer
interfaces (APIs) through which to access their data holdings.
This allows us to more readily discover datasets and to readily load
them into R, for example, for analysis. The Comprehensive Know-
ledge Archive Network (known as CKAN) provides a standard
API to access data. This API is supported for accessing datasets
stored on data.gov.au and many other similar repositories.

In this chapter we illustrate the process of accessing data from a
CKAN node, loading it into R and then performing a data analysis
on the dataset using the tools we have presented in the previous
chapters.

Packages used in this chapter include ckanr (Chamberlain,
2015), dplyr (Wickham et al., 2017a), ggplot2 (Wickham and
Chang, 2016), magrittr (Bache and Wickham, 2014), rattle (Willi-
ams, 2017), readr (Wickham et al., 2017b), scales (Wickham, 2016),
stringi (Gagolewski et al., 2017), stringr (Wickham, 2017a), tidyr
(Wickham, 2017b) and xtable (Dahl, 2016)

Load required packages from local library into R.

library(ckanr) # Access data from CKAN.
library(dplyr) # Wrangling: group_by().
library(ggplot2) # Visualise data.
library(magrittr) # Pipelines for data processing: %>% %T>% %<>%.

149

150 6 Case Study: Web Analytics

library(rattle) # Wrangling: normVarNames().
library(readr) # Modern data reader.
library(scales) # Include commas in numbers in plots.
library(stringi) # The string concat operator: %s+%.
library(stringr) # String manpiulation: str_split().
library(tidyr) # Tidy the dataset: gather().
library(xtable) # Format R data frames as LaTeX tables.

6.1 Sourcing Data from CKAN
The Australian Taxation Office has made available for public ac-
cess amongst many other datasets a web log dataset. This data-
set was originally made available for the Australian government’s
GovHack 2014 contest. The dataset can be downloaded from the
ATO Web Analytics section of the data.gov.au repository using
any browser. Since the repository supports the CKAN API we can
use ckanr to program our navigation through to the dataset of
interest and then load that dataset into R.

There are many repositories that support the CKAN API and
we can list some of them using ckanr::servers().

List some of the known servers.

servers()

[1] "http://catalog.data.gov"
[2] "http://africaopendata.org"
[3] "http://annuario.comune.fi.it"
[4] "http://bermuda.io"
[5] "http://catalogue.data.gov.bc.ca"
[6] "http://catalogue.datalocale.fr"
....

Count the number of servers.

servers() %>% length()

[1] 124

http://catalog.data.gov
http://africaopendata.org
http://annuario.comune.fi.it
http://bermuda.io
http://catalogue.data.gov.bc.ca
http://catalogue.datalocale.fr

Sourcing Data from CKAN 151

Since we are interested in the Australian government’s CKAN
repository rather than the default provided by ckanr we need to
set up its URL as the default.

Current default server.

get_default_url()

[1] "http://data.techno-science.ca/"

Change the default server.

ckanr_setup(url="http://data.gov.au")

Check the new default server.

get_default_url()

[1] "http://data.gov.au"

A variety of metadata is available about each CKAN reposit-
ory. This includes the various organisations that contribute to the
repository. For the Australian government repository some 521 or-
ganisations are listed. For each organisation the metadata provided
by the repository includes a description of the organisation and its
logo, for example. We can list what metadata is available using
base::names().

Store the list of organisations.

orgs <- organization_list(as="table")

Report the number of organisations listed.

nrow(orgs)

[1] 521

Identify metadata available.

names(orgs)

http://data.techno-science.ca/
http://data.gov.au
http://data.gov.au

152 6 Case Study: Web Analytics

[1] "display_name" "description"
[3] "image_display_url" "package_count"
[5] "created" "name"
[7] "is_organization" "state"
[9] "image_url" "type"
[11] "title" "revision_id"
[13] "num_followers" "id"
[15] "approval_status"

Notice that the variable names here are already in our preferred
style and so we have no need for our usual step of normalising them
with rattle::normVarNames().

The actual dataset we will use was provided by the Australian
Taxation Office so we can find the ID of the organisation which
we will use as a key to access the datasets provided by that or-
ganisation. We will dplyr::filter() and tidyr::extract() its
internal ID. In the process we will list the count of the number of
packages provided by the organisation. This is base::print()’d
within a tee pipe so that after printing, the original data is piped
on so as to magrittr::extract() the ID.

Extract and store the organisation of interest's identifier.

orgs %>%
filter(title=="Australian Taxation Office") %>%
extract(c("id", "package_count")) %T>%
print() %>%
extract("id") ->

ato_id

id package_count
1 90d1f157-c01f-4589-93bf-600dee01996e 14

The organisation ID will be used to search for packages (which
collect together possibly several datasets) from the organisation
using ckanr::package_search(). Each of the packages will be
listed under the results which we store as ato_pkgs in the following
code block. We also report on the number of packages found and
the title of the packages.

Sourcing Data from CKAN 153

Pattern is key:string

pattern <- ("owner_org:" %s+% ato_id) %T>% print()

[1] "owner_org:90d1f157-c01f-4589-93bf-600dee01996e"

Find all packages matching the pattern.

ato_pkgs <- package_search(pattern, rows=100)$results

Report the number of packages found.

length(ato_pkgs)

[1] 14

List the title of each package found.

sapply(ato_pkgs, extract2, 'title')

[1] "Taxation Statistics 2014-15"
[2] "Taxation Statistics 2011-12"
[3] "Voluntary Tax Transparency Code"
[4] "Taxation statistics - Individual sample files"
[5] "Ad-hoc requested data"
[6] "Taxation Statistics 2012-13"
[7] "Taxation Statistics 2013-14"
[8] "Taxation Statstics 1994-95 to 2008-09"
[9] "Taxation Statistics 2010-11"
[10] "Taxation Statistics 2009-10"
[11] "Corporate Tax Transparency"
[12] "GovHack2016"
[13] "Cumulative Total Tax Returns Received"
[14] "ATO Web Analytics July 2013 to April 2014"

We can see the dataset we are interested in there as ATO Web
Analytics July 2013 to April 2014. We’ll extract just that
package.

Pattern is key:string

pattern <- "title:ato web analytics"

154 6 Case Study: Web Analytics

Search for specific package.

ato_web_pkg <- package_search(pattern)$results[[1]] %T>% print()

<CKAN Package> 9b57d00a-da75-4db9-8899-6537dd60eeba
Title: ATO Web Analytics July 2013 to April 2014
Creator/Modified: 2014-05-14T02:09:38.206001 / 2014-05-1...
Resources (up to 5): Browser by month and traffic source...
Tags (up to 5): ATO, tax stats, web analytics, website s...
Groups (up to 5):

Save the package identifier.

pid <- ato_web_pkg$id %T>% print()

[1] "9b57d00a-da75-4db9-8899-6537dd60eeba"

There are 7 resources—a resource corresponds to a specific
dataset.

ato_web_pkg$num_resources

[1] 7

The actual list of datasets is included within the resources
metadata of the package and we can list their names.

ato_web_pkg$resources %>% sapply(extract2, 'name')

[1] "Browser by month and traffic source - July 2013 to Ap...
[2] "Entry pages by month and traffic source - July 2013 t...
[3] "Entry referrers by month and traffic source - July 20...
[4] "Exit pages by month and traffic source - July 2013 to...
[5] "Local keywords (top 100) by month and traffic source ...
[6] "Operating System (platform) by month and traffic sour...
....

The first dataset listed identifies itself as browser data and is
the dataset we will consider first.

Browser Data 155

6.2 Browser Data
Commonly datasets (or resources) on a CKAN repository like
the browser dataset have metadata available that describes as-
pects of the dataset. We can view the type of metadata as the
base::names() of the resource data structure. Recalling that the
browser dataset is the first resource in the ATO Web Analytics
package we access the resource appropriately.

Save the resource structure for the web analytics dataset.

bwres <- ato_web_pkg$resources[[1]]

Available metadata.

names(bwres)

[1] "cache_last_updated" "package_id"
[3] "webstore_last_updated" "autoupdate"
[5] "datastore_active" "id"
[7] "size" "state"
[9] "hash" "description"
[11] "format" "last_modified"
[13] "url_type" "mimetype"
[15] "cache_url" "name"
[17] "created" "url"
[19] "webstore_url" "mimetype_inner"
[21] "position" "revision_id"
[23] "resource_type"

Notice that there is a description field which we can access
as bwres$description which describes this dataset as: Browsers
used to access the ATO website from July 2013 to April 2014.
Data is broken down by month and by traffic source (internal or
external).

We are particularly interested in how to access the dataset and
the format of the dataset. The url metadata specifies the location
of the file containing the dataset. The format indicates that a
ZIP archive is used to contain a CSV file. The CSV file contains

156 6 Case Study: Web Analytics

the actual data. The base name of the CSV file that is contained
within the ZIP archive is provided by the name metadata.

bwres$url

[1] "http://data.gov.au/dataset/9b57d00a-da75-4db9-8899-65...

bwres$format

[1] "ZIP (CSV)"

bwres$name

[1] "Browser by month and traffic source - July 2013 to Ap...

Ingestion

We are now in a position to download the dataset into R so as
to begin our analysis. The next code block does this by recording
the URL and the CSV filename and creating a temporary filename
to store the downloaded ZIP file. Using utils::download.file()
we obtain a local copy of the file. When executing this interactively
we notice that the progress of the download will be displayed. We
then base::unz() the locally saved file and read it as CSV using
readr::read_csv() to save it into the R variable browsers. The
base::unlink() does the housekeeping to remove the downloaded
ZIP file.

dspath <- bwres$url
csvname <- bwres$name %s+% ".csv"
temp <- tempfile(fileext=".zip")

download.file(dspath, temp)
browsers <- unz(temp, csvname) %>% read_csv()
unlink(temp)

http://data.gov.au/dataset/9b57d00a-da75-4db9-8899-65

Browser Data 157

Preparation

Using our template from Chapter 3 we take a copy of the
dataset into the template variable ds. We also have our first
dplyr::glimpse() of the dataset.

dsname <- "browsers"
ds <- get(dsname)
glimpse(ds)

Observations: 1,357
Variables: 5
$ Browser <chr> "Chrome", "Chrome", "Microsoft Inte...
$ Month <chr> "Jul-13", "Jul-13", "Jul-13", "Jul-...
$ Traffic Source <chr> "External", "Internal", "External",...
$ Views <int> 7765921, 454, 6773492, 6067298, 507...
$ Visits <int> 691120, 110, 557509, 519093, 455815...

We observe that the dataset consists of 1,357 observations of
5 variables. Immediately we notice that the variable names are
not in our preferred normalised form. As usual we convert them
appropriately so that there is no ambiguity.

names(ds) %<>% normVarNames() %T>% print()

[1] "browser" "month" "traffic_source"
[4] "views" "visits"

Optionally we decide to simplify one of the variable names not-
ing that it is going to be simpler for us to refer to traffic_source
as source.

names(ds)[3] <- "source"

Taking another dplyr::glimpse() of the dataset we can see
some opportunity for structural modifications.

glimpse(ds)

Observations: 1,357
Variables: 5
$ browser <chr> "Chrome", "Chrome", "Microsoft Internet Ex...

158 6 Case Study: Web Analytics

$ month <chr> "Jul-13", "Jul-13", "Jul-13", "Jul-13", "J...
$ source <chr> "External", "Internal", "External", "Exter...
$ views <int> 7765921, 454, 6773492, 6067298, 5078805, 6...
$ visits <int> 691120, 110, 557509, 519093, 455815, 69007...

The first three variables are generic character (chr) data types.
The variable month is clearly a date and we could transform it into
a suitable date format but for our simpler purposes we’ll retain it
as a factor. It has just 10 unique values and so will have this many
levels as a factor. We retain the ordering of the months in the
dataset to order the levels for the factor as per chance the order
in the dataset is sequentially correct.

length(unique(ds$month))

[1] 10

unique(ds$month)

[1] "Jul-13" "Aug-13" "Sep-13" "Oct-13" "Nov-13" "Dec-13"
[7] "Jan-14" "Feb-14" "Mar-14" "Apr-14"

ds %<>% mutate(month=factor(month, levels=unique(ds$month)))

We will similarly map source into a factor noting that it has
just 2 values and it is okay to retain an alphabetic ordering to the
levels.

length(unique(ds$source))

[1] 2

unique(ds$source)

[1] "External" "Internal"

ds %<>% mutate(source=factor(source))

The browser is also a candidate to be represented as a factor.
We notice that the variable has 406 base::unique() values.

Browser Data 159

That’s quite a lot and there is plenty of opportunity to tidy up
this variable.

We start by recognising that multiple versions of the Microsoft
Internet Explorer are reported and we might take the opportunity
to combine these into a single entry. Reviewing the full list also
suggests opportunities to combine others into single groups, such
as the suite of Nokia identified browsers. A simple heuristic might
suffice for our purposes so that stripping all but the first word from
the browser string will be our starting point.

ds %<>% mutate(browser=
str_split(ds$browser, "\\W") %>%
sapply(extract, 1))

That brings us down to just 168 browsers which is still quite a
few. We consider other opportunities to reduce the noise in relation
to the analysis we are interested in. It is important to also note
that we are removing potentially important information from our
dataset and we need to do so with an understanding of the analysis
we want to undertake and with care.

Many of the reported browsers appear infrequently and so we
will aggregate them into a new group called Others. We need to
sum the visits per browser over the whole dataset and using a
threshold any browser not frequent enough will be renamed as
Other.

Threshold below which a browser is considered as Other.

visits.threshold <- 1e4

Determine the list of Other browsers.

ds %>%
group_by(browser) %>%
summarise(visits=sum(visits)) %>%
filter(visits < visits.threshold) %>%
extract2('browser') ->

other

Helper function.

160 6 Case Study: Web Analytics

remap.other <- function(x) if (x %in% other) "Other" else x

Remap the browsers noting the opportunity to collapse
repeated browser/month/source entries. Notice we need to
remove the grouping to facilitate fuhter processing.

ds %<>%
mutate(browser=sapply(browser, remap.other)) %>%
group_by(browser, month, source) %>%
summarise(views=sum(views), visits=sum(visits)) %>%
ungroup()

Having transformed the character strings that record the
browser type we are now ready to convert the data into a factor.

Check the number of unique browsers we now have.

length(unique(ds$browser))

[1] 9

Record the browser names ordered by their
frequency of visits.

ds %>%
group_by(browser) %>%
summarise(visits=sum(visits)) %>%
arrange(visits) %>%
extract2("browser") %>%
as.character() %T>%
print() ->

blvls

[1] "Other" "Netscape" "Opera" "Mozilla" "Safar...
[6] "Firefox" "Mobile" "Chrome" "Microsoft"

Convert browser into a factor with the sorted levels.

ds %<>% mutate(browser=factor(browser, levels=blvls))

Once again we dplyr::glimpse() the dataset to review our
progress.

Browser Data 161

glimpse(ds)

Observations: 122
Variables: 5
$ browser <fctr> Chrome, Chrome, Chrome, Chrome, Chrome, C...
$ month <fctr> Jul-13, Jul-13, Aug-13, Aug-13, Sep-13, S...
$ source <fctr> External, Internal, External, Internal, E...
$ views <int> 7765921, 454, 5625394, 296, 3563878, 747, ...
$ visits <int> 691120, 110, 665842, 78, 504094, 52, 75150...

We now have a dataset that has been sourced from a CKAN
server. We have ingested that data into R as a data frame. From a
review of the data and indeed from the name of the dataset and the
description from the metadata we confirm that the observations
range over the period from July 2013 to April 2014 by month and
by the traffic source which is either internal or external. This is in
line with what we were expecting for this dataset. We are ready
for our analysis.

Analysis

We begin our analysis with an exploration of the internal versus
external profiles of browser usage. First we dplyr::group_by()
the values of the source and then dplyr::summarise() the data-
set to compare the external and internal visits.

ds %>%
group_by(source) %>%
summarise(total=sum(visits)) %T>%
print() ->

freq

A tibble: 2 x 2
source total
<fctr> <int>
1 External 33946553
2 Internal 1103712

round(100*freq$total[2]/sum(freq$total))

[1] 3

162 6 Case Study: Web Analytics

Internal visits account for just 3% of all visits. This is not an
unexpected ratio as internal visits come from the employees of the
organisation which is a significantly smaller population than the
external population.

For a more professional presentation of the results as we would
produce for our actual report we would use the output from
xtable::xtable() and leave it to LATEX* to format it appropri-
ately. Here we also have the titles of the columns bold and provide
a caption for the table. The results can be seen in Table 6.1.

bold <- function(x)
{

ifelse(x == "Visits",
"\\multicolumn{1}{c}{\\textbf{Visits}}",
'{\\textbf{' %s+% x %s+% '}}')

}
caption <-
"External versus internal visits " %s+%
"to the ATO web site together with the " %s+%
"number of unique browsers identified."

short <-
"External versus internal visits."

ds %>%
group_by(source) %>%
summarise(
total = sum(visits),
browsers = length(unique(browser))

) %>%
set_names(c("Source", "Visits", "Browsers")) %>%
xtable(
caption = c(caption, short),
label = "tab:atoweb:browser_visits"

) %>%
print(include.rownames=FALSE,

format.args=list(big.mark=","),
sanitize.colnames.function=bold,
table.placement="t",
caption.placement="top",
booktabs=TRUE)

*LATEX is the free and open source typesetting system used for this book.
See Chapter 10 for details.

Browser Data 163

Table 6.1: External versus internal visits to the ATO web site to-
gether with the number of unique browsers identified.

Source Visits Browsers
External 33,946,553 9
Internal 1,103,712 5

Mobile Chrome Microsoft

Mozilla Safari Firefox

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

0

500,000

1,000,000

1,500,000

2,000,000

0

500,000

1,000,000

1,500,000

2,000,000

month

vi
si

ts

Figure 6.1: Month by month external browser visits for the most
popular browsers.

An interesting analysis might be around the profiles of browsers
used and their changing patterns of usage over time. Given the
large number of browsers reported in the data we will ignore those
less frequently represented browsers. We will also look at the ex-
ternal and internal visitors separately. Finally, a visual presenta-
tion can have more impact in our reports and so we will generate
a plot as the output of this analysis. The result is Figure 6.1.

ds %>%
filter(browser %in% levels(browser)[4:9]) %>%
filter(source == "External") %>%
ggplot(aes(month, visits, fill=browser)) +
geom_bar(stat="identity") +
facet_wrap(~browser) +
scale_y_continuous(labels=comma) +
theme(axis.text.x=element_text(angle=45, hjust=1)) +

164 6 Case Study: Web Analytics

Chrome Microsoft

Safari Firefox

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

0

50,000

100,000

150,000

200,000

0

50,000

100,000

150,000

200,000

month

vi
si

ts

Figure 6.2: Month by month internal browser visits for the most
popular browsers.

theme(legend.position="none")

Reviewing the plot provides insight into the behaviour of ex-
ternal users accessing the web site. We might postulate a seasonal
interest in access to the site. The monthly patterns across the
browsers are vaguely similar from month to month except for the
Mozilla browser which is not present early on and increases in
presence from December 2013. We might seek to gain some un-
derstanding of these observations and then test specific seasonal
observations statistically.

In comparing these patterns with the usage profiles for internal
users we see the plot of Figure 6.2. The two plots demonstrate a
clear behavioural difference between external and internal users.
There are considerably less visits and interestingly we observe pre-
dominantly Microsoft only browser visits. This reflects the typical
organisational standard operating environments that dictate the
usage of specific browsers. Otherwise we would begin to delve into
the data collection itself to determine there is no data collection
issue with this dataset.

Browser Data 165

Table 6.2: External versus internal visits to the ATO web site by
specific web browsers.

Browser External Internal
Other 14,085 2
Netscape 29,847
Opera 60,554
Mozilla 634,484
Safari 2,282,737 1
Firefox 4,296,359 12,793
Mobile 5,016,803
Chrome 7,508,320 792
Microsoft 14,103,364 1,090,124

ds %>%
filter(browser %in% levels(browser)[4:9]) %>%
filter(source == "Internal") %>%
ggplot(aes(month, visits, fill=browser)) +
geom_bar(stat="identity") +
facet_wrap(~browser) +
scale_y_continuous(labels=comma) +
theme(axis.text.x=element_text(angle=45, hjust=1)) +
theme(legend.position="none")

All such observations need to be supported through a review of
the actual data. Whilst the visualisations are appealing, present-
ations of the actual data remain fundamental to telling our nar-
rative. A table of browser visits by source will confirm that the
Microsoft browsers overwhelm the usage of other browsers intern-
ally within this organisation. There are only minor visits internally
using Firefox. Table 6.2 is generated through the following code
block.

caption <-
"External versus internal visits " %s+%
"to the ATO web site by specific " %s+%
"web browsers."

short <-
"External versus internal browsers."

166 6 Case Study: Web Analytics

ds %>%
group_by(browser, source) %>%
summarise(total=sum(visits)) %>%
spread(source, total) %>%
set_names(c("Browser", "External", "Internal")) %>%
xtable(
caption = c(caption, short),
label = "tab:atoweb:browser_split_source"

) %>%
print(include.rownames=FALSE,

format.args=list(big.mark=","),
sanitize.colnames.function=bold,
table.placement="t",
caption.placement="top",
booktabs=TRUE)

6.3 Entry Pages
Another dataset contained within the package records the starting
(entry) pages for the ATO web site. As we did for the browser
dataset we will load the entry dataset using the CKAN API. This
is the second dataset in the package.

ato_web_pkg$resources[[2]]$name

[1] "Entry pages by month and traffic source - July 2013 t...

The URL of the dataset can be obtained from the resource
meta data from which we can also construct the name of the en-
closed CSV file. A temporary local filename is requested before we
download the actual dataset. The dataset is unzipped and ingested
into R. We then remove the downloaded file from the local storage.

url <- ato_web_pkg$resources[[2]]$url
csvname <- ato_web_pkg$resources[[2]]$name %s+% ".csv"
temp <- tempfile(fileext=".zip")

download.file(url, temp)

Entry Pages 167

entry <- unz(temp, csvname) %>% read_csv()
unlink(temp)

As usual we obtain our first dplyr::glimpse() of the dataset.

glimpse(entry)

Observations: 207,119
Variables: 5
$ Entry Page <chr> "http://www.ato.gov.au/", "http://www.a...
$ Month <chr> "Jul-13", "Jul-13", "Jul-13", "Jul-13",...
$ Source <chr> "External", "Internal", "External", "In...
$ Views <int> 9106745, 36423, 1991886, 1613, 1163224,...
$ Visits <int> 313151, 3643, 120417, 73, 167830, 41, 1...

Following our practise through the template we will load this
dataset into our generic variable ds:

dsname <- "entry"
ds <- get(dsname)

As we often note the variable names need to be simplified, or at
least normalised using rattle::normVarNames(). We then record
the list of available variables in vars.

names(ds) <- normVarNames(names(ds)) %T>% print()

[1] "entry_page" "month" "source" "views"
[5] "visits"

vars <- names(ds)

The next task is to understand the character variables to de-
termine whether they are better represented as factors. We review
the distributions here.

ds %>%
sapply(is.character) %>%
which() %T>%
{names(.) %>% print()} %>%
select(ds, .) %>%
sapply(function(x) unique(x) %>% length())

http://www.ato.gov.au/

168 6 Case Study: Web Analytics

[1] "entry_page" "month" "source"
entry_page month source
33262 11 3

Thus, entry_page would not be a candidate for conversion to
a factor though month and source are. We consider each in turn.

For month we can construct a table of its distribution.

ds %>% select(month) %>% table()

.
Apr-14 Aug-13 Dec-13 External Feb-14 Jan-14 Ju...
23324 22849 19090 1 17222 17266 2...
Mar-14 Nov-13 Oct-13 Sep-13
18002 22478 22736 21084

Immediately we observe that the value External looks out of
place. Checking the order of the columns in the dataset we note
that this appears to be a value for the following column, source,
rather than month. We appear to have a data issue.

To check this we first list the unique values of month and then
view the observation with what appears to be an issue.

ds %>% select(month) %>% unique()

A tibble: 11 x 1
month
<chr>
1 Jul-13
2 Aug-13
3 Sep-13
....

ds %>% filter(month == "External") %>% print.data.frame()

entry_page
1 http://www.ato.gov.au/content/00268103.htm ",March 2014"
month source views visits
1 External 4 3 NA

We can observe an odd value for source (4) and so on and

http://www.ato.gov.au/content/00268103.htm

Entry Pages 169

indeed notice that the date (month) is embedded within the
entry_page character string.

Having identified a data quality issue we need to have a closer
look to determine how widespread the issue is. Of course, initial
indications are that there is a single bad observation in the dataset.

The first task is to identify where the errant observation oc-
curs:

which(ds$source == "4")

[1] 198499

With the observation number 198,499 in hand we can go back
to the original source CSV file to check the source data itself.
There are many ways to do this, including loading the file into a
spreadsheet application or even just a text editor. A simple Linux
command line approach will pipe the results of the Linux com-
mand tail into the command head as in the following command
line (replacing the <filename> with the actual filename). Even for
extremely large files, this will take almost no time at all as both
commands are very efficient, and is likely quicker than loading the
data into a spreadsheet.

$ tail -n+198500 <filename>.csv | head -n1

We discovery that row 198,500 (given that the first row of the
CSV file is the header row) has the literal value:

"http://www.ato.gov.au/...268103.htm "",March 2014""",External,4,3,

Compare that to another row that is valid:

http://www.ato.gov.au/content/00171495.htm,Mar-14,External,7,2

Something would appear to have gone wrong in the extraction
of the dataset at the source—the CSV file is the original from
the web site so perhaps the extraction at the source was less than
perfect or was damaged in transmission.

We must now decide what to do. We choose to simply
dplyr::filter() out that observation. Alternatively we could

http://www.ato.gov.au/...268103.htm
http://www.ato.gov.au/content/00171495.htm

170 6 Case Study: Web Analytics

have fixed the values for this observation within the dataset ds
itself if it was felt that this observation needed to be included in
the analysis or if the issue was found to be widespread.

dim(ds)

[1] 207119 5

ds %<>% filter(month != "External")
dim(ds)

[1] 207118 5

There is no further evidence on a review of the CSV file and the
dataset of any other similar issues. We now convert this variable
into a factor. We note that the order of the values of month as
they appear in the original CSV file (and hence in the dataset) is
nearly but not quite chronological so we must set the factor levels
appropriately.

unique(ds$month)

[1] "Jul-13" "Aug-13" "Sep-13" "Oct-13" "Nov-13" "Dec-13"
[7] "Jan-14" "Feb-14" "Apr-14" "Mar-14"

months <- c("Jul-13", "Aug-13", "Sep-13", "Oct-13",
"Nov-13", "Dec-13", "Jan-14", "Feb-14",
"Mar-14", "Apr-14")

ds %<>% mutate(month=factor(month, levels=months))

We continue our observations noting that the variable month
clearly records the month and year of an observation.

Our next character variable is the source which appears to
record, presumably, whether the person browsing is external to
the ATO or internal to the ATO. It has two distinct values (after
removal of the errant observation above).

ds %>% select(source) %>% table()

.
External Internal
144400 62718

Entry Pages 171

We decide that it is appropriate to convert this into a factor.

ds %<>% mutate(source=factor(source))

The remaining two variables are numeric. For an entry point
the views appears to report the number of views for that month
between internal and external views. Similarly for visits.

We summarise the dataset to get a feel for the shape of the
data.

summary(ds)

entry_page month source
Length:207118 Apr-14 :23324 External:144400
Class :character Jul-13 :23067 Internal: 62718
Mode :character Aug-13 :22849
Oct-13 :22736
Nov-13 :22478
Sep-13 :21084
(Other):71580
views visits
Min. : 1 Min. : 1.0
1st Qu.: 4 1st Qu.: 1.0
Median : 18 Median : 4.0
Mean : 1019 Mean : 169.2
3rd Qu.: 88 3rd Qu.: 20.0
Max. :9106745 Max. :1349083.0
##

The total number of views/visits to the website may be some-
thing of interest.

ds$views %>% sum %>% comcat()

211,110,271

ds$visits %>% sum %>% comcat()

35,050,249

We can then explore the views/visits per month. The following
code produces the plot of Figure 6.3.

172 6 Case Study: Web Analytics

0

10,000,000

20,000,000

30,000,000

40,000,000

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

Month

Co
un

t Type
views

visits

Figure 6.3: Views and visits per month.

ds %>%
group_by(month) %>%
summarise(views=sum(views), visits=sum(visits)) %>%
gather(type, count, -month) %>%
ggplot(aes(x=month, y=count, fill=type)) +
geom_bar(stat="identity", position="dodge") +
scale_y_continuous(labels=comma) +
labs(fill="Type", x="Month", y="Count") +
theme(axis.text.x=element_text(angle=45, hjust=1))

We may observe that there’s a similar pattern over time for
views and visits though to a different scale. The number of
views (and also we would suggest views per visit) is dramatic-
ally increased for July. We need to analyse the relative change in
views/visit over time to confirm the observation. Because of the
different magnitudes between views and visits we might choose
to use a log scale for the y-axis as in Figure 6.4. On the other
hand, it may only serve to diminish the seasonal variation.

The July spike may well correspond to the Australian financial
year ending in June and starting in July. We might also observe the
holiday season around December when there must be less interest
in taxation topics.

Entry Pages 173

10

1,000

100,000

10,000,000

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

Month

Co
un

t Type
views

visits

Figure 6.4: Views and visits per month (log scale).

Finally, a comparison of External and Internal sources may
also be of interest. The following code segment generates the plot
of Figure 6.5.

External Internal

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

Ju
l-1

3

Aug-13

Sep-13

Oct-
13

Nov-13

Dec-1
3

Ja
n-14

Feb-14

Mar-1
4

Apr-1
4

0

10,000,000

20,000,000

30,000,000

Month

Co
un

t Type
views

visits

Figure 6.5: Faceted plot of external and internal visits/views.

174 6 Case Study: Web Analytics

ds %>%
group_by(month, source) %>%
summarise(views=sum(views), visits=sum(visits)) %>%
gather(type, count, -c(month, source)) %>%
ggplot(aes(x=month, y=count, fill=type)) +
geom_bar(stat="identity", position="dodge") +
scale_y_continuous(labels=comma) +
labs(fill="Type", x="Month", y="Count") +
theme(axis.text.x=element_text(angle=45, hjust=1)) +
facet_wrap(~source)

The clear volume differences between external and internal vis-
itors is not surprising with the ATO having only about 20,000 staff,
compared to the population of Australia at over 23 million. Given
this very stark differentiation between the external and internal
populations, we might think to partition our analysis into the two
cohorts. At a guess, we might expect the behaviours exhibited in-
ternally to be quite different to those exhibited through external
accesses.

6.4 Exercises

Exercise 6.1 Exploring the Data
The full web log data suite contains multiple resources (datasets).
Choose one that was not covered in this chapter and complete a
study of the dataset, wrangling the data and extracting informa-
tion and knowledge. Complete a report that tells the narrative of
the dataset.

7
A Pattern for Predictive Modelling

In Chapter 3 we presented a process for ingesting, processing, re-
viewing, transforming and cleaning our data. There we introduced
the concept of a template that captures through the use of generic
variables a repeatable process. We can then use the template as
a starting point for any new task. In this chapter we present a
similar concept for building analytic or machine learning models.

The concept of building models was introduced in Chapter 1
where we highlighted the aim as capturing knowledge from data.
Such knowledge represents an understanding in some form of the
real world. Once the knowledge has been discovered from the data
we can consider deploying the knowledge to reason about the world
and indeed to build applications that intelligently interact with
and further learn from its interaction with the world.

Many model builders, given a set of user specified parameters,
use heuristics to search for a good model. It is typical in artificial
intelligence for algorithms to perform a guided random search.
The general approach is to search for a good model rather than to
deterministically identify the best model. This is often necessary
because the computational requirements to find the best model will
generally be prohibitive and could take years of compute time.

Searching for the best model involves searching through an
enormous search space of all of the possible expressions of a model
in the particular knowledge representation language for the choice
of model. We might compare model building to writing a sentence
in a particular natural language (like English). The language has
a particular specification or rules which are followed in building a
sentence. Following these rules we can combine the words of the
language together to form sentences. There is an infinite number
of sentences we could form. As humans we search for the right sen-

175

176 7 A Pattern for Predictive Modelling

tence at the right time in the right context. We do this incredibly
well.

Similarly for model building we have a language in which we
express the model (the knowledge discovered). That language will
typically allow for an infinite variety of sentences (models). Given
a dataset (the context) our task is to search for the best or a good
sentence that is most consistent with the data. Computers do this
search automatically yet computationally because the search space
is extremely large we cannot explore all possible sentences.

Heuristic algorithms reduce the computational requirements
to something feasible. Such heuristics often involve some level of
random decision making in deciding which paths to follow.

In this chapter we develop a pattern for building models using
R. As with Chapter 3 the intention is to develop a pattern that can
be used as the starting point for any future model building and
evaluation of those models. By no means is the pattern the end
point in itself. There will be plenty of variation to and extension of
the patterns as we become more engaged with the model building
for the particular characteristics of the dataset we are dealing with.

R offers a full suite of model builders. Each model builder is in
practise a function call and the arguments to the function are gen-
erally similar across the different model builders. However, because
they are written by different developers and at different times there
are idiosyncratic differences between each. We need to sometimes
be aware of these differences as we proceed.

At this time we have yet to see the development of a unified
language for building models though the caret (Kuhn, 2017) pack-
age provides a well thought out and consistent interface to a large
number of model builders. Our aim in this chapter is to provide
a foundation for building and evaluating models in R and to be-
gin with a simple template capturing the model building pattern.
Once we have that foundation then the data scientist might like
to become familiar with the advanced capabilities of caret (Kuhn,
2017).

Packages used in this chapter include ROCR (Sing et al.,
2015), dplyr (Wickham et al., 2017a), ggplot2 (Wickham and
Chang, 2016), magrittr (Bache and Wickham, 2014), randomForest

Loading the Dataset 177

(Breiman et al., 2015), rattle (Williams, 2017), rpart (Therneau
et al., 2017), scales (Wickham, 2016), stringi (Gagolewski et al.,
2017) and tibble (Müller and Wickham, 2017).

Load required packages from the local library into R.

library(ROCR) # Use prediction() for evaluation.
library(dplyr) # select()
library(ggplot2) # Visually evaluate performance.
library(magrittr) # Data pipelines: %>% %T>% %<>%.
library(randomForest) #
library(rattle) # Evaluate using riskchart(), comcat().
library(rpart) # Model: decision tree.
library(scales) # percent()
library(stringi) # String operator: %s+%.
library(tibble) # as_data_frame()

7.1 Loading the Dataset
In Chapter 3 we used readr::read_csv() to ingest our data into
R. Some considerable effort then went into processing, reviewing,
transforming and cleaning the data. We saved the dataset together
with a collection of metadata as an R binary dataset file so that
here we can base::load() the saved dataset and its associated
metadata.

Build the filename used to previously store the data.

fpath <- "data"
dsname <- "weatherAUS"
dsdate <- "_20170702"
dsfile <- dsname %s+% dsdate %s+% ".RData"

fpath %>%
file.path(dsfile) %T>%
print() ->

dsrdata

[1] "data/weatherAUS_20170702.RData"

178 7 A Pattern for Predictive Modelling

Load the R objects from file and list them.

load(dsrdata) %>% print()

[1] "ds" "dsname" "dspath" "dsdate"
[5] "nobs" "vars" "target" "risk"
[9] "id" "ignore" "omit" "inputi"
[13] "inputs" "numi" "numc" "cati"
[17] "catc" "form" "seed" "train"
[21] "validate" "test" "tr_target" "tr_risk"
....

The metadata can then be reviewed as a check of the veracity
of the data. It is always important to regularly review our data.
Errors can occur and can propagate through our modelling if we
are not careful.
Review the metadata.

dsname

[1] "weatherAUS"

dspath

[1] "http://rattle.togaware.com/weatherAUS.csv"

dsdate

[1] "_20170702"

nobs %>% comcat()

134,776

vars

[1] "rain_tomorrow" "min_temp" "max_temp"
[4] "rainfall" "evaporation" "sunshine"
[7] "wind_gust_dir" "wind_gust_speed" "wind_dir_9am"
[10] "wind_dir_3pm" "wind_speed_9am" "wind_speed_3pm"
[13] "humidity_9am" "humidity_3pm" "pressure_9am"
[16] "cloud_9am" "cloud_3pm" "rain_today"
[19] "season" "cluster"

http://rattle.togaware.com/weatherAUS.csv

Loading the Dataset 179

target

[1] "rain_tomorrow"

risk

[1] "risk_mm"

id

[1] "date" "location" "year"

ignore

[1] "date" "location" "risk_mm" "temp_3pm...
[5] "pressure_3pm" "temp_9am"

omit

NULL

train %>% length() %>% comcat()

94,343

validate %>% length() %>% comcat()

20,216

test %>% length() %>% comcat()

20,217

Notice specifically the training, validation, and testing “data-
sets”. By building our model on the 70% training dataset we might
expect it to well reflect that specific dataset. In fact, models can
generally be quite accurate on the data on which they are trained.
But this accuracy is a very optimistic (or biased) estimate of how
the model generalises to other unseen datasets. Generally we are
more interested to know how the model performs on unseen data
and so how useful the model will be in a more general context.
This is the role of the validation and testing datasets.

180 7 A Pattern for Predictive Modelling

The validation and testing datasets are so-called hold-out
datasets in that they have not been used at all for building the
model. When we test the model on these datasets we would ex-
pect it to be less accurate. This is indeed what we will generally
observe and we will see this in the following sections.

For our purposes we will illustrate the model building pro-
cess with a specific type of model in mind—a binary classification
model. Here the accuracy of a model relates to how accurate it can
predict the target variable based on the input variables. Thus we
often measure performance based on error rates.. The overall error
rate measured on the training dataset will be shown to generally
be less than the error rate calculated on the validation and testing
datasets. These latter datasets provide an unbiased estimate of the
true performance of the model.

7.2 Building a Decision Tree Model
There are many model building algorithms available to us in R.
Indeed, essentially every machine learning algorithm is available
in R in addition to R’s traditional strength in statistical models.

A traditional and very popular machine learning algorithm is
the decision tree induction algorithm. The target knowledge rep-
resentation language is a structure referred to as a decision tree.
The algorithm uses a divide and conquer approach to heuristically
construct the decision tree. An information gain (entropy) or gini
measure is typically used to guide the tree construction.

The popularity of this model is due in no small part to the
choice of knowledge representation. As we will see shortly, the tree
is readily understandable and presents the discovered knowledge
quite clearly and in a form that non-technical collaborators can
access.

A popular function to build decision tree models in R is
rpart::rpart(). We will use this here to introduce the model
building process.

To build a model we need to pass on to the model building

Building a Decision Tree Model 181

function the formula that describes the model to build. We have
stored the formula within the generic variable form. We also pass
on to the algorithm the historic dataset from which we will build
the model. The training dataset as a subset of the full dataset
ds is identified along with just the vars (variables or columns)
that we will model. Using generic variables allows us to change
the formula, the dataset, the observations and the variables used
in building the model yet retain the same function call.

Train a decision tree model.

m_rp <- rpart(form, ds[train, vars])

The result of the model build is stored into the variable m_rp.
If we are experimenting with different model build parameters we
might have several models that we wish to save, and might save
them as m_rp_01, m_rp_02, and so on.

In line with our template approach we introduce generic vari-
ables to store the actual model and meta data about the model.

Initialise generic variables.

model <- m_rp
mtype <- "rpart"
mdesc <- "decision tree"

The generic variable model will be used to refer to the model
in a general way. We also introduce the generic variable m_type
to record the type of the model we have built and m_desc as a
human readable description of the model type. We will see these
used later.

We can view the model by referencing the generic variable
model on the command line. R will base::print() the model
to the console output.

Basic model structure.

model

n= 94343

182 7 A Pattern for Predictive Modelling

##
node), split, n, loss, yval, (yprob)
* denotes terminal node
##
1) root 94343 21244 no (0.7748217 0.2251783)
2) humidity_3pm< 71.5 78710 11493 no (0.8539830 0.14601...
3) humidity_3pm>=71.5 15633 5882 yes (0.3762554 0.6237...
6) humidity_3pm< 83.5 8977 4338 no (0.5167651 0.4832...
12) wind_gust_speed< 47 6290 2587 no (0.5887122 0.4...
24) rainfall< 2.3 4295 1479 no (0.6556461 0.34435...
25) rainfall>=2.3 1995 887 yes (0.4446115 0.5553...
13) wind_gust_speed>=47 2687 936 yes (0.3483439 0....
7) humidity_3pm>=83.5 6656 1243 yes (0.1867488 0.813...

This textual version of the model provides the basic structure
of the tree. Different model builders will base::print() different
information. We get a glimpse of the knowledge discovered here,
represented as a tree.

We can also review the base::summary() of the model build
process.

Basic model build summary.

summary(model)

Call:
rpart(formula=form, data=ds[train, vars])
n= 94343
##
CP nsplit rel error xerror xstd
1 0.18212201 0 1.0000000 1.0000000 0.006039246
2 0.02626624 1 0.8178780 0.8178780 0.005604365
3 0.01040294 3 0.7653455 0.7655809 0.005461220
4 0.01000000 4 0.7549426 0.7641687 0.005457229
##
Variable importance
humidity_3pm max_temp wind_gust_speed
87 3 3
rainfall rain_today wind_speed_3pm
2 1 1
humidity_9am wind_speed_9am cluster
1 1 1
##

Building a Decision Tree Model 183

min_temp
cluster

wind_speed_9am
humidity_9am

wind_speed_3pm
rain_today

rainfall
wind_gust_speed

max_temp
humidity_3pm

10
1000

Relative Importance

Variable Importance

Rattle 2017-07-20 12:00 gjw

Figure 7.1: Decision tree variable importance.

Node number 1: 94343 observations, complexity param=0.1...
predicted class=no expected loss=0.2251783 P(node) =1
....

A primary goal of data science is to gain insight into our data.
As with artificial intelligence and machine learning we often want
to review the discovered knowledge. The above textual representa-
tion of the discovered knowledge can be augmented with a visual-
isation of the same knowledge. A number of tools are available to
support the visualisation of our models and to communicate under-
standing of the knowledge discovered through the model building
process.

Often we are interested in knowing which variables were im-
portant in building the model to predict the outcome. We can use
rattle::ggVarImp() to plot the variable importance as in Fig-
ure 7.1. Note the use of log=TRUE in the code below to force the
axis to be a log scale so as to show the details for variables of less
importance.

Review variable importance.

ggVarImp(model, log=TRUE)

A visual representation of the decision tree model itself is also

184 7 A Pattern for Predictive Modelling

humidity_3pm < 72

humidity_3pm < 84

wind_gust_speed < 47

rainfall < 2.3

yes no

1

2

3

6

12

24 25 13 7

humidity_3pm < 72

humidity_3pm < 84

wind_gust_speed < 47

rainfall < 2.3

no
.77 .23
100%

no
.85 .15

83%

yes
.38 .62

17%

no
.52 .48

10%

no
.59 .41

7%

no
.66 .34

5%

yes
.44 .56

2%

yes
.35 .65

3%

yes
.19 .81

7%

yes no

1

2

3

6

12

24 25 13 7

Rattle 2017-07-20 12:00 gjw

Figure 7.2: Decision tree visualisation.

quite useful in exposing the structure or knowledge discovered from
the dataset. We use rattle::fancyRpartPlot() for a visually
interesting presentation of the tree in Figure 7.2

Visualise the discovered knowledge.

fancyRpartPlot(model)

We can quickly grasp the knowledge from the visual represent-
ation. Briefly, the path travelling through the left-hand side of the
tree essentially captures that if the humidity at 3pm today was
less than 72 then we expect there to be no rain tomorrow with
an 85% probability. Taking the rightmost path through the tree,
the rules predict that it will rain with a 79% probability if the
humidity at 3pm is greater than 82.

This then is our first predictive analytic model built using a
machine learning algorithm. In particular, it is a model that ex-
poses the discovered knowledge from the provided dataset.

Model Performance 185

7.3 Model Performance
Having built a predictive analytic model we will want to under-
stand how well the model performs. We will now apply the model
to the observations in the training dataset to evaluate its perform-
ance. A number of measures will be introduced and many more
exist. The choice depends on the data and the task at hand.

Predict

The generic function used in R to obtain predictions from a model
is stats::predict(). We can obtain the predictions on the train-
ing dataset to evaluate the accuracy of the model.

For different types of models stats::predict() will gener-
ally behave in a similar and consistent way. There are however
variations that we need to be aware of as we use new machine
learning algorithms. For a decision tree model to produce class
predictions for a dataset of observations we specify the type= of
prediction as "class":
Predict on the training dataset.

model %>%
predict(newdata=ds[train, vars], type="class") %>%
set_names(NULL) %T>%
{head(., 20) %>% print()} ->

tr_class

[1] no no no no no no no no no no no no no no
[15] yes no no no no no
Levels: no yes

We can then compare this to the actual class for these obser-
vations as is recorded in the original training dataset. The actual
classes have already been stored as the variable tr_target:

head(tr_target, 20)

[1] no no no no no no no no no no no no no no
[15] no no no no yes no
Levels: no yes

186 7 A Pattern for Predictive Modelling

Observe that the model correctly predicts 18 of the first 20
training dataset observations and 78,305 of the 94,343 training
observations. We perform these calculations in the following code
block. Notice the use of base::sum() applied to a vector of
Boolean values (TRUE/FALSE). R automatically treats TRUE as 1
and FALSE as 0 so that we base::sum() the number of TRUE val-
ues in the vector.

head(tr_class) == head(tr_target)

[1] TRUE TRUE TRUE TRUE TRUE TRUE

sum(head(tr_class) == head(tr_target))

[1] 6

sum(tr_class == tr_target)

[1] 78305

For a decision tree model we can also obtain the prob-
ability of it raining tomorrow using stats::predict() with
type="prob".

model %>%
predict(newdata=ds[train, vars], type="prob") %>%
.[,2] %>%
set_names(NULL) %>%
round(2) %T>%
{head(., 20) %>% print()} ->

tr_prob

[1] 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.34 0.15 0.15 0.15
[12] 0.15 0.15 0.15 0.65 0.15 0.15 0.15 0.15 0.15

Accuracy and Error Rate

Given the predicted classes and probabilities we are now in a posi-
tion to evaluate the performance of the model. The simplest meas-
ure is to calculate how accurate the model is over all of the pre-
dictions. We saw this calculation above but now convert it to a
percentage accuracy.

Model Performance 187

sum(tr_class == tr_target) %>%
divide_by(length(tr_target)) %T>%
{

percent(.) %>%
sprintf("Overall accuracy = %s\n", .) %>%
cat()

} ->
tr_acc

Overall accuracy=83%

Similarly we can calculate the model error rate which is some-
times used in preference to the accuracy.

sum(tr_class != tr_target) %>%
divide_by(length(tr_target)) %T>%
{

percent(.) %>%
sprintf("Overall error = %s\n", .) %>%
cat()

} ->
tr_err

Overall error=17%

The model has an overall accuracy of 83% and error rate of
17%. That is a relatively high accuracy for a typical model build.

Confusion Matrix

The accuracy and error are rather blunt measures of performance.
They are a good starting point to get a sense of how good the
model is but more is required. A confusion matrix allows us to
review how well the model performs against actual classes.

We begin by counting the number of times the model agrees
with the actual data across the different classes. The comparison
is made on the training dataset comparing the target (tr_target)
to the predicted class (tr_class). Such a table is referred to as a
confusion or error matrix.

188 7 A Pattern for Predictive Modelling

Basic comparison of prediction and actual as a confusion matrix.

table(tr_target, tr_class, dnn=c("Actual", "Predicted"))

Predicted
Actual no yes
no 70033 3066
yes 12972 8272

It is often most useful to convert these counts to rates or per-
centages.

Calculate percentages for confusion matrix.

table(tr_target, tr_class, dnn=c("Actual", "Predicted")) %>%
divide_by(length(tr_target)) %>%
multiply_by(100) %>%
round(1)

Predicted
Actual no yes
no 74.2 3.2
yes 13.7 8.8

We will find ourselves repeating the use of this formulation of-
ten to produce a summary of the performance of our model. As
such we would be inclined to define our own function to do this
so we do not need to repeat ourselves. In fact though this formu-
lation is implemented as rattle::errorMatrix() which reports
the percentages as well as the class error rates. It includes options
to report the raw counts or, by default, the percentages. We store
the resulting matrix of percentages as the variable tr_matrix for
later usage.

Count of predictions across all observations.

errorMatrix(tr_target, tr_class, count=TRUE)

Predicted
Actual no yes Error
no 70033 3066 4.2
yes 12972 8272 61.1

Model Performance 189

Comparison as percentages of all observations.

errorMatrix(tr_target, tr_class) %T>%
print() ->

tr_matrix

Predicted
Actual no yes Error
no 74.2 3.2 4.2
yes 13.7 8.8 61.1

Common terminology refers to 74.2 as the true negatives, 3.2
as the false positives, 13.7 as the false negatives and 8.8 as the true
positives.

Using tr_matrix we can calculate the error rate and an average
of the class error rates.

tr_matrix %>%
diag() %>%
sum(na.rm=TRUE) %>%
subtract(100, .) %>%
sprintf("Overall error percentage = %s%%\n", .) %>%
cat()

Overall error percentage=17%

tr_matrix[,"Error"] %>%
mean(na.rm=TRUE) %>%
sprintf("Averaged class error percentage = %s%%\n", .) %>%
cat()

Averaged class error percentage=32.65%

A confusion matrix is particularly useful when the con-
sequences of a wrong decision are different for the different de-
cisions. For example, if it is incorrectly predicted that it will not
rain tomorrow and I decide not to carry an umbrella with me then
as a consequence I will get wet. We might experience this as a
more severe consequence than the situation where it is incorrectly
predicted that it will rain and so I unnecessarily carry an um-
brella with me all day. The significance of different error types in
medicine (predicting cancer) can be even more dramatic.

190 7 A Pattern for Predictive Modelling

Three further measures of performance are introduced based
on the confusion matrix: the recall, precision, and F-score. The
recall is the proportion of true positives that are identified by the
model. For the weather dataset that corresponds to the propor-
tion of days that it rains and the model predicts it will rain. The
precision is the proportion of true positives that are amongst the
positives predicted by the model. For the weather dataset this is
the proportion of the number of days for which it is predicted
to rain and it does actually rain. Larger values for both are bet-
ter. The F-score is calculated as the harmonic mean of these two
measures.

Recall.

tr_rec <- (tr_matrix[2,2]/(tr_matrix[2,2]+tr_matrix[2,1])) %T>%
{percent(.) %>% sprintf("Recall = %s\n", .) %>% cat()}

Recall=39.1%

Precision.

tr_pre <- (tr_matrix[2,2]/(tr_matrix[2,2]+tr_matrix[1,2])) %T>%
{percent(.) %>% sprintf("Precision = %s\n", .) %>% cat()}

Precision=73.3%

F-Score.

tr_fsc <- ((2 * tr_pre * tr_rec)/(tr_rec + tr_pre)) %T>%
{sprintf("F-Score = %.3f\n", .) %>% cat()}

F-Score=0.510

7.3.1 ROC Curve

Another common measure of the performance of a model is the
ROC curve and in particular the area under the ROC curve.
This area can be calculated using ROCR::prediction() and
ROCR::performance(). These functions use the probability of a
prediction rather than the prediction of a class.

Model Performance 191

In the following code block we obtain the predicted probabilit-
ies from the model, predicting over the training dataset. The res-
ult from stats::predict() for an rpart model is a matrix with
columns corresponding to the possible class values recording the
probability of each class for each observation. The second column
is the one of interest (the probability that it will rain tomorrow,
i.e., rain_tomorrow==yes). These probabilities are passed on to
ROCR::prediction() to compare them with the actual target val-
ues. The result is then passed on to ROCR::performance() from
which we obtain the base::attr()ibute y.values and then ex-
tract the first value as the area under the curve.

tr_prob %>%
prediction(tr_target) %>%
performance("auc") %>%
attr("y.values") %>%
.[[1]] %T>%
{

percent(.) %>%
sprintf("Percentage area under the ROC curve = %s\n", .) %>%
cat()

} ->
tr_auc

Percentage area under the ROC curve=69.8%

The area under the curve (AUC) is 69.8% of the total area.
If it were 100% then the model would be perfectly accurate and
usually an indication that the model has over-fit the data and so
will not perform well on new data.

The area under the curve can be visualized if we draw the ac-
tual ROC curve. To do so we first need to calculate a true positive
rate and a false positive rate using ROCR::performance(). The
two values are abbreviated as tpr and fpr, respectively.

tr_prob %>%
prediction(tr_target) %>%
performance("tpr", "fpr") ->

tr_rates

192 7 A Pattern for Predictive Modelling

AUC = 69.8%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

itiv
e

Ra
te

 (S
en

sit
ivi

ty
)

ROC - rpart - Training Dataset

Figure 7.3: ROC curve for decision tree over training dataset. The
area under the curve is a measure of the performance of the model.
A perfect model would have 100% of the area under the curve.

The false positive rate is calculated to be used as the x
values and the true positive rate as the y values. Extracting
these into a data frame will allow us to pass the data on to
ggplot2::ggplot(). A line is shown for the ROC curve and we
add some explanatory labels and text to report the calculated area
under the curve. The resulting plot is shown in Figure 7.3.

data_frame(tpr=attr(tr_rates, "y.values")[[1]],
fpr=attr(tr_rates, "x.values")[[1]]) %>%

ggplot(aes(fpr, tpr)) +
geom_line() +
annotate("text", x=0.875, y=0.125, vjust=0,

label=paste("AUC =", percent(tr_auc))) +
labs(title = "ROC - " %s+% mtype %s+% " - Training Dataset",

x = "False Positive Rate (1-Specificity)",
y = "True Positive Rate (Sensitivity)")

The more area under the curve the better the model is per-
forming.

Evaluating Model Generality 193

7.3.2 Risk Chart

A risk chart (Williams, 2011), also known as an accumulative per-
formance plot, is implemented in rattle as an alternative to an ROC
curve. It can be useful for explaining the performance of a model.
For many financial audit type environments, for example, business
is expressed in terms of audit cases and case loads. That is, a case
load or population of customers are to be audited for financial com-
pliance. Some percentage will be identified as non-compliant (the
true positives). The remainder will have been audited unnecessar-
ily (the false positives). The ROC curve is useful in presenting the
trade-off between the true positives (the y-axis) and the false pos-
itives (the x-axis). A risk chart plots the true positive rate against
the caseload (the total number of positives which is the combined
true and false positives).

Figure 7.4 shows a rattle::riskchart() based on the train-
ing dataset. The x-axis can be considered as a case load whilst the
y-axis is the performance over that case load. In approximate terms
we can read, for example, that with a case load of 40% we have
a return of 60% of the successful cases. Of course the data here
relates to our weather data but the interpretation carries through
to audit data.

riskchart(tr_prob, tr_target, tr_risk) +
labs(title="Risk Chart - " %s+%

mtype %s+%
" - Training Dataset") +

theme(plot.title=element_text(size=14))

Just as with a ROC curve the more area under the curve the
better the model performance. The solid grey line shows where the
the perfect performance would be.

7.4 Evaluating Model Generality
Having an understanding of how well the model performs on the
data on which it was built, we might ask how will the model per-

194 7 A Pattern for Predictive Modelling

3.0 2.0 1.08.0 7.0 6.0 5.0 4.00.9
Risk Scores

23%
1

2

3

4

Lift

0

20

40

60

80

100

0 20 40 60 80 100

Caseload (%)

Pe
rf

or
m

an
ce

 (%
)

Recall (74%) Risk (82%) Precision

Risk Chart - rpart - Training Dataset

Rattle 2017-July-02 12:00:00 gjw

Figure 7.4: A risk chart for the training dataset. The risk chart plots
the population against performance, captured as the true positive
rate. The area under the risk chart is another single measure for
comparing performance.

form on new data. This is the purpose of the validation dataset.
We evaluate a model by making predictions on observations that
were not used in building the model. These observations will need
to have a known outcome so that we can compare the model pre-
diction against the known outcome. Generally the evaluation of a
model over the training dataset will result in a biased estimate of
the actual model performance—after all, that is the data that was
used to build the model and so the model builder should do well
on that dataset.

We now introduce the concept of making predictions over new,
unseen, or hold-out observations using the model we have built.
We will use these predictions over the validation dataset to provide
an unbiased estimate of the quality of the predictions made by the
model. This may lead us to fine-tune some of the parameters we
have available for building a decision tree, such as the maximum
depth, the complexity, and so on.

We will replicate the evaluation performed on the training
dataset but now on the validation dataset.

Evaluating Model Generality 195

Predict

Predict on the validation dataset.

model %>%
predict(newdata=ds[validate, vars], type="class") %>%
set_names(NULL) %T>%
{head(., 20) %>% print()} ->

va_class

[1] yes no no no no no no no no yes no no no no
[15] no no no no no no
Levels: no yes

Again we compare the predictions to the actual class for these
observations.

head(va_target, 20)

[1] yes no no no no no no no no no yes no no no
[15] no yes no no no yes
Levels: no yes

The model correctly predicts 16 of the first 20 validation data-
set observations and 16,780 of the 20,216 validation observations.

We will also record the probability of it raining tomorrow.

model %>%
predict(newdata=ds[validate, vars], type="prob") %>%
.[,2] %>%
set_names(NULL) %>%
round(2) %T>%
{head(., 20) %>% print()} ->

va_prob

[1] 0.65 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.34 0.81 0.34
[12] 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

196 7 A Pattern for Predictive Modelling

Accuracy and Error Rate

The accuracy and error over the validation dataset can be calcu-
lated as previously for the training dataset.

sum(va_class == va_target) %>%
divide_by(length(va_target)) %T>%
{

percent(.) %>%
sprintf("Overall accuracy = %s\n", .) %>%
cat()

} ->
va_acc

Overall accuracy=83%

sum(va_class != va_target) %>%
divide_by(length(va_target)) %T>%
{

percent(.) %>%
sprintf("Overall error = %s\n", .) %>%
cat()

} ->
va_err

Overall error=17%

The model has an overall accuracy of 83% and error rate of
17%. For our simple model here these are the same as with the
trianing dataset.

Confusion Matrix

The counts of the agreements between the model and the actual
values for the validation dataset is the first step to computing the
confusion matrix based on the validation dataset comparing the
target (va_target) to the predicted class (va_class).

Basic comparison of prediction/actual as a confusion matrix.

errorMatrix(va_target, va_class, count=TRUE)

Evaluating Model Generality 197

Predicted
Actual no yes Error
no 15078 662 4.2
yes 2774 1702 62.0

The actual percentages can also be obtained.

Comparison as percentages of all observations.

errorMatrix(va_target, va_class) %T>%
print() ->

va_matrix

Predicted
Actual no yes Error
no 74.6 3.3 4.2
yes 13.7 8.4 62.0

The error matrix saved to va_matrix is used to calculate the
error rate and an average of the class error rates.

va_matrix %>%
diag() %>%
sum(na.rm=TRUE) %>%
subtract(100, .) %>%
sprintf("Overall error percentage = %s%%\n", .) %>%
cat()

Overall error percentage=17%

va_matrix[,"Error"] %>%
mean(na.rm=TRUE) %>%
sprintf("Averaged class error percentage = %s%%\n", .) %>%
cat()

Averaged class error percentage=33.1%

Similarly for recall, precision, and the F-score.

va_rec <- (va_matrix[2,2]/(va_matrix[2,2]+va_matrix[2,1])) %T>%
{percent(.) %>% sprintf("Recall = %s\n", .) %>% cat()}

Recall=38%

198 7 A Pattern for Predictive Modelling

va_pre <- (va_matrix[2,2]/(va_matrix[2,2]+va_matrix[1,2])) %T>%
{percent(.) %>% sprintf("Precision = %s\n", .) %>% cat()}

Precision=71.8%

va_fsc <- ((2 * va_pre * va_rec)/(va_rec + va_pre)) %T>%
{sprintf("F-Score = %.3f\n", .) %>% cat()}

F-Score=0.497

Compare the performance measured by the validation dataset
to that on the training dataset. The very minor increased accuracy
is unlikely to be statistically significant but in general it is not
unusual to have a more optimistic performance on the training
dataset.

tr_matrix

Predicted
Actual no yes Error
no 74.2 3.2 4.2
yes 13.7 8.8 61.1

va_matrix

Predicted
Actual no yes Error
no 74.6 3.3 4.2
yes 13.7 8.4 62.0

7.4.1 ROC Curve

The ROC curve and associated area under the ROC curve are
again calculated over the validation dataset. We see the ROC curve
in Figure 7.5.

va_prob %>%
prediction(va_target) %>%
performance("auc") %>%
attr("y.values") %>%

Evaluating Model Generality 199

.[[1]] %T>%
{

percent(.) %>%
sprintf("Percentage area under the ROC curve = %s\n", .) %>%
cat()

} ->
va_auc

Percentage area under the ROC curve=69.5%

va_prob %>%
prediction(va_target) %>%
performance("tpr", "fpr") ->

va_rates

data_frame(tpr=attr(va_rates, "y.values")[[1]],
fpr=attr(va_rates, "x.values")[[1]]) %>%

ggplot(aes(fpr, tpr)) +
geom_line() +
annotate("text", x=0.875, y=0.125, vjust=0,

label=paste("AUC =", percent(va_auc))) +
labs(title="ROC - " %s+% mtype %s+% " - Validation Dataset",

x="False Positive Rate (1-Specificity)",
y="True Positive Rate (Sensitivity)")

7.4.2 Risk Chart

Figure 7.6 shows the rattle::riskchart() based on the valida-
tion dataset.

riskchart(va_prob, va_target, va_risk) +
labs(title="Risk Chart - " %s+%

mtype %s+%
" - Validation Dataset") +

theme(plot.title=element_text(size=14))

200 7 A Pattern for Predictive Modelling

AUC = 69.5%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

itiv
e

Ra
te

 (S
en

sit
ivi

ty
)

ROC - rpart - Validation Dataset

Figure 7.5: ROC curve for decision tree over validation dataset.

3.0 2.0 1.07.0 6.0 5.0 4.09.0 8.0
Risk Scores

22%
1

2

3

4

Lift

0

20

40

60

80

100

0 20 40 60 80 100

Caseload (%)

Pe
rf

or
m

an
ce

 (%
)

Recall (73%) Risk (81%) Precision

Risk Chart - rpart - Validation Dataset

Rattle 2017-July-02 12:00:00 gjw

Figure 7.6: A Risk Chart for the validation dataset. The risk chart
plots the population against performance, captured as the true pos-
itive rate. The area under the risk chart is another single measure
for comparing performance.

Model Tuning 201

7.5 Model Tuning
Once we have built our first model the journey begins to tune
the parameters of the model building algorithm to explore for the
model that best fits the data. There are tools available that will
search through a series of parameter values, building a model for
each setting, and identifying the combination of parameters that
leads to the best model. We will illustrate the process here as a
manual tuning step.

As with most machine learning algorithms there are many
options available to affect the model that is built by the func-
tion. For rpart::rpart() we have options available to change
the maximum number of nodes down a single path of the tree
(maxdepth= wiht 30 as the default), the minimum number of obser-
vations in a node before we would consider splitting the node fur-
ther (minsplit=20), the minimum number of observations within
any terminal (leaf) node (minbucket=7), and many more. A par-
ticularly important argument is complexity parameter (cp=0.01).
Smaller values will tend to build larger trees by allowing splits to a
node within the tree for smaller gains to the accuracy of the model.
See the manual page for rpart::rpart.control() for further de-
tails.

Here we use for illustrative purposes a set of parameters that
build a considerably more complex decision tree model.

Build a more complex model

control <- rpart.control(cp=0.0001)
m_rp01 <- rpart(form, ds[train, vars], control=control)

Copy model into generic variables.

model <- m_rp01
mtype <- "rpart"
mdesc <- "decision tree (cp 1e-4)"

model

n= 94343

202 7 A Pattern for Predictive Modelling

##
node), split, n, loss, yval, (yprob)
* denotes terminal node
##
1) root 94343 21244 no (0.77482166 0.22517834)
2) humidity_3pm< 71.5 78710 11493 no (0.85398298 0...
4) sunshine>=7.75 52590 4389 no (0.91654307 0.0...
8) wind_gust_speed< 53 46015 3132 no (0.93193...
16) humidity_3pm< 53.5 37071 1918 no (0.9482...
17) humidity_3pm>=53.5 8944 1214 no (0.86426...
34) pressure_9am>=1014.35 6607 700 no (0....
68) cloud_3pm< 2.5 2458 187 no (0.92392...
136) wind_gust_speed< 42 2084 131 no (...
137) wind_gust_speed>=42 374 56 no (0...
274) cluster=area2,area3,area5 354 ...
275) cluster=area1,area4 20 7 yes ...
550) wind_speed_3pm>=23 7 2 no (...
551) wind_speed_3pm< 23 13 2 yes...
69) cloud_3pm>=2.5 4149 513 no (0.87635...
....

This is an excessively complex decision tree. Whereas our first
model had 9 nodes this new model has 1,519 nodes. This is con-
siderably more complex and we now ask whether the additional
complexity leads to performance gains.

The accuracy of the model will be assessed on the training and
validation datasets.

Use the model to predict.

model %>%
predict(newdata=ds[train, vars], type="class") %>%
set_names(NULL) %T>%
{head(., 20) %>% print()} ->

tr_class

[1] no no no no no no no no no no no no no no
[15] no no no no yes no
Levels: no yes

model %>%
predict(newdata=ds[validate, vars], type="class") %>%
set_names(NULL) %T>%

Model Tuning 203

{head(., 20) %>% print()} ->
va_class

[1] yes no no no no no no yes yes yes no no no no
[15] no yes no no no no
Levels: no yes

Compare model accuracy.

sum(tr_class == tr_target) %>%
divide_by(length(tr_target)) %>%
percent(.)

[1] "87.8%"

sum(va_class == va_target) %>%
divide_by(length(va_target)) %>%
percent(.)

[1] "83.6%"

Notice that the accuracy of model on the training dataset is
higher than on the data the model has not previously been exposed
to. The reported performance of the model on the validation data-
set is likely to be more in line with how well the model will perform
on any new data. That is, the measure on the validation dataset
is a less biased estimate of the true performance of the model. We
can see a hint of the issue of over-fitting here.

We observe a similar pattern for the error matrix.

Compare model performance across all three datasets.

errorMatrix(tr_target, tr_class)

Predicted
Actual no yes Error
no 74.6 2.9 3.8
yes 9.3 13.2 41.3

errorMatrix(va_target, va_class)

204 7 A Pattern for Predictive Modelling

Predicted
Actual no yes Error
no 72.8 5.1 6.5
yes 11.3 10.8 51.3

As noted previously for our scenario false negatives (when we
fail to predict that it will rain) have more impact than the false
positives (predicting that it will rain yet it does not). Reviewing
the error matrix and in particular the class error rates (the final
column) we clearly have a problem with too many false negatives.

A useful parameter to address this situation is the loss= para-
meter of the parms= argument. This is used to indicate that not
all outcomes are equal. In the following example we specify that
the false negatives are a greater loss than the false positives.

Bias model build towards reducing false negatives.

loss <- matrix(c(0,1,10,0), byrow=TRUE, nrow=2)
m_rp02 <- rpart(form, ds[train, vars], parms=list(loss=loss))

Copy model into generic variables.

model <- m_rp02
mtype <- "rpart"
mdesc <- "decision tree (loss fn = 10*fp)"

model

n= 94343
##
node), split, n, loss, yval, (yprob)
* denotes terminal node
##
1) root 94343 73099 yes (0.77482166 0.22517834)
2) humidity_3pm< 58.5 59403 53371 yes (0.89845631 0.101...
4) sunshine>=9.35 35324 23060 no (0.93471860 0.065281...
8) pressure_9am>=1014.45 24684 11370 no (0.95393777...
9) pressure_9am< 1014.45 10640 9471 yes (0.8901315...
18) cloud_3pm< 2.5 5482 3730 no (0.93195914 0.068...
19) cloud_3pm>=2.5 5158 4362 yes (0.84567662 0.15...
5) sunshine< 9.35 24079 20353 yes (0.84525935 0.15474...
10) pressure_9am>=1021.85 9096 6050 no (0.93348725 ...

Model Tuning 205

11) pressure_9am< 1021.85 14983 11862 yes (0.7916972...
3) humidity_3pm>=58.5 34940 19728 yes (0.56462507 0.435...

model %>%
predict(newdata=ds[validate, vars], type="class") %>%
set_names(NULL) %T>%
{head(., 20) %>% print()} ->

va_class

[1] yes no yes yes no yes no yes yes yes yes yes yes yes
[15] yes yes yes yes no yes
Levels: no yes

sum(va_class == va_target) %>%
divide_by(length(va_target)) %>%
percent(.)

[1] "59.3%"

errorMatrix(va_target, va_class)

Predicted
Actual no yes Error
no 39.3 38.6 49.6
yes 2.1 20.0 9.6

We have dramatically reduced the false negative rate and im-
proved the class error for the positive class (it rains tomorrow)
significantly. The overall error rate has increased which is okay
since we have purposefully identified that the consequences of a
false positive (we carry an umbrella around for the day) are less
than for a false negative (we get wet).

This might now be the model we decide to proceed with into
production perhaps as an app that will collect today’s weather
data and then provides advice each morning as to whether we
should pack an umbrella for the day.

We would finally like to understand how accurate the model is
expected to be noting that now we have actually used the valid-
ation dataset in the process of building the model. We now bring
in the testing dataset which has so far not been used at all for any
model evaluation. Using the testing dataset we proceed through

206 7 A Pattern for Predictive Modelling

our evaluation script. We expect these performance measures to
be an unbiased estimate of the performance of the model on new
data.

model %>%
predict(newdata=ds[test, vars], type="class") %>%
set_names(NULL) %T>%
{head(., 20) %>% print()} ->

te_class

[1] yes no no no no no yes no no no no yes yes no
[15] no yes no no no no
Levels: no yes

model %>%
predict(newdata=ds[test, vars], type="prob") %>%
.[,2] %>%
set_names(NULL) %>%
round(2) %T>%
{head(., 20) %>% print()} ->

te_prob

[1] 0.15 0.07 0.07 0.07 0.07 0.05 0.44 0.05 0.05 0.05 0.05
[12] 0.44 0.15 0.05 0.05 0.21 0.05 0.05 0.05 0.05

sum(te_class == te_target) %>%
divide_by(length(te_target)) %T>%
{

percent(.) %>%
sprintf("Overall accuracy = %s\n", .) %>%
cat()

} ->
te_acc

Overall accuracy=59.6%

sum(te_class != te_target) %>%
divide_by(length(te_target)) %T>%
{

percent(.) %>%
sprintf("Overall error = %s\n", .) %>%
cat()

} ->
te_err

Model Tuning 207

Overall error=40.4%

errorMatrix(te_target, te_class) %T>%
print() ->

te_matrix

Predicted
Actual no yes Error
no 39 38.4 49.6
yes 2 20.5 9.1

te_rec <- (te_matrix[2,2]/(te_matrix[2,2]+te_matrix[2,1])) %T>%
{percent(.) %>% sprintf("Recall = %s\n", .) %>% cat()}

Recall=91.1%

te_pre <- (te_matrix[2,2]/(te_matrix[2,2]+te_matrix[1,2])) %T>%
{percent(.) %>% sprintf("Precision = %s\n", .) %>% cat()}

Precision=34.8%

te_fsc <- ((2 * te_pre * te_rec)/(te_rec + te_pre)) %T>%
{sprintf("F-Score = %.3f\n", .) %>% cat()}

F-Score=0.504

te_prob %>%
prediction(te_target) %>%
performance("auc") %>%
attr("y.values") %>%
.[[1]] %T>%
{

percent(.) %>%
sprintf("Percentage area under the ROC curve = %s\n", .) %>%
cat()

} ->
te_auc

Percentage area under the ROC curve=76.2%

Figures 7.7 and 7.8 plot the ROC curve and the risk chart,
respectively, for the testing dataset.

208 7 A Pattern for Predictive Modelling

AUC = 76.2%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

itiv
e

Ra
te

 (S
en

sit
ivi

ty
)

ROC Curve - rpart - Test Dataset

Figure 7.7: An ROC curve for a decision tree on the testing dataset.

te_prob %>%
prediction(te_target) %>%
performance("tpr", "fpr") ->

te_rates

data_frame(tpr=attr(te_rates, "y.values")[[1]],
fpr=attr(te_rates, "x.values")[[1]]) %>%

ggplot(aes(fpr, tpr)) +
geom_line() +
annotate("text", x=0.875, y=0.125, vjust=0,

label=paste("AUC =", percent(te_auc))) +
labs(title="ROC Curve - " %s+% mtype %s+% " - Test Dataset",

x="False Positive Rate (1-Specificity)",
y="True Positive Rate (Sensitivity)")

riskchart(te_prob, te_target, te_risk) +
labs(title="Risk Chart - " %s+%

mtype %s+%
" - Validation Dataset") +

theme(plot.title=element_text(size=14))

Comparison of Performance Measures 209

0.14.0 3.0 2.09.0 8.0 7.0 6.0 5.0
Risk Scores

23%
1

2

3

4

Lift

0

20

40

60

80

100

0 20 40 60 80 100

Caseload (%)

Pe
rf

or
m

an
ce

 (%
)

Recall (79%) Risk (83%) Precision

Risk Chart - rpart - Validation Dataset

Rattle 2017-July-02 12:00:00 gjw

Figure 7.8: A risk chart for the testing dataset.

7.6 Comparison of Performance Measures
To wrap up our modelling we present, for a chosen model (m_rp01,
for example), the various performance measures we have captured.
Do note again that there are many other measures of performance
that we can add into our modelling scripts but we choose these
basics here as the starting point. Note also that we compute all
of the performance measures for the three datasets based on the
final model we built. The results can be seen in Table 7.1.

Table 7.1: Performance measures for decision tree model.
Acc Err TN FP FN TP No Yes AUC Re Pr Fs

Tr 88 12 75 3 9 13 4 41 86 59 82 68
Va 84 16 73 5 11 11 6 51 82 49 68 57
Te 83 17 72 5 11 11 7 50 83 50 68 57

210 7 A Pattern for Predictive Modelling

7.7 Save the Model to File
Having completed our modelling (or even whilst we are iterating
over model builds) we will want to save the model to file, together
with a link to the dataset used. As with the data template we store
our results into a binary R file that collects together the relevant
variables in a compressed format that we can readily load into R
at another time.

Save model into a appropriate folder.

fpath <- "models"

Timestamp for the dataset - this is the general approach.

mdate <- format(Sys.Date(), "%Y%m%d")

Use a fixed timestamp to name our file for convenience.

mdate <- "20170702"

Filename for the saved dataset.

mfile <- sprintf("%s_%s_%s.RData", dsname, mtype, mdate)

Full path to the dataset.

fpath %>%
file.path(mfile) %T>%
print() ->

mrdata

[1] "models/weatherAUS_rpart_20170702.RData"

Ensure the path exists.

if (! dir.exists(fpath)) dir.create(fpath)

Save relevant R objects to the binary RData file.

save(dsrdata,
tr_class, tr_prob, tr_acc, tr_err, tr_auc,

Save the Model to File 211

tr_matrix, tr_rec, tr_pre, tr_fsc,
va_class, va_prob, va_acc, va_err, va_auc,
va_matrix, va_rec, va_pre, va_fsc,
te_class, te_prob,te_acc, te_err, te_auc,
te_matrix, te_rec, te_pre, te_fsc,
model, mtype, mdesc,
file=mrdata)

Notice that we save the file name of the binary RData file
containing the dataset we used to build the model (dsrdata) so
that we can tie the original dataset to the model.

Check the resulting file size in bytes.

file.size(mrdata) %>% comma()

[1] "2,759,759"

The dataset, its metadata and the model are now stored
in models/weatherAUS_rpart_20170702.RData. We can load this
into R at a later time and replicate the generic process we have
illustrated in this chapter.

load(mrdata) %>% print()

[1] "dsrdata" "tr_class" "tr_prob" "tr_acc"
[5] "tr_err" "tr_auc" "tr_matrix" "tr_rec"
[9] "tr_pre" "tr_fsc" "va_class" "va_prob"
[13] "va_acc" "va_err" "va_auc" "va_matrix"
[17] "va_rec" "va_pre" "va_fsc" "te_class"
[21] "te_prob" "te_acc" "te_err" "te_auc"
....

Note that by using generic variable names we can load differ-
ent model files and perform common operations on them without
changing the names within a script. However, do note that each
time we load such a saved model file we overwrite any other vari-
ables of the same name.

212 7 A Pattern for Predictive Modelling

7.8 A Template for Predictive Modelling
As we did in Chapter 3 throughout this chapter we have worked
towards constructing a standard template for ourselves for a pre-
dictive modelling report. The template will provide a useful start-
ing point for any predictive modelling.

A template based on this chapter for predictive modelling is
available from https://essentials.togaware.com. As with the
data template these templates will continue to be refined over time
and will incorporate improvements and advanced techniques that
go beyond what has been presented here.

7.9 Exercises

Exercise 7.1 Alternative Modellers
1. Replicate the model template as available from https://

essentials.togaware.com using the WeatherAUS dataset.

2. Extend the instantiated template above by repeating the model
build using alternative algorithms, including at least logistic
regression and support vector machine.

3. Identify the knowledge, if any, gained from the newly built
models.

4. Evaluate the performance of the new models and compare and
contrast with the performance of the decision tree model.

5. Produce a report to share the new narrative and knowledge
discovered.

https://essentials.togaware.com
https://essentials.togaware.com
https://essentials.togaware.com

Exercises 213

Exercise 7.2 Binary Classification

1. Identify a dataset either from your own work experience, from
amongst the many available freely on the Internet, or from an
Internet competition site. The dataset would ideally include
both numeric and categoric data and will need to have a suit-
able target variable for classification, and preferably for binary
classification.

2. Using this dataset instantiate the data template available from
https://essentials.togaware.com to prepare the dataset
for predictive model building.

3. Using the dataset processed through the data template instan-
tiate the model template available from https://essentials.
togaware.com to build and evaluate a predictive model.

4. Produce a report to share the narrative, including the identific-
ation of the data source, the data wrangling performed, and the
model building, together with an exploration of the knowledge
you discover.

Exercise 7.3 Alternative Modellers

1. Extend the instantiated template developed above by repeating
the model build using alternative algorithms, including logistic
regression and support vector machine.

2. Identify the knowledge, if any, gained from the models built.

3. Include performance evaluation and compare to the decision
tree model.

4. Produce a report to share the new narrative and knowledge
discovered.

https://essentials.togaware.com
https://essentials.togaware.com
https://essentials.togaware.com

http://taylorandfrancis.com

8
Ensemble of Predictive Models

In Chapter 7 we presented a process for building, viewing, and
evaluating models. There we continued with the concept of a tem-
plate, introduced in Chapter 3, that captures through the use of
generic variables a repeatable process. We use the template as a
starting point for any new task. In this chapter we make use of the
model building template to illustrate the process with alternative
machine learning algorithms.

A decision tree is one of the simplest machine learning mod-
els and is particularly popular because we can present the model
to a domain expert and they will have a good chance of under-
standing the discovered knowledge. Other modelling approaches
are less accessible in terms of explaining the knowledge they have
discovered. Yet these other modelling approaches can deliver more
accurate models.

A concept of combining multiple models for multiple inductive
learning was found to result in increased predictive accuracy (Wil-
liams, 1987, 1988). This concept of ensembles of models remains
today as a powerful mechanism and has grown to such an extent
that almost all of the most accurate learners today are ensemble
based in some form.

In this chapter we introduce two popular and effective machine
learning algorithms which exhibit an ensemble approach. We par-
ticularly aim to repeat and reinforce the use of the template we
have developed for model building.

Packages used in this chapter include Matrix (Bates and
Maechler, 2017), ROCR (Sing et al., 2015), dplyr (Wickham et al.,
2017a), ggplot2 (Wickham and Chang, 2016), magrittr (Bache and
Wickham, 2014), randomForest (Breiman et al., 2015), rattle (Wil-
liams, 2017), scales (Wickham, 2016), stringi (Gagolewski et al.,

215

216 8 Ensemble of Predictive Models

2017), tibble (Müller and Wickham, 2017) and xgboost (Chen et al.,
2017).
Load required packages from the local library into R.

library(Matrix) # Wrangle: sparse.model.matrix().
library(ROCR) # Evaluate: prediction().
library(dplyr) # Wrangle: select()
library(ggplot2) # Visualise: performance.
library(magrittr) # Pipelines: %>% %T>% %<>%.
library(randomForest) # Model: randomForest() na.roughfix().
library(rattle) # Evaluate: riskchart(), comcat().
library(scales) # Formats: percent()
library(stringi) # Strings: %s+%.
library(tibble) # Data: as_data_frame()
library(xgboost) # Models: extreme gradient boosting.

8.1 Loading the Dataset
The starting point for model building is to load the dataset we
carefully crafted and saved in Chapter 3.
Build the filename used to previously store the data.

fpath <- "data"
dsname <- "weatherAUS"
dsdate <- "_20170702"
dsfile <- dsname %s+% dsdate %s+% ".RData"

fpath %>%
file.path(dsfile) %T>%
print() ->

dsrdata

[1] "data/weatherAUS_20170702.RData"

Load the R objects from file and list them.

load(dsrdata) %>% print()

[1] "ds" "dsname" "dspath" "dsdate"
[5] "nobs" "vars" "target" "risk"

Random Forest 217

[9] "id" "ignore" "omit" "inputi"
[13] "inputs" "numi" "numc" "cati"
[17] "catc" "form" "seed" "train"
[21] "validate" "test" "tr_target" "tr_risk"
....

A quick review should tell us that the dataset appears to load
just fine and matches our expectations for modelling.

8.2 Random Forest
A random forest is an example of an ensemble model that can
significantly improve the classification accuracy over a decision
tree. The random forest algorithm samples the training dataset
multiple times, each being used to build a decision tree. Subsets of
the variables within the training dataset are also randomly chosen
in building each of the decision trees.

The random forest algorithm is implemented in R as
randomForest::randomForest(). Below we build a default ran-
dom forest, with 500 trees, and then deploy our template to eval-
uate the model performance.

We note this particular implementation of the random forest
algorithm does not handle missing values for any of the variables
in any observation and so we use randomForest::na.roughfix()
as the value for the na.action= to impute missing values (which is
not always appropriate). We also add an option to ask for measures
of the importance= of the variables to be calculated and returned
by the function.

Train a random forest model.

m_rf <- randomForest(form,
data=ds[train, vars],
na.action=na.roughfix,
importance=TRUE)

Having built our model we copy it to our template generic
variables and the remainder of the evaluation will be the same as
for any model.

218 8 Ensemble of Predictive Models

Initialise generic variables.

model <- m_rf
mtype <- "randomForest"
mdesc <- "random forest"

Basic model structure.

model

##
Call:
randomForest(formula=form, data=ds[train, vars], impo...
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4
##
OOB estimate of error rate: 14.44%
Confusion matrix:
no yes class.error
no 69704 3395 0.04644386
yes 10232 11012 0.48164188

We now have 500 decision trees forming the ensemble model.
It is generally not possible to visualise all 500 trees. To get some
insight into the discovered knowledge behind the model we can
review the variable importance plots using rattle::ggVarImp().
Two measures are generated, one using a gini calculation and the
other based on accuracy. The relative importance of a variable
with respect to each of the predicted classes is also provided. See
Figure 8.1.

Review variable importance.

ggVarImp(model, log=TRUE)

Now we are ready to review the performance of the model. We
do so using the validation dataset.

Predict on the validation dataset.

model %>%

Random Forest 219

no yes

MeanDecreaseAccuracy MeanDecreaseGini

10
1000 10

1000

cluster
season

rain_today
cloud_9am

evaporation
wind_dir_9am
wind_gust_dir

cloud_3pm
wind_dir_3pm

wind_speed_9am
wind_speed_3pm

min_temp
sunshine

max_temp
rainfall

humidity_9am
wind_gust_speed

pressure_9am
humidity_3pm

cluster
season

rain_today
cloud_9am

evaporation
wind_dir_9am
wind_gust_dir

cloud_3pm
wind_dir_3pm

wind_speed_9am
wind_speed_3pm

min_temp
sunshine

max_temp
rainfall

humidity_9am
wind_gust_speed

pressure_9am
humidity_3pm

Relative Importance

Variable Importance

Rattle 2017-07-20 12:00 gjw

Figure 8.1: Random forest variable importance.

predict(newdata=ds[validate, vars], type="prob") %>%
.[,2] %>%
set_names(NULL) %>%
round(2) %T>%
{head(., 20) %>% print()} ->

va_prob

[1] 0.88 0.02 0.05 0.11 0.04 NA 0.04 NA NA NA NA
[12] 0.09 NA 0.24 0.13 0.48 NA NA NA 0.23

model %>%
predict(newdata=ds[validate, vars], type="response") %>%
set_names(NULL) %T>%

220 8 Ensemble of Predictive Models

{head(., 20) %>% print()} ->
va_class

[1] yes no no no no <NA> no <NA> <NA> <NA> <NA>
[12] no <NA> no no no <NA> <NA> <NA> no
Levels: no yes

Notice that predictions are not made for observations with any
missing values for any of the input variables and thus the result is
NA. Consequently our formula for calculating the accuracy and er-
ror needs to be modified to cope with this by including na.rm= and
checking for missing values. Indeed we would update our template
appropriately to handle either scenarios (either complete data or
including missing data).

sum(va_class == va_target, na.rm=TRUE) %>%
divide_by(va_class %>% is.na() %>% not() %>% sum()) %T>%
{

percent(.) %>%
sprintf("Overall accuracy = %s\n", .) %>%

cat()
} ->

va_acc

Overall accuracy=86.7%

sum(va_class != va_target, na.rm=TRUE) %>%
divide_by(va_class %>% is.na() %>% not() %>% sum()) %T>%
{

percent(.) %>%
sprintf("Overall error = %s\n", .) %>%

cat()
} ->

va_err

Overall error=13.3%

The overall accuracy is in line with that of the decision tree
model of Chapter 7.

Random Forest 221

Count of prediction versus actual as a confusion matrix.

errorMatrix(va_target, va_class, count=TRUE)

Predicted
Actual no yes Error
no 6185 300 4.6
yes 795 933 46.0

Comparison as percentages of all observations.

errorMatrix(va_target, va_class) %T>%
print() ->

va_matrix

Predicted
Actual no yes Error
no 75.3 3.7 4.6
yes 9.7 11.4 46.0

va_matrix %>%
diag() %>%
sum(na.rm=TRUE) %>%
subtract(100, .) %>%
sprintf("Overall error percentage = %s%%\n", .) %>%
cat()

Overall error percentage=13.3%

va_matrix[,"Error"] %>%
mean(na.rm=TRUE) %>%
sprintf("Averaged class error percentage = %s%%\n", .) %>%
cat()

Averaged class error percentage=25.3%

AUC.

va_prob %>%
prediction(va_target) %>%
performance("auc") %>%
attr("y.values") %>%
.[[1]] %T>%
{

222 8 Ensemble of Predictive Models

percent(.) %>%
sprintf("Percentage area under the ROC curve = %s\n", .) %>%
cat()

} ->
va_auc

Percentage area under the ROC curve=90.1%

Recall, precision, and F-score.

va_rec <- (va_matrix[2,2]/(va_matrix[2,2]+va_matrix[2,1])) %T>%
{percent(.) %>% sprintf("Recall = %s\n", .) %>% cat()}

Recall=54%

va_pre <- (va_matrix[2,2]/(va_matrix[2,2]+va_matrix[1,2])) %T>%
{percent(.) %>% sprintf("Precision = %s\n", .) %>% cat()}

Precision=75.5%

va_fsc <- ((2 * va_pre * va_rec)/(va_rec + va_pre)) %T>%
{sprintf("F-Score = %.3f\n", .) %>% cat()}

F-Score=0.630

Rates for ROC curve.

va_prob %>%
prediction(va_target) %>%
performance("tpr", "fpr") %>%
print() ->

va_rates

An object of class "performance"
Slot "x.name":
[1] "False positive rate"
##
Slot "y.name":
[1] "True positive rate"
....

Figures 8.2 and 8.3 illustrate that out of the box (without any

Random Forest 223

AUC = 90.1%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

itiv
e

Ra
te

 (S
en

sit
ivi

ty
)

ROC - randomForest - Validation Dataset

Figure 8.2: ROC for random forest over validation dataset.

tuning of the algorithm) the random forest model performs quite
well.

data_frame(tpr=attr(va_rates, "y.values")[[1]],
fpr=attr(va_rates, "x.values")[[1]]) %>%

ggplot(aes(fpr, tpr)) +
geom_line() +
annotate("text", x=0.875, y=0.125, vjust=0,

label=paste("AUC =", percent(va_auc))) +
labs(title="ROC - " %s+% mtype %s+% " - Validation Dataset",

x="False Positive Rate (1-Specificity)",
y="True Positive Rate (Sensitivity)")

riskchart(va_prob, va_target, va_risk) +
labs(title="Risk Chart - " %s+%

mtype %s+%
" - Validation Dataset") +

theme(plot.title=element_text(size=14))

It is instructive to review the error matrix, the ROC curve,
and the risk chart using the training dataset. The basic evaluation
below, presenting just the output from the code rather than the

224 8 Ensemble of Predictive Models

0.13.0 2.06.0 5.0 4.09.0 8.0 7.0
Risk Scores

21%
1

2

3

4

Lift

0

20

40

60

80

100

0 20 40 60 80 100

Caseload (%)

Pe
rf

or
m

an
ce

 (%
)

Recall (91%) Risk (97%) Precision

Risk Chart - randomForest - Validation Dataset

Rattle 2017-July-02 12:00:00 gjw

Figure 8.3: Risk chart random forest validation dataset.

code itself, shows that we have a perfect model—the model per-
fectly predicts the observations it was trained on.

Performance evaluation random forest training dataset.
Overall accuracy=100%
Overall error=0%
Predicted
Actual no yes Error
no 29879 0 0
yes 0 8475 0
Predicted
Actual no yes Error
no 77.9 0.0 0
yes 0.0 22.1 0
Recall=100%
Precision=100%
F-Score=1.000
Percentage area under the ROC curve=100%

Figures 8.4 and 8.5 further confirm that the random forest
model is a perfect fit for the training dataset. As we noted in
Chapter 7 though, the performance on the training set is an op-
timistic estimate of how well the model will perform in general.

Random Forest 225

AUC = 100%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

itiv
e

Ra
te

 (S
en

sit
ivi

ty
)

ROC - randomForest - Training Dataset

Figure 8.4: Random forest ROC over training dataset.

The performance on the validation dataset above indicates a more
realistic estimate of how well the model will perform in general.

We similarly compute performance measures for the test data-
set to produce the summary presented in Table 8.1.

2.0 1.07.0 6.0 5.0 4.0 3.09.0 8.0
Risk Scores

22%
1

2

3

4

Lift

0

20

40

60

80

100

0 20 40 60 80 100

Caseload (%)

Pe
rf

or
m

an
ce

 (%
)

Recall (100%) Risk (102%) Precision

Risk Chart - randomForest - Training Dataset

Rattle 2017-July-02 12:00:00 gjw

Figure 8.5: Random forest risk chart over training dataset.

226 8 Ensemble of Predictive Models

Performance evaluation random forest test dataset.
Overall accuracy=86%
Overall error=14%
Predicted
Actual no yes Error
no 6027 312 4.9
yes 838 1013 45.3
Predicted
Actual no yes Error
no 73.6 3.8 4.9
yes 10.2 12.4 45.3
Recall=54.9%
Precision=76.5%
F-Score=0.639
Percentage area under the ROC curve=89.8%

Table 8.1: Performance measures for the random forest model.
Acc Err TN FP FN TP No Yes AUC Re Pr Fs

Tr 100 0 78 0 0 22 0 0 100 100 100 100
Va 87 13 75 4 10 11 5 46 90 54 76 63
Te 86 14 74 4 10 12 5 45 90 55 76 64

As always it is a good idea to now save the performance data
and the model for future reference.

Save model into an appropriate folder.

fpath <- "models"

Timestamp for the dataset - this is the general approach.

mdate <- format(Sys.Date(), "%Y%m%d")

Use a fixed timestamp to name our file for convenience.

mdate <- "20170702"

Filename for the saved dataset.

mfile <- sprintf("%s_%s_%s.RData", dsname, mtype, mdate)

Extreme Gradient Boosting 227

Full path to the dataset.

fpath %>%
file.path(mfile) %T>%
print() ->

mrdata

[1] "models/weatherAUS_randomForest_20170702.RData"

Ensure the path exists.

if (! dir.exists(fpath)) dir.create(fpath)

Save relevant R objects to the binary RData file.

save(dsrdata,
tr_class, tr_prob, tr_acc, tr_err, tr_auc,
tr_matrix, tr_rec, tr_pre, tr_fsc,
va_class, va_prob, va_acc, va_err, va_auc,
va_matrix, va_rec, va_pre, va_fsc,
te_class, te_prob,te_acc, te_err, te_auc,
te_matrix, te_rec, te_pre, te_fsc,
model, mtype, mdesc,
file=mrdata)

Check the resulting file size in bytes.

file.size(mrdata) %>% comma()

[1] "61,781,151"

Notice that this file size is considerably larger than that for
the decision tree in Chapter 7. A random forest model consists of
many decision trees.

8.3 Extreme Gradient Boosting
A very popular algorithm for building an ensemble of decision trees
in parallel uses an approach known as extreme gradient boosting. It
is implemented and made available in R as xgboost::xgboost().

228 8 Ensemble of Predictive Models

The concept of the algorithm is to build a series of decision
trees, each attempting to boost its performance on the mis-
classified observations of the previous decision tree. We then have
an ensemble of trees which each predict and are combined through
a weighted aggregation to calculate the final prediction.

The algorithm accepts only numeric data and so categoric vari-
ables need to be converted to numeric. We do this using an ap-
proach where each value of a categoric variable is turned into a
variable itself. Then for any observation these variables are all 0
except for that which corresponds to the value of the original vari-
able which is 1.

We can use Matrix::sparse.model.matrix() to perform
this operation and build a sparse dataset structure suitable for
xgboost::xgboost(). In the following code we especially identify
the target variable in the formula to ignore it in the resulting sparse
matrix. Notice also that for illustrative purposes we impute miss-
ing values in our dataset using randomForest::na.roughfix().

formula(target %s+% "~ .-1") %>%
sparse.model.matrix(data=ds[vars] %>% na.roughfix()) %T>%
{dim(.) %>% print()} %T>%
{head(.) %>% print()} ->

sds

[1] 134776 67
6 x 67 sparse Matrix of class "dgCMatrix"

[[suppressing 67 column names 'min_temp', 'max_temp',
'rainfall' ...]]

##
1 13.4 22.9 0.6 4.8 8.5 1 . . . 44
2 7.4 25.1 . 4.8 8.5 1 . . 44
3 12.9 25.7 . 4.8 8.5 1 46
4 9.2 28.0 . 4.8 8.5 . . 1 24
5 17.5 32.3 1.0 4.8 8.5 1 . . . 41
....

Notice the dimensions of the resulting sparse matrix and in
particular the 67 columns. Multiple new variables have been in-
troduced to replace each of the categoric variables.

Extreme Gradient Boosting 229

We also need a vector to record the values of the target variable.
Note that our dataset is an extended tbl data frame and so we need
to extract the column into a vector using base::unlist(). The
target variable is a binary variable (having just two values) and so
we turn this into a Boolean.

ds[target] %>%
unlist(use.names=FALSE) %>%
equals("yes") %T>%
{head(., 20) %>% print()} ->

label

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[10] FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
[19] FALSE FALSE

We are now ready to build a model using the extreme gradient
boosting algorithm. We set the maximum number of iterations
(i.e., number of trees) as nrounds=100 and note that we wish to
build a binary logistic model.

Train an extreme gradient boosting model.

m_xg <- xgboost(data=sds[train,],
label=label[train],
nrounds=100,
print_every_n=15,
objective="binary:logistic")

[1] train-error:0.157680
[16] train-error:0.142194
[31] train-error:0.136481
[46] train-error:0.129835
[61] train-error:0.124832
[76] train-error:0.118567
[91] train-error:0.114105
[100] train-error:0.111784

For print_every_n=15 iterations the decreasing error rate is
reported.

As usual we copy the model to our template generic variables
to minimally change any of the following evaluation code.

230 8 Ensemble of Predictive Models

Initialise generic variables.

model <- m_xg
mtype <- "xgboost"
mdesc <- "extreme gradient boosting"

Basic model information.

model

xgb.Booster
raw: 363.8 Kb
call:
xgb.train(params=params, data=dtrain, nrounds=nrou...
watchlist=watchlist, verbose=verbose, print_every_...
early_stopping_rounds=early_stopping_rounds, maximiz...
save_period=save_period, save_name=save_name, xgb_...
callbacks=callbacks, objective="binary:logistic")
params (as set within xgb.train):
objective="binary:logistic", silent="1"
xgb.attributes:
niter
callbacks:
cb.print.evaluation(period=print_every_n)
cb.evaluation.log()
cb.save.model(save_period=save_period, save_name=sav...
niter: 100
evaluation_log:
iter train_error
1 0.157680
2 0.155221

99 0.112059
100 0.111784

With 100 trees it is not generally feasible to print every tree to
review the discovered knowledge. Indeed, even in studying every
tree the complexity of how the decisions from each tree are com-
bined makes it rather difficult to finely understand the details.
And so the variable importance plot will again provide insight into
the discovered knowledge. The plot reports on what the algorithm
identifies as the relative importance of the input variables. For xg-
boost the variable names are not stored with the model itself so

Extreme Gradient Boosting 231

wind_dir_3pm^9

clusterarea2

clusterarea3

cloud_9am

wind_dir_9am.L

wind_dir_9am.Q

evaporation

wind_dir_3pm.L

wind_speed_9am

wind_speed_3pm

wind_dir_3pm.Q

humidity_9am

cloud_3pm

max_temp

min_temp

rainfall

pressure_9am

sunshine

wind_gust_speed

humidity_3pm

0.0 0.1 0.2 0.3 0.4

Relative Importance

Extreme Gradient Boost Variable Importance

Rattle 2017-07-20 12:00 gjw

Figure 8.6: Extreme gradient boosting variable importance.

we need to pass them along to rattle::ggVarImp(). Also since
there are a large number of variables (having turned each cat-
egoric value into a variable) we only display the top 20 variables.
Figure 8.6 contains a similar analysis of variable importance as we
have previously seen.

Review variable importance.

ggVarImp(model, feature_names=colnames(sds), n=20)

The stats::predict() function for the xgboost model re-
turns the probabilities. In the following code block we record the

232 8 Ensemble of Predictive Models

probabilities and then convert them to a decision with a 0.50
threshold.

Predict on the validate dataset.

model %>%
predict(newdata=sds[validate,]) %>%
set_names(NULL) %>%
round(2) %T>%
{head(., 20) %>% print()} ->

va_prob

[1] 0.94 0.03 0.03 0.07 0.03 0.26 0.02 0.68 0.32 0.56 0.22
[12] 0.06 0.02 0.16 0.11 0.56 0.20 0.06 0.06 0.22

va_prob %>%
is_greater_than(0.5) %>%
ifelse("yes", "no") %T>%
{head(., 20) %>% print()} ->

va_class

[1] "yes" "no" "no" "no" "no" "no" "no" "yes" "no"
[10] "yes" "no" "no" "no" "no" "no" "yes" "no" "no"
[19] "no" "no"

The remainder of our evaluation is the same as per the generic
template.

sum(va_class == va_target, na.rm=TRUE) %>%
divide_by(va_class %>% is.na() %>% not() %>% sum()) %T>%
{

percent(.) %>%
sprintf("Overall accuracy = %s\n", .) %>%

cat()
} ->

va_acc

Overall accuracy=85.3%

sum(va_class != va_target, na.rm=TRUE) %>%
divide_by(va_class %>% is.na() %>% not() %>% sum()) %T>%
{

percent(.) %>%
sprintf("Overall error = %s\n", .) %>%

Extreme Gradient Boosting 233

cat()
} ->

va_err

Overall error=14.7%

Count of prediction versus actual as a confusion matrix.

errorMatrix(va_target, va_class, count=TRUE)

Predicted
Actual no yes Error
no 14846 894 5.7
yes 2074 2402 46.3

Comparison as percentages of all observations.

errorMatrix(va_target, va_class) %T>%
print() ->

va_matrix

Predicted
Actual no yes Error
no 73.4 4.4 5.7
yes 10.3 11.9 46.3

va_matrix %>%
diag() %>%
sum(na.rm=TRUE) %>%
subtract(100, .) %>%
sprintf("Overall error percentage = %s%%\n", .) %>%
cat()

Overall error percentage=14.7%

va_matrix[,"Error"] %>%
mean(na.rm=TRUE) %>%
sprintf("Averaged class error percentage = %s%%\n", .) %>%
cat()

Averaged class error percentage=26%

234 8 Ensemble of Predictive Models

AUC.

va_prob %>%
prediction(va_target) %>%
performance("auc") %>%
attr("y.values") %>%
.[[1]] %T>%
{

percent(.) %>%
sprintf("Percentage area under the ROC curve = %s\n", .) %>%
cat()

} ->
va_auc

Percentage area under the ROC curve=88.2%

Recall, precision, and F-score.

va_rec <- (va_matrix[2,2]/(va_matrix[2,2]+va_matrix[2,1])) %T>%
{percent(.) %>% sprintf("Recall = %s\n", .) %>% cat()}

Recall=53.6%

va_pre <- (va_matrix[2,2]/(va_matrix[2,2]+va_matrix[1,2])) %T>%
{percent(.) %>% sprintf("Precision = %s\n", .) %>% cat()}

Precision=73%

va_fsc <- ((2 * va_pre * va_rec)/(va_rec + va_pre)) %T>%
{sprintf("F-Score = %.3f\n", .) %>% cat()}

F-Score=0.618

Rates for ROC curve.

va_prob %>%
prediction(va_target) %>%
performance("tpr", "fpr") %>%
print() ->

va_rates

An object of class "performance"
Slot "x.name":
[1] "False positive rate"
##
Slot "y.name":
[1] "True positive rate"
....

Extreme Gradient Boosting 235

AUC = 88.2%

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

itiv
e

Ra
te

 (S
en

sit
ivi

ty
)

ROC - xgboost - Validation Dataset

Figure 8.7: ROC for extreme gradient boosting.

Figures 8.7 and 8.8 illustrate that out of the box (without any
tuning of the algorithm) the model performs quite well.

data_frame(tpr=attr(va_rates, "y.values")[[1]],
fpr=attr(va_rates, "x.values")[[1]]) %>%

ggplot(aes(fpr, tpr)) +
geom_line() +
annotate("text", x=0.875, y=0.125, vjust=0,

label=paste("AUC =", percent(va_auc))) +
labs(title="ROC - " %s+% mtype %s+% " - Validation Dataset",

x="False Positive Rate (1-Specificity)",
y="True Positive Rate (Sensitivity)")

riskchart(va_prob, va_target, va_risk) +
labs(title="Risk Chart - " %s+%

mtype %s+%
" - Validation Dataset") +

theme(plot.title=element_text(size=14))

Overall the performance is on par with the random forest. It
should be noted that we have not done any model tuning for either
the random forest or the extreme gradient boosting. Typically this

236 8 Ensemble of Predictive Models

0.13.0 2.06.0 5.0 4.09.0 8.0 7.0
Risk Scores

22%
1

2

3

4

Lift

0

20

40

60

80

100

0 20 40 60 80 100

Caseload (%)

Pe
rf

or
m

an
ce

 (%
)

Recall (90%) Risk (96%) Precision

Risk Chart - xgboost - Validation Dataset

Rattle 2017-July-02 12:00:00 gjw

Figure 8.8: Risk chart for extreme gradient boosting.

is our starting point for now tuning the algorithm to target the
best performing model.

As per our template we now repeat the performance evalu-
ation on both the training and the testing datasets. Recall that
the training dataset will provide an optimistic estimate and the
testing dataset is used once we have finished tuning the model
build to gauge how the model will perform with new unseen data.

Performance evaluation extreme gradient boosting training ...
Overall accuracy=88.8%
Overall error=11.2%
Predicted
Actual no yes Error
no 70599 2500 3.4
yes 8074 13170 38.0
Predicted
Actual no yes Error
no 74.8 2.6 3.4
yes 8.6 14.0 38.0
Recall=61.9%
Precision=84.3%
F-Score=0.714
Percentage area under the ROC curve=93.2%

Extreme Gradient Boosting 237

Performance evaluation extreme gradient boosting test data...
Overall accuracy=85.2%
Overall error=14.8%
Predicted
Actual no yes Error
no 14773 881 5.6
yes 2103 2460 46.1
Predicted
Actual no yes Error
no 73.1 4.4 5.6
yes 10.4 12.2 46.1
Recall=54%
Precision=73.5%
F-Score=0.622
Percentage area under the ROC curve=88.2%

Table 8.2: Performance measures extreme gradient boosting
Acc Err TN FP FN TP No Yes AUC Re Pr Fs

Tr 89 11 75 3 9 14 3 38 93 62 84 71
Va 85 15 73 4 10 12 6 46 88 54 73 62
Te 85 15 73 4 10 12 6 46 88 54 74 62

As always it is a good idea to now save the performance data
and model for future reference.

Save model into an appropriate folder.

fpath <- "models"

Timestamp for the dataset - this is the general approach.

mdate <- format(Sys.Date(), "%Y%m%d")

Use a fixed timestamp to name our file for convenience.

mdate <- "20170702"

Filename for the saved dataset.

mfile <- sprintf("%s_%s_%s.RData", dsname, mtype, mdate)

238 8 Ensemble of Predictive Models

Full path to the dataset.

fpath %>%
file.path(mfile) %T>%
print() ->

mrdata

[1] "models/weatherAUS_xgboost_20170702.RData"

Ensure the path exists.

if (! dir.exists(fpath)) dir.create(fpath)

Save relevant R objects to the binary RData file.

save(dsrdata,
tr_class, tr_prob, tr_acc, tr_err, tr_auc,
tr_matrix, tr_rec, tr_pre, tr_fsc,
va_class, va_prob, va_acc, va_err, va_auc,
va_matrix, va_rec, va_pre, va_fsc,
te_class, te_prob,te_acc, te_err, te_auc,
te_matrix, te_rec, te_pre, te_fsc,
sds, model, mtype, mdesc,
file=mrdata)

Check the resulting file size in bytes.

file.size(mrdata) %>% comma()

[1] "18,918,360"

Notice the file size. We are also saving the sparse matrix version
of the dataset along with the model and performance parameters.

Exercises 239

8.4 Exercises

Exercise 8.1 Ensemble Modellers
1. Using the dataset identified for the exercises in Chapter 7

instantiate the model template available from https://
essentials.togaware.com to build and evaluate a predictive
model.

2. Produce a report to share the narrative of the model build,
together with an exploration and discussion of the knowledge
you discover.

Exercise 8.2 Deep Neural Networks
Deep neural networks are essentially an ensemble of a massive
number of numeric computational nodes connected to flow data
through a network to make a prediction.

1. For the same dataset identified for the exercises in Chapter 7 in-
stantiate the model template to build and evaluate a predictive
model using a deep neural network algorithm.

2. Produce a report to share the narrative of the model build,
together with an exploration and discussion of any knowledge
you discover.

https://essentials.togaware.com
https://essentials.togaware.com

http://taylorandfrancis.com

9
Writing Functions in R

Over the preceding chapters we have repeatedly run a series of
codes to perform an evaluation of the models we have built. The
same code is repeated identically each time. The DRY (don’t re-
peat yourself) principle of software engineering encourages us to
recognise this as bad practise. Instead, all programming languages
provide mechanisms to avoid this and in the end to produce more
readily transparent, reproducible and efficient code.

In R as in many programming languages we can define our own
functions. Chapter 2 introduced the concept of functions and we
have seen small helper functions defined in previous chapters. Here
we will create a function for ourselves. Our function will perform
the evaluations presented in the preceding chapters.

Packages used in this chapter include ROCR (Sing et al., 2015),
magrittr (Bache and Wickham, 2014), randomForest (Breiman
et al., 2015), rattle (Williams, 2017), scales (Wickham, 2016) and
stringi (Gagolewski et al., 2017).

Load required packages from the local library into R.

library(ROCR) # Evaluate: prediction().
library(magrittr) # Pipelines: %>% %T>% %<>%.
library(randomForest) # Model: randomForest() na.roughfix().
library(rattle) # Data: weatherAUS.
library(scales) # Formats: percent()
library(stringi) # Strings: %s+%.

241

242 9 Writing Functions in R

9.1 Model Evaluation
We will use the random forest model to illustrate and begin by
loading the data and the model. We won’t repeat the code here
but report the output.

[1] "data/weatherAUS_20170702.RData"
[1] "ds" "dsname" "dspath" "dsdate"
[5] "nobs" "vars" "target" "risk"
[9] "id" "ignore" "omit" "inputi"
[13] "inputs" "numi" "numc" "cati"
[17] "catc" "form" "seed" "train"
[21] "validate" "test" "tr_target" "tr_risk"
....
[1] "models/weatherAUS_randomForest_20170702.RData"
[1] "dsrdata" "tr_class" "tr_prob" "tr_acc"
[5] "tr_err" "tr_auc" "tr_matrix" "tr_rec"
[9] "tr_pre" "tr_fsc" "va_class" "va_prob"
[13] "va_acc" "va_err" "va_auc" "va_matrix"
[17] "va_rec" "va_pre" "va_fsc" "te_class"
[21] "te_prob" "te_acc" "te_err" "te_auc"
....

We can then perform an evaluation of the performance of the
model. We repeat below the evaluation using the test dataset,
showing only the output since we have previously seen the code.

Performance evaluation random forest test dataset.
Overall accuracy=86%
Overall error=14%
Predicted
Actual no yes Error
no 6028 311 4.9
yes 839 1012 45.3
Predicted
Actual no yes Error
no 73.6 3.8 4.9
yes 10.2 12.4 45.3
Recall=54.9%
Precision=76.5%
F-Score=0.639
Percentage area under the ROC curve=89.8%

Creating a Function 243

In reviewing the previous code block we will note that the
code produces both output and stores results into variables. We
will want to do the same with the function that we write.

9.2 Creating a Function
As was emphasised in Chapter 2 in introducing the concept of
building a pipeline, or building a plot, a function can generally be
incrementally built as we need it. We often begin with a simple
function and grow it from there. With experience we will more
carefully design our functions before we start writing them.

9.2.1 Initial Messaging

We begin here with a simple function to initially print a message
as in our above script.

perf <- function()
{

Provide informative introduction.

sprintf("Performance evaluation %s test dataset.\n",mdesc) %>%
cat()

}

Once we have defined the function we can call it directly.

perf()

Performance evaluation random forest test dataset.

Immediately we notice that the printed title refers to just the
random forest model and the test dataset. Both of these vary each
time we conduct a performance evaluation. They are parameters of
the performance evaluation and so we need a mechanism to change
them each time the function is called.

In fact we might notice that the variable mdesc is already being
used within the base::sprintf() and so we can simply change
the value of that variable and call the function again.

244 9 Writing Functions in R

mdesc <- "some fancy predictive model"
perf()

Performance evaluation some fancy predictive model test da...

That works! Noting that the dataset is also changing from one
call to perf() to the next we might create a variable for that.

perf <- function()
{

Provide informative introduction.

sprintf("Performance evaluation %s %s dataset.\n",
mdesc, dstype) %>%

cat()
}

mdesc <- "random forest"
dstype <- "test"
perf()

Performance evaluation random forest test dataset.

So far so good, though we seem to be making changes to vari-
ables (mdesc and dstype) that could have impact on other parts
of our code later on that also use these same variables. These are
referred to as global variables since they are globally accessible—
across all of our code. We can also modify the variables within the
function and they will have any such new values globally. We have
learnt over many decades of experience that using global variables,
and especially changing the values of global variables within func-
tions, can make our code difficult to understand and can lead to
serious bugs.

Instead of relying on global variables a function allows us to
pass variables in as arguments to the function call. This is the
usual mechanism we use to pass data to functions.

perf <- function(mdesc, dstype)
{

Provide informative introduction.

Creating a Function 245

sprintf("Performance evaluation %s %s dataset.\n",
mdesc, dstype) %>%

cat()
}

perf("my favourite predictive model", "specially tuned")

Performance evaluation my favourite predictive model speci...

Notice we can provide the values as part of the function call as
string literals.

We can alternatively use previously defined variables, even of
the same name. In this case the variables named within the func-
tion will have no relationship to these named variables passed as
arguments except the value will be passed into the function and
assigned to the local version of the variable. Their values will be
provided to the variables internal to the function. Any changes
made to the variables within the function will remain within the
function. The global variables wil not be affected.

perf(mdesc, dstype)

Performance evaluation random forest test dataset.

We may even be using very differently named variables to pass
the data into the function.

model_description <- "random forest"
dataset_type <- "training dataset"
perf(model_description, dataset_type)

Performance evaluation random forest training dataset data...

Finally, perhaps we now prefer to “improve” the messaging.
A single change to our function will effect the change for every
instance of its use.

perf <- function(mdesc, dstype)
{

Provide informative introduction.

246 9 Writing Functions in R

"Performance Evaluation\n" %s+%
"======================\n\n" %s+%
"Model: " %s+% mdesc %s+% "\n" %s+%
"Dataset: " %s+% dstype %s+% "\n" %>%
cat()

}
perf(mdesc, dstype)

Performance Evaluation
======================
##
Model: random forest
Dataset: test

Imagine the effort required if we wanted to use this new format
and had to go back through the code in the previous chapters
where we have presented the model performance. We would need
to make the change at least a dozen times! If we had been using this
function all along, then no change would have been required there
at all—only the function definition would need to be changed.

There is one final refinement to the messaging from our func-
tion. We might not want to always print out the messages so we
introduce a verbose= option which for now we choose to be TRUE
by default. Messages are only printed if verbose=TRUE.

perf <- function(mdesc, dstype, verbose=TRUE)
{

Provide informative introduction.

if (verbose)
"Performance Evaluation\n" %s+%
"======================\n\n" %s+%
"Model: " %s+% mdesc %s+% "\n" %s+%
"Dataset: " %s+% dstype %s+% "\n" %>%
cat()

}
perf(mdesc, dstype, verbose=FALSE)

Creating a Function 247

9.2.2 Calculating Predictions

The next step is to calculate the predictions. We can review the
code used to do this and we will note that each model behaves
differently in generating predictions from new datasets. For now we
will decide to retain the prediction components of the evaluation
outside of our function and will pass the predictions themselves on
to the function. We add two more arguments to the function to
accept the predicted probabilities and the predicted classes.

perf <- function(mdesc, dstype, prob, class,
verbose=TRUE)

{
Provide informative introduction.

if (verbose)
"Performance Evaluation\n" %s+%
"======================\n\n" %s+%
"Model: " %s+% mdesc %s+% "\n" %s+%
"Dataset: " %s+% dstype %s+% " dataset with " %s+%
comma(length(prob)) %s+% " observations.\n" %>%
cat()

}

model %>%
predict(newdata=ds[test, vars], type="prob") %>%
.[,2] %>%
set_names(NULL) %>%
round(2) ->

te_prob

model %>%
predict(newdata=ds[test, vars], type="class") %>%
set_names(NULL) ->

te_class

perf(mdesc, dstype, te_prob, te_class)

Performance Evaluation
======================
##
Model: random forest
Dataset: test dataset with 20,217 observations.

248 9 Writing Functions in R

9.2.3 Accuracy

We now add the first of our evaluations and include some output
to report the results. We also expect some data to be returned
from the function which is achieved using base::return().

The first evaluation is a simple accuracy calculation. We will
compare the predicted class to the actual class (target) and so we
now need to also pass the target through to the function. The new
argument can be placed in any order but often we choose the order
carefully to make some logical sense.

perf <- function(mdesc, dstype, target, prob, class,
verbose=TRUE)

{
Provide informative introduction.

if (verbose)
"Performance Evaluation\n" %s+%
"======================\n\n" %s+%
"Model: " %s+% mdesc %s+% "\n" %s+%
"Dataset: " %s+% dstype %s+% " dataset with " %s+%
comma(length(prob)) %s+% " observations.\n" %>%
cat("\n")

Calculate accuracy and error rates.

sum(class == target, na.rm=TRUE) %>%
divide_by(class %>% is.na() %>% not() %>% sum()) ->

acc

sum(class != target, na.rm=TRUE) %>%
divide_by(class %>% is.na() %>% not() %>% sum()) ->

err

if (verbose)
"Overall accuracy: " %s+% percent(acc) %s+% "\n" %s+%
"Overall error: " %s+% percent(err) %s+% "\n" %>%
cat("\n")

Return a list of the evaluations.

return(list(acc=acc, err=err))
}

Creating a Function 249

perf(mdesc, dstype, te_target, te_prob, te_class)

Performance Evaluation
======================
##
Model: random forest
Dataset: test dataset with 20,217 observations.
##
Overall accuracy: 86%
Overall error: 14%
##
$acc
[1] 0.8599512
##
$err
[1] 0.1400488

The actual returned value is also printed after the function
call. If we prefer the results to be returned but not to be printed,
then we can use base::invisible() in place of base::return()
which we will do going forward.

9.2.4 Error Matrix

The error matrices come next. The first reports the observation
counts whilst the second is expressed as percentages.

perf <- function(mdesc, dstype, target, prob, class,
verbose=TRUE)

{
Provide informative introduction.

if (verbose)
"Performance Evaluation\n" %s+%
"======================\n\n" %s+%
"Model: " %s+% mdesc %s+% "\n" %s+%
"Dataset: " %s+% dstype %s+% " dataset with " %s+%
comma(length(prob)) %s+% " observations.\n" %>%
cat("\n")

Calculate accuracy and error rates.

sum(class == target, na.rm=TRUE) %>%

250 9 Writing Functions in R

divide_by(class %>% is.na() %>% not() %>% sum()) ->
acc

sum(class != target, na.rm=TRUE) %>%
divide_by(class %>% is.na() %>% not() %>% sum()) ->

err

if (verbose)
"Overall accuracy: " %s+% percent(acc) %s+% "\n" %s+%
"Overall error: " %s+% percent(err) %s+% "\n" %>%
cat("\n")

Generate error matricies.

matrix <- errorMatrix(target, class)

if (verbose)
{

cat("Error Matrices:\n\n")
errorMatrix(target, class, count=TRUE) %>% print()
cat("\n")
matrix %>% print()

}

Return a list of the evaluations.

invisible(list(acc=acc,
err=err,
matrix=matrix))

}

perf(mdesc, dstype, te_target, te_prob, te_class)

Performance Evaluation
======================
##
Model: random forest
Dataset: test dataset with 20,217 observations.
##
Overall accuracy: 86%
Overall error: 14%
##
Error Matrices:
##
Predicted

Creating a Function 251

Actual no yes Error
no 6028 311 4.9
yes 836 1015 45.2
##
Predicted
Actual no yes Error
no 73.6 3.8 4.9
yes 10.2 12.4 45.2

9.2.5 Performance

We now add in the remaining performance measures to complete
our function.

perf <- function(mdesc, dstype, target, prob, class,
verbose=TRUE)

{
Provide informative introduction.

if (verbose)
"Performance Evaluation\n" %s+%
"======================\n\n" %s+%
"Model: " %s+% mdesc %s+% "\n" %s+%
"Dataset: " %s+% dstype %s+% " dataset with " %s+%
comma(length(prob)) %s+% " observations.\n" %>%
cat("\n")

Calculate accuracy and error rates.

sum(class == target, na.rm=TRUE) %>%
divide_by(class %>% is.na() %>% not() %>% sum()) ->

acc

sum(class != target, na.rm=TRUE) %>%
divide_by(class %>% is.na() %>% not() %>% sum()) ->

err

if (verbose)
"Overall accuracy: " %s+% percent(acc) %s+% "\n" %s+%
"Overall error: " %s+% percent(err) %s+% "\n" %>%
cat("\n")

Generate error matricies.

252 9 Writing Functions in R

matrix <- errorMatrix(target, class)

if (verbose)
{

cat("Error Matrices:\n\n")
errorMatrix(target, class, count=TRUE) %>% print()
cat("\n")
matrix %>% print()
cat("\n")

}

Calculate recall, precision and F-score.

rec <- (matrix[2,2]/(matrix[2,2] + matrix[2,1]))
pre <- (matrix[2,2]/(matrix[2,2] + matrix[1,2]))
fsc <- ((2 * pre * rec)/(rec + pre))

if (verbose)
"Recall: " %s+% percent(rec) %s+% "\n" %s+%
"Precision: " %s+% percent(pre) %s+% "\n" %s+%
"F-Score: " %s+% round(fsc, 3) %s+% "\n" %>%
cat("\n")

Calculate AUC for the ROC curve.

prob %>%
prediction(target) %>%
performance("auc") %>%
attr("y.values") %>%
.[[1]] ->

auc

if (verbose)
"Percentage area under the ROC curve AUC: " %s+%

percent(auc) %>%
cat("\n")

prob %>%
prediction(target) %>%
performance("tpr", "fpr") ->

rates

Return a list of the evaluations.

Creating a Function 253

invisible(list(acc=acc,
err=err,
matrix=matrix,
rec=rec,
pre=pre,
auc=auc,
rates=rates))

}

m_rf_perf <- perf(mdesc, dstype, te_target, te_prob, te_class)

Performance Evaluation
======================
##
Model: random forest
Dataset: test dataset with 20,217 observations.
##
Overall accuracy: 86%
Overall error: 14%
##
Error Matrices:
##
Predicted
Actual no yes Error
no 6028 311 4.9
yes 836 1015 45.2
##
Predicted
Actual no yes Error
no 73.6 3.8 4.9
yes 10.2 12.4 45.2
##
Recall: 54.9%
Precision: 76.5%
F-Score: 0.639
##
Percentage area under the ROC curve AUC: 89.8%

254 9 Writing Functions in R

9.3 Function for ROC Curves
Another smaller piece of code we found ourselves repeating
throughout the previous chapters was the code for the ROC curve.
Here we package that code into a function having four arguments.
The first argument is the so-called rates generated through the
evaluation. This is effectively the x and y points for the ROC
curve. We also pass in the actual calculated value of the AUC and
then the two descriptive strings for the model and the dataset.

aucplot <- function(rates, auc, mdesc, dstype)
{

data.frame(tpr=attr(rates, "y.values")[[1]],
fpr=attr(rates, "x.values")[[1]]) %>%

ggplot(aes(fpr, tpr)) +
geom_line() +
labs(title="ROC - " %s+% mtype %s+% " - Training Dataset",

subtitle=paste("AUC =", percent(auc)),
x="False Positive Rate (1-Specificity)",
y="True Positive Rate (Sensitivity)")

}

aucplot(m_rf_perf$rates, m_rf_perf$auc, mdesc, dstype)

The resulting plot can be seen in Figure 9.1. Notice that we
do not have an explicit base::return() for the function. R auto-
matically returns the result of the last function within the function
as its return value. In this case we return the plot object. This is
useful in the case of ggplot objects since we can further add to the
plot outside of the function. Here for example we add a caption to
the plot.

aucplot(m_rf_perf$rates, m_rf_perf$auc, mdesc, dstype) +
labs(caption="Generated 2017-07-20")

Functions are a powerful concept and we will find many oppor-
tunities for writing functions.

Function for ROC Curves 255

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

AUC = 89.8%

ROC - randomForest - Training Dataset

Figure 9.1: ROC curve plotted using our own aucplot().

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate (1-Speci�city)

Tr
ue

 P
os

iti
ve

 R
at

e
(S

en
si

tiv
ity

)

AUC = 89.8%

ROC - randomForest - Training Dataset

Generated 2017-07-20

Figure 9.2: ROC curve with a caption.

256 9 Writing Functions in R

9.4 Exercises

Exercise 9.1 Variable Weights
Write a function to take a dataset and return a vector of probab-
ilities related to the correlation of a variable with the target, one
for each input variable in the dataset. Higher correlation will lead
to a higher probability.

R’s correlation functions can be used to calculate the correl-
ation between each column (variable) of the data frame and the
values of the target variable. Below are some hints.

n1 <- ds[["temp_3pm"]]
c1 <- ds[["wind_gust_dir"]]
t1 <- ds[[target]]

cor(as.numeric(n1), as.numeric(t1), use="pairwise.complete.obs")

[1] -0.1960651

cor(as.numeric(c1), as.numeric(t1), use="pairwise.complete.obs")

[1] 0.06100805

The template for the function is

varWeights <- function(ds, target)
{ ... }

The solution will produce the following output where the cor-
relations are mapped into probabilities between 0 and 1.

varWeights(ds, target)

date location min_temp
0.0021740132 0.0010802198 0.0170236723
max_temp rainfall evaporation
0.0356162094 0.0515446458 0.0265293351
sunshine wind_gust_dir wind_gust_speed
0.0984482796 0.0132820139 0.0502786994
....

10
Literate Data Science

A data scientist’s role is to tell the stories supported by the data
we are analysing. The narrative that we tell is one of our key
deliverables and as such we need our narrative to be well supported
by the data. In telling the narrative we would like the analysis to
be transparent, repeatable, and reproducible. We would like to
capture and share our activities to ensure the quality of our work
and for peer review. We will also find ourselves repeating our work
on other datasets in other scenarios and with other organisations.
Documenting what we do helps when we come back to the code
at a later time. Others will also want to reproduce our work and
we should do all we can to facilitate that process. In short, we
need to clearly communicate what we do so that we and others
can understand and can continue the journey.

A general rule of thumb tells us that we should spend about a
quarter of our time capturing what we have done—documenting
our projects. Even more important is to capture this as we are
doing the work rather than having the chore to write up our work
later on. This does present an overhead and risks interrupting the
flow of our work but the investment pays off longer term. Tools
are available that support the capture of our work with minimal
interruption to our work flow.

To support the narrative and to encourage our efforts to be
transparent, repeatable, and reproducible, we deploy the concept
of literate programming (Knuth, 1984). The concept is to in-
termix our narrative with the underlying analyses of the data (our
code) within the one document. By introducing the concept here
we aim to provide a solid foundation for the data scientist. We
won’t always have the time or the patience to deliver a carefully
crafted narrative telling the story derived from the data but we
should strive to do so.

257

258 10 Literate Data Science

We will use knitr (Xie, 2016) to support literate data science.
The package combines the document typesetting power of the free
and open source LATEX software with the statistical power of R.
Literate data science is also well supported by RStudio which is
able to process the source document into a beautifully formatted
PDF. This book is itself produced using knitr and LATEX.

LATEX is not the only option and indeed today many beginners
learn literate programming using markdown or R markdown as
supported by RStudio. From an R markdown document we can
create documents in a variety of other formats, including LATEX
and also interactive Jupyter Notebooks.

Packages used in this chapter include Hmisc (Harrell, 2017),
diagram (Soetaert, 2014), dplyr (Wickham et al., 2017a), ggplot2
(Wickham and Chang, 2016), magrittr (Bache and Wickham,
2014), rattle (Williams, 2017) and xtable (Dahl, 2016).

Load required packages from the local library into R session.

library(Hmisc) # Escape special LaTeX charaters.
library(diagram) # Produce a flowchart.
library(dplyr) # Data wrangling: tbl_df().
library(ggplot2) # Visualise data.
library(magrittr) # Pipelines for data processing: %>% %T>% %<>%.
library(rattle) # The weatherAUS dataset.
library(xtable) # Format R data frames as LaTeX tables.

In addition to these packages we also need to install the LATEX
software. LATEX is a typesetting markup language which combined
with knitr allows us to intermix R code with our narrative and to
program certain parts of the narrative using R. Like R, LATEX is
free and open source software and instructions for installing are
available from the LATEX Project.*

*https://latex-project.org

https://latex-project.org

Basic LATEX Template 259

10.1 Basic LATEX Template
LATEX is also a language for programming just like R. With LATEX
we program over words rather than program over data. It is what
we call a markup language and has its own collection of commands
that tell the LATEX software what to do. Within RStudio when we
create a new knitr document a skeleton of LATEX commands will
be automatically inserted into the document for us. From this
initial script we can readily produce well-formatted reports and
presentations.

Once we have a new text document with a filename extension
of .Rnw we will enter the LATEX commands intermixed with the
text of our narrative intermixed with the R commands performing
the data wrangling and the analyses.

In creating a new knitr document RStudio will insert the fol-
lowing template as the minimal LATEX markup.* We can see the
RStudio context in Figure 10.1. The file contains the following
minimal LATEX code.

\documentclass{article}

\begin{document}

\end{document}

Into this file we will begin entering the LATEX commands and
the text of our narrative and the R code. We enter text to describe
our project between the begin and end of the document and then
choose the Compile PDF button on the toolbar to generate a PDF
document.

LATEX provides an extensive collection of commands includ-
ing the basics to highlight text (for example, \bold{...} or
\italic{...}) and to create a list of items:

*In RStudio we create a new R Sweave document under the File menu. We
need to inform RStudio to use knitr which is a significantly more advanced
version of Sweave. Under the Tools menu choose Global Options and then
Sweave to set the Weave option to be knitr.

260 10 Literate Data Science

Figure 10.1: Creating a new R Sweave document in RStudio.

\begin{itemize}
\item Text for the \bold{first} item.
\item Text for the \italic{second} item.
\item ...
\end{itemize}

We will see many examples as we proceed through this chapter
and there are many guides to LATEX available on the Internet. Our
aim is to quickly be comfortable with using LATEX and not to let
it get in our way.

10.2 A Template for our Narrative
A basic template can be the starting point for any new project. We
provide a template here as a complete LATEX document. We can

A Template for our Narrative 261

Figure 10.2: Within the RStudio edit pane we are editing the LATEX
document. A click of the Compile PDF button will run knitr over
the document and then run the LATEX software to produce a PDF
document.

simply copy it into RStudio and begin creating a narrative.* Be sure
to save the file using the .Rnw filename extension to identify it as
an Sweave/knitr document. We can then generate a typeset PDF
document simply by clicking the Compile PDF button in RStudio.

In Figure 10.2 we see the interaction with RStudio showing the
template within the editor in the top left window pane. When we
have processed the document (compiled to PDF) we will see the
formatted document as in Figure 10.3.

The template is simply:

\documentclass[a4paper]{article}
\usepackage[british]{babel}
\begin{document}

\title{Project Report Template}
*The template is available from https://essentials.togaware.com.

https://essentials.togaware.com

262 10 Literate Data Science

Project Report Template
Graham Williams

2nd July 2017

1 Introduction
A paragraph or two introducing the project.

2 Business Problem
Describe discussions with client (business experts) and record decisions made
and shared understanding of the business problem.

3 Data Sources
Identify the data sources and discuss access with the data owners. Document
data sources, integrity, providence, and dates.

4 Data Preparation
Load the data into R and perform various operations on the data to shape it
for analysis.

5 Data Exploration
We should always understand our data by exploring it in various ways. Include
data summaries and various plots that give insights.

6 Data Analytics
Include all models built and parameters tried. Include R code and model eval-
uations.

7 Deployment
Choose the model to deploy and export it, perhaps as PMML.

Figure 10.3: The PDF generated from the template knitr report.

\author{Graham Williams}
\date{2nd July 2017}
\maketitle\thispagestyle{empty}

\section{Introduction}

A paragraph or two introducing the project.

\section{Business Problem}

Describe discussions with client (business experts)
and record decisions made and shared understanding of
the business problem.

Including R Commands 263

\section{Data Sources}

Identify the data sources and discuss access with the
data owners. Document data sources, integrity,
providence, and dates.

\section{Data Preparation}

Load the data into R and perform various operations
on the data to shape it for analysis.

\section{Data Exploration}

We should always understand our data by exploring it
in various ways. Include data summaries and various
plots that give insights.

\section{Data Analytics}

Include all models built and parameters
tried. Include R code and model evaluations.

\section{Deployment}

Choose the model to deploy and export it, perhaps as
PMML.

\end{document}

10.3 Including R Commands
We can include R commands within the knitr document and have
the commands automatically run when we compile the PDF. The
output from the R commands will be displayed together with the
R commands themselves.

264 10 Literate Data Science

To include R commands we surround the code with special
markers. The code blocks containing the commands begin with
double less than symbols (or angle brackets <<) starting in column
one and end with double greater than symbols (>>) followed im-
mediately by an equals (=). The code block is then terminated by
a line containing a single “at” symbol (@) starting in column one.

<<>>=
... R code ...
@

Between the angle brackets we place instructions to tell knitr
what to do with the R commands. We can tell it to simply echo the
commands, but not to evaluate them, or to evaluate the commands
without echoing them, and so on. Whilst it is optional, we should
provide a label for each block of R code. This is the first element
between the angle brackets. A simple example of the beginning of
a typical code block is:

<<my_label, eval=TRUE, echo=FALSE>>=

The label here is my_label and we ask knitr to evaluate the R
commands and thus to also show the output of those commands
(this is the default). We do not echo the R commands so that
the actual commands themselves will not appear in the resulting
document (the default is to echo the commands). Whilst we de-
velop our narrative we will include all of the code chunks and the
output into the generated PDF report but once we are ready to
produce our final report we would turn the echoing of the R code
off, globally.

Our first example of running actual R code will generate some
random uniform data using stats::runif() and then view the
utils::head() of the data and calculate the base::mean(). The
following code block shows how this will look in the source .Rnw
file.

Inline R Code 265

<<example_random_mean>>=
Always include a short comment to support the code.
x <- runif(1000) * 1000
head(x)
mean(x)
@

Below is what it looks like after it is processed by knitr and
then LATEX (as happens when we click the Compile PDF button in
RStudio).

Always include a short comment to support the code.

x <- runif(1000) * 1000
head(x)

[1] 914.8060 937.0754 286.1395 830.4476 641.7455 519.0959

mean(x)

[1] 488.2555

Notice that the syntax is colour highlighted and the output
is included as comments introduced in R with the ##. If we were
to evaluate these commands ourselves in R, the output would not
include the ##.

10.4 Inline R Code
Often we find ourselves wanting to refer to the results of an R
command within the text we are writing rather than as a separate
code chunk. This is easily done using the \Sexpr{} command in
LATEX.

To include today’s date within the narrative we can type the
command sequence exactly as \Sexpr{Sys.Date()}. This will
be replaced with “2017-07-20”. Any R function can be called
in this way. To format the date, for example, we can use R’s
base::format() function to specify how the date is displayed, as

266 10 Literate Data Science

in \Sexpr{Sys.Date() %>% format(format="%A, %e %B %Y")}
to produce Sunday, 2 July 2017.

We typically intermix a narrative of our dataset with
output from R to support and illustrate the discussion. In
the following sentence we do this showing first the out-
put from the R command and then the actual R com-
mand we included in the source document. For example, the
weather dataset from rattle (Williams, 2017) has 366 (i.e.,
\Sexpr{nrow(weather)}) observations including observations of
the following 4 of the 24 (i.e., \Sexpr{ncol(weather)}) avail-
able variables: MinTemp, MaxTemp, Rainfall, Evaporation (i.e.,
\Sexpr{names(weather)[3:6] %>% paste(collapse=", ")}).

LATEX treats some characters specially and we need to be careful
to escape such characters. For example, the underscore “_” is used
to introduce a subscript in LATEX. It needs to be escaped if we really
want an underscore to be included in the compiled PDF document.
If not, LATEX will likely complain. As an example, we might list one
of the variable names from the weather dataset with an under-
score in its name: RISK_MM (\Sexpr{names(weather)[23]}).
We will see an error like:

KnitR.tex:230: Missing $ inserted.
KnitR.tex:230: leading text: ...an underscore in its name: RISK_
KnitR.tex:232: Missing $ inserted.

Hmisc::latexTranslate() assists here. It was used above to
print the variable name. There are other support functions in
Hmisc that are useful when working with knitr and LATEX—see
library(help=Hmisc) for further information.

10.5 Formatting Tables Using Kable
Including a typeset table based on a dataset can be accomplished
using knitr::kable(). Here we will use the larger weatherAUS
dataset from rattle setting it up as a dplyr::tbl_df(). We will
then choose specific columns and a random selection of rows to

Formatting Tables Using Kable 267

include in the table. The source text we include in our .Rnw file is
listed in the following code block.

<<example_kable, echo=TRUE, results="asis">>=
Set the seed so that results are repeatable.
set.seed(42)
Load package from local library into the R session.
library(rattle)
Record metadata for a sample of the dataset.
nobs <- nrow(weatherAUS)
obs <- sample(nobs, 5)
vars <- 2:6
ds <- weatherAUS[obs, vars]
Generate the appropriate LaTeX code to display the data.
kable(ds)
@

The result (also showing the R code since we specified
echo=TRUE) is then:

Set the seed so that results are repeatable.

set.seed(42)

Load package from local library into the R session.

library(rattle)

Record metadata for a sample of the dataset.

nobs <- nrow(weatherAUS)
obs <- sample(nobs, 5)
vars <- 2:5
ds <- weatherAUS[obs, vars]

Generate the appropriate LaTeX code to display the
data.

kable(ds)

268 10 Literate Data Science

Location MinTemp MaxTemp Rainfall
126525 Hobart 9.3 17.9 0.0
129604 AliceSprings 23.0 37.3 0.2
39575 Williamtown 10.5 18.2 1.0
114855 Perth 5.0 20.1 0.0
88756 Townsville 24.4 31.4 23.6

Since we are working with a random sample and we would like
the sampling to be repeatable we have used base::set.seed()
to initialise the random number generator to a fixed value.

Formatting Options

Formatting options are available for fine tuning how the table is
to be presented. For example we can remove the row names (the
row numbers in the above table) easily with row.names=FALSE.

Display a table without row names.

ds %>% kable(row.names=FALSE)

Location MinTemp MaxTemp Rainfall
Hobart 9.3 17.9 0.0
AliceSprings 23.0 37.3 0.2
Williamtown 10.5 18.2 1.0
Perth 5.0 20.1 0.0
Townsville 24.4 31.4 23.6

We can also limit the number of digits displayed to avoid an
impression of a high level of accuracy or to simplify presentation
using digits=. By doing so the numeric values are rounded to the
requested number of decimal points.

Display a table removing digits from numbers.

ds %>% kable(row.names=FALSE, digits=0)

Formatting Tables Using Kable 269

Location MinTemp MaxTemp Rainfall
Hobart 9 18 0
AliceSprings 23 37 0
Williamtown 10 18 1
Perth 5 20 0
Townsville 24 31 24

Improvements Using BookTabs

The booktabs package for LATEX provides additional function-
ality that we can make use of with knitr::kable(). To use
this be sure to include the following in the preamble (before the
\begin{document} of your .Rnw file:

Load package from local library into the R session.

\usepackage{booktabs}

We can then set booktabs=TRUE to remove the clutter of the
extra lines.

Use booktabs option to improve presentation of table.

ds %>% kable(row.names=FALSE, digits=0, booktabs=TRUE)

Location MinTemp MaxTemp Rainfall
Hobart 9 18 0
AliceSprings 23 37 0
Williamtown 10 18 1
Perth 5 20 0
Townsville 24 31 24

In the following example we notice that with more rows
booktabs=TRUE will add a small gap every 5 rows.

Display a tale with more observations.

weatherAUS[sample(nobs, 20), vars] %>%
kable(row.names=FALSE, digits=0, booktabs=TRUE)

270 10 Literate Data Science

Location MinTemp MaxTemp Rainfall
Portland 8 16 0
Woomera 19 36 0
NorahHead 18 18 1
Townsville 27 34 0
MountGambier 10 16 6
MelbourneAirport 10 21 0
Nuriootpa 6 14 0
Launceston 9 16 1
WaggaWagga 0 8 0
MelbourneAirport 7 28 0
AliceSprings 11 24 0
Darwin 22 34 0
Newcastle 10 22 1
Melbourne 8 19 NA
Dartmoor 12 20 0
Hobart 3 9 2
NorahHead 13 23 0
Katherine 26 36 0
AliceSprings 14 32 0
CoffsHarbour 17 30 1

10.6 Formatting Tables Using XTable
Whilst knitr::kable() provides basic functionality much more
extensive control over the formatting of tables is provided by xtable
(Dahl, 2016). By default the table produced is called a floating
table so that it automatically floats within the document to an
appropriate location.

As a floating table we will add a caption= and a table ref-
erence label= to the table so that they do not get lost. We can
then refer to the table within the text and have the tables appear
somewhere convenient automatically. The code block below, for
example, produces Table 10.1 on page 271. The table and page

Formatting Tables Using XTable 271

numbers are automatically assigned to the table. Within LATEX we
can access the table number using \ref{egtbl} (10.1) and the
page number using \pageref{egtbl} (271).

Load package from local library into the R session.

library(xtable)

Generate a floating table with a caption.

ds %>%
xtable(caption="Example xtable.", label="egtbl") %>%
print(caption.placement="top")

Table 10.1: Example xtable.
Location MinTemp MaxTemp Rainfall

126525 Hobart 9.30 17.90 0.00
129604 AliceSprings 23.00 37.30 0.20
39575 Williamtown 10.50 18.20 1.00

114855 Perth 5.00 20.10 0.00
88756 Townsville 24.40 31.40 23.60

Also note that by default missing values (NA) are not printed
nor are the extra lines that are printed by default when using
knitr::kable().

There are many formatting options available for fine tun-
ing how the table is to be presented and we cover some of
these in the following pages. We also note that some op-
tions are provisioned by xtable::xtable() whilst others are
available through xtable::print.xtable(). An example op-
tion is include.rownames= which is an option available with
xtable::print.xtable(). The result is seen in Table 10.2.

Display a table without row names.

ds %>%

272 10 Literate Data Science

xtable(caption = "Remove row numbers.",
label = "tblnonums") %>%

print(caption.placement = "top",
include.rownames = FALSE)

Table 10.2: Remove row numbers.
Location MinTemp MaxTemp Rainfall
Hobart 9.30 17.90 0.00
AliceSprings 23.00 37.30 0.20
Williamtown 10.50 18.20 1.00
Perth 5.00 20.10 0.00
Townsville 24.40 31.40 23.60

Formatting Numbers with XTable

As with knitr::kable() we can limit the number of digits dis-
played to avoid giving an impression of a high level of accuracy
or to simplify the presentation. In Table 10.3 we have removed all
decimal points.

Display a table removing digits from numbers.

ds %>%
xtable(digits = 0,

caption = "Decimal points.",
label = "tbldp0") %>%

print(caption.placement = "top",
include.rownames = FALSE)

When we have large numbers being displayed it is imperative
that we include commas to separate the thousands. Many mistakes
are made misreading numbers that include many digits when com-
mas are not included.

Formatting Tables Using XTable 273

Table 10.3: Decimal points.
Location MinTemp MaxTemp Rainfall
Hobart 9 18 0
AliceSprings 23 37 0
Williamtown 10 18 1
Perth 5 20 0
Townsville 24 31 24

Copy dataset so as to change the data.

dst <- ds

Randomly create large numbers.

dst[-1] <- sample(10000:99999, nrow(dst)) * dst[-1]

Illustrate default table display of large numbers.

dst %>%
xtable(digits = 0,

caption = "Large numbers.",
label = "tbllrg") %>%

print(caption.placement = "top",
include.rownames = FALSE)

Table 10.4: Large numbers.
Location MinTemp MaxTemp Rainfall
Hobart 523395 1007394 0
AliceSprings 1037691 1682864 9023
Williamtown 960897 1665555 91514
Perth 251125 1009523 0
Townsville 2079783 2676442 2011593

Consider the result in Table 10.4. It is difficult to distinguish
between the thousands and millions. We often find ourselves hav-

274 10 Literate Data Science

ing to carefully count the digits to check whether 1007394 really
is 1,007,394. To avoid this cognitive load on the reader, we should
always use a comma to separate the thousands and millions. This
simple principle makes it much easier for the reader to appreciate
the scale and to avoid misreading data, yet it is so often overlooked.
We can see the result in Table 10.5.

Format large numbers using commas as appropriate.

dst %>%
xtable(digits = 0,

caption = "Large numbers formatted.",
label = "tbllrgf") %>%

print(caption.placement = "top",
include.rownames = FALSE,
format.args = list(big.mark=","))

Table 10.5: Large numbers formatted.
Location MinTemp MaxTemp Rainfall
Hobart 523,395 1,007,394 0
AliceSprings 1,037,691 1,682,864 9,023
Williamtown 960,897 1,665,555 91,514
Perth 251,125 1,009,523 0
Townsville 2,079,783 2,676,442 2,011,593

Sophisticated Captions

Captions can be formatted with a little knowledge of LATEX.
For Table 10.6 we illustrate generating a string in R that is
passed through to the caption=. We use base::paste() and
base::Sys.time() and include some special symbols known to
LATEX as well as an occasional bold and italic font. Notice that be-
cause the caption is quite long we do not want the whole caption
included in the list of tables in the contents pages. The second
argument to caption= is the short title to use for the tables of
contents.

Formatting Tables Using XTable 275

Create a long caption as a single srting.

cpt <- paste("Here include in the \\textbf{caption}",
"a sample of \\LaTeX{} symbols and",
"formats that can be included in the",
"string, and note that the caption",
"string can be the result of R commands,",
"using \\texttt{paste()} in this",
"instance. Some sample symbols include:",
"$\\alpha$ $\\rightarrow$ $\\wp$.",
"We also get a timestamp from R:",
paste0(Sys.time(), "."))

Add the caption to the table.

dst %>%
xtable(digits = 0,

caption = c(cpt, "Extended caption."),
label = "tblcap") %>%

print(caption.placement = "top",
include.rownames = FALSE)

Table 10.6: Here we include in the caption a sample of LATEX
symbols and formats that can be included in the string, and note
that the caption string can be the result of R commands, using
paste() in this instance. Some sample symbols include: α → ℘.
We also get a timestamp from R: 2017-07-20 15:00:00.

Location MinTemp MaxTemp Rainfall
Hobart 523395 1007394 0
AliceSprings 1037691 1682864 9023
Williamtown 960897 1665555 91514
Perth 251125 1009523 0
Townsville 2079783 2676442 2011593

276 10 Literate Data Science

10.7 Including Figures
Plots and other graphics can be the difference between a dull report
that few will ever read and an exciting report that invites the
reader into an interesting narrative. Through knitr we can readily
include graphics that can be generated by R. We will illustrate
with simple examples.

Sample Figure

To include figures generated by R in our document we simply add
plotting commands to the code chunk. Here, for example, is R code
to generate a simple density plot of the 3pm temperature in four
cities over a year. We use ggplot2 (Wickham and Chang, 2016) to
generate the figure.

Load packages from the local library into the R session.

library(rattle) # For the weatherAUS dataset.
library(ggplot2) # To generate a density plot.

Identify cities of interest.

cities <- c("Canberra", "Darwin", "Melbourne", "Sydney")

Generate the plot.

weatherAUS %>%
subset(Location %in% cities & ! is.na(Temp3pm)) %>%
ggplot(aes(x=Temp3pm, colour=Location, fill=Location)) +
geom_density(alpha=0.55)

In the source document (the .Rnw file) the above R code is
actually inserted between the chunk begin and end marks within
the document itself. Those marks are

<<myfigure, eval=FALSE>>=
... R code ...
@

Including Figures 277

Notice the use of eval=FALSE, which allows the R code to be
included in the text of the final document, as it is above, but will
not yet generate the plot to be included in the figure. We leave
that for a little later.

The code chunk begins by attaching the requisite packages:
rattle (Williams, 2017) to access the weatherAUS dataset and
ggplot2 (Wickham and Chang, 2016) for the function to generate
the actual plot.

The four cities we wish to plot are then identified and we gen-
erate a base::subset() of the weatherAUS dataset containing
just those cities. We pass the subset on to ggplot2::ggplot()
and identify Temp3pm for the x-axis, using location to colour and
fill the plot. We add a layer to the figure containing a density plot
with a level of transparency specified as an alpha= value. We can
see the figure below.

0.00

0.05

0.10

0.15

0.20

10 20 30 40

Temp3pm

de
ns

ity

Location
Canberra

Darwin

Melbourne

Sydney

278 10 Literate Data Science

We include the figure in the final document as above simply
by removing the eval=FALSE from the previous code chunk. Thus,
the R code is evaluated and a plot is generated. We have actually
replaced the eval=FALSE with echo=FALSE so as not to print the
R code a second time.

We do not actually need to rewrite the R code again in a second
chunk, given the code has already been provided in the first chunk
on the previous page. We use a feature of knitr where an empty
chunk having the same name as a previous chunk is actually a
reference to that previous chunk. Thus in our source .Rnw text
document we add the following two lines. This is effectively re-
placed by the R code from the previous block of the same name.

<<myfigure, echo=FALSE>>=
@

This is exactly what we included at the beginning of this section
in the actual source document for this page. Noticing that we
have replaced eval=FALSE with echo=FALSE, we cause the original
R code to be executed, generating the plot which is included as
the previous figure. Using echo=FALSE simply ensures we do not
include the R code itself in the final output, this time. That is, the
R code is replaced with the figure it generates.

Notice how the figure takes up quite a bit of space on the page.

Adjusting Aspect

We can fine-tune the size of the figure to suit the document and
presentation. In this example we have asked R to widen the figure
from 7 inches to 14 inches using fig.width=. The code chunk is:

<<myfigure, echo=FALSE, fig.width=14>>=
... R code ...
@

Including Figures 279

0.00

0.05

0.10

0.15

0.20

10 20 30 40

Temp3pm

de
ns

ity

Location
Canberra

Darwin

Melbourne

Sydney

Underneath, knitr is using a PDF device on which the plot is
generated, and then saved to file for inclusion in the final docu-
ment. The PDF device grDevices::pdf(), by default, will gen-
erate a 7 inch by 7 inch plot (see ?pdf for details). This is the
plot dimensions as we saw earlier. By setting fig.width= (and
fig.height=) we can change the dimensions. In our example here
we have doubled the width, resulting in a more pleasing plot.

Notice that as a consequence of the figure being larger the fonts
have remained the same size, resulting in them appearing smaller
now when we include the figure in the same area on the printed
page.

Choosing Dimensions

Often a bit of trial and error is required to get the dimensions
right. Notice though that increasing the fig.width= as we did for
the previous plot, and/or increasing the fig.height=, effectively
also reduces the font size. Actually, the font size remains constant
whilst the figure grows (or shrinks) in size. Sometimes it is better
to reduce the fig.width or fig.height to retain a good sized font.

The plot below was generated with the following knitr options.

<<myfigure, echo=FALSE, fig.height=3.5>>=
... R code ...
@

280 10 Literate Data Science

0.00

0.05

0.10

0.15

0.20

10 20 30 40

Temp3pm

de
ns

ity

Location
Canberra

Darwin

Melbourne

Sydney

Setting Output Width

We can use the out.width= and out.height= to adjust how much
space a figure takes up in the final document. The below figure is
reduced to fill just half the textwidth of the document using:

<<myfigure, out.width="0.5\\textwidth", fig.align="center", f...
... R code ...
@

0.00

0.05

0.10

0.15

0.20

10 20 30 40
Temp3pm

de
ns

ity

Location
Canberra

Darwin

Melbourne

Sydney

If that is too narrow we can increase it to 90% of the page
width with:

<<myfigure, out.width="0.9\\textwidth", fig.align="center", f...
... R code ...
@

Add a Caption and Label 281

0.00

0.05

0.10

0.15

0.20

10 20 30 40

Temp3pm

de
ns

ity

Location
Canberra

Darwin

Melbourne

Sydney

10.8 Add a Caption and Label

0.00

0.05

0.10

0.15

0.20

10 20 30 40

Temp3pm

de
ns

ity

Location
Canberra

Darwin

Melbourne

Sydney

Figure 10.4: The 3pm temperature for four locations.

Adding a caption (which automatically also adds a label) is
done using fig.cap=.

<<myfigure, fig.cap="The 3pm temperature for four locations."...
... R code ...
@

We have also used fig.pos="h" which requests placement of

282 10 Literate Data Science

the figure “here” rather than letting it float. Other options are
to place the figure at the top of a page ("t"), or the bottom of
a page ("b"). We can leave it empty and the placement is done
automatically—that is, the figure floats to an appropriate location.

Once a caption is added, a label is also added to the figure
so that it can be referred to in the document. The label is made
up of fig: followed by the chunk label, which is myfigure in this
example. So we can refer to the figure using \ref{fig:myfigure}
and \pageref{fig:myfigure}, which allows us to refer to Fig-
ure 10.4 on Page 281.

10.9 Knitr Options
We have explored only a small portion of the functionality of knitr
and LATEX. Together there is virtually nothing they cannot do—
being programming languages anything that can be done, can be
done using these tools.

As a summary below we list the common knitr options. The
options are added to the chunk start line or else we can set the op-
tions using opts_chunk$set(). The arguments to the function can
be any number of named options with their values. For example:

Set global defaults for knitr options.

opts_chunk$set(size="footnotesize", message=FALSE, tidy=FALSE)

Once this is run, the options remain in force as the default val-
ues until they are again changed using opts_chunk$set(). They
can be overriden per chunk in the usual way.

background="#F7F7F7" # Background colour of the code chunks.
cache.path="cache/" #
comment=NA # Suppresses "\verb|## |" in R output.
echo=FALSE # Do not show R commands.
echo=3:5 # Only echo lines 3 to 5 of the chunk.
eval=FALSE # Do not run the R code.
eval=2:4 # Evaluate lines 2 to 4 of the chunk.

Exercises 283

fig.align="center" #
fig.cap="Caption..." #
fig.keep="high" #
fig.lp="fig:" # Prefix assigned to figure label.
fig.path="figures/plot" #
fig.scap="Short cap." # Table of figures title.
fig.show="animate" # Collect figures into an animation.
fig.show="hold" #
fig.height=9 # Height of generated figure.
fig.width=12 # Width of generated figure.
include=FALSE # Include code but not output/picture.
message=FALSE # Do not display messages.
out.height=".6\\textheight" # Figure is 60\% of the page height.
out.width=".8\\textwidth" # Figure is 80\% of the page width.
results="markup" # Output from commands formatted.
results="hide" # Do not show output from commands.
results="asis" # Retain R output as \LaTeX{} code.
size="footnotesize" # Useful for Beamer slides.
tidy=FALSE # Retain formatting used in the R code.

10.10 Exercises

Exercise 10.1
In the exercises for Chapter 7 we used a new self-identified sample
dataset to report on data wrangling, predictive modelling, and a
narrative from the data. Repeat the process but format the mater-
ial within a LATEX-based knitr document. RStudio will be a useful
tool for this exercise.

Exercise 10.2
It was noted that R markdown provides a simplified approach

to literate programming. Using the new and self-identified sample
dataset from Chapter 7 replicate the data wrangling, predictive
modelling, and narrative using R markdown in RStudio.

http://taylorandfrancis.com

11
R with Style

Data scientists write programs to ingest, manage, wrangle, visual-
ise, analyse and model data in many ways. It is an art to be able
to communicate our explorations and understandings through a
language, albeit a programming language. Of course our programs
must be executable by computers but computers care little about
our programs except that they be syntactically correct. Our focus
should be on engaging others to read and understand the narrat-
ives we present through our programs.

In this chapter we present simple stylistic guidelines for pro-
gramming in R that support the transparency of our programs. We
should aim to write programs that clearly and effectively commu-
nicate the story of our data to others. Our programming style aims
to ensure consistency and ease our understanding whilst of course
also encouraging correct programs for execution by computer.

11.1 Why We Should Care
Programming is an art and a way to express ourselves. Often that
expression is unique to us individually. Just as we can often ascer-
tain who the author is of a play or the artist of a painting from
their style we can often tell the programmer from the program
coding structures and styles.

As we write programs we should keep in mind that something
like 90% of a programmers’ time (at least in business and gov-
ernment) is spent reading and modifying and extending other pro-
grammers’ code. We need to facilitate the task—so that others can
quickly come to a clear understanding of the narrative.

As data scientists we also practice this art of programming and

285

286 11 R with Style

indeed even more so to share the narrative of what we discover
through our living and breathing of data. Writing our programs
so that others understand why and how we analysed our data is
crucial. Data science is so much more than simply building black
box models—we should be seeking to expose and share the process
and the knowledge that is discovered from the data.

Data scientists rarely begin a new project with an empty coding
sheet. Regularly we take our own or other’s code as a starting
point and begin from that. We find code on Stack Overflow or
elsewhere on the Internet and modify it to suit our needs. We
collect templates from other data scientists and build from there,
tuning the templates for our specific needs and datasets.

In being comfortable to share our code and narratives with
others we often develop a style. Our style is personal to us as we
innovate and express ourselves and we need consistency in how we
do that. Often a style guide helps us as we journey through a new
language and gives us a foundation for developing, over time, our
own style.

A style guide is useful for sharing our tips and tricks for com-
municating clearly through our programs—our expression of how
to solve a problem or actually how we model the world. We express
this in the form of a language—a language that also happens to
be executable by a computer. In this language we follow precisely
specified syntax/grammar to develop sentences, paragraphs, and
whole stories. Whilst there is infinite leeway in how we express
ourselves and we each express ourselves differently, we share a
common set of principles as our style guide.

The style guide here has evolved from over 30 years of program-
ming and data experience. Nonetheless we note that style changes
over time. Change can be motivated by changes in the technology
itself and we should allow variation as we mature and learn and
change our views.

Irrespective of whether the specific style suggestions here suit
you or not, when coding do aim to communicate to other readers
in the first instance. When we write programs we write for others
to easily read and to learn from and to build upon.

Naming 287

11.2 Naming
1. Files containing R code use the uppercase .R extension. This

aligns with the fact that the language is unambiguously called
“R” and not “r.”
Preferred

power_analysis.R

Discouraged

power_analysis.r

2. Some files may contain support functions that we have written
to help us repeat tasks more easily. Name the file to match the
name of the function defined within the file. For example, if
the support function we’ve defined in the file is myFancyPlot()
then name the file as below. This clearly differentiates support
function filenames from analysis scripts and we have a ready
record of the support functions we might have developed simply
by listing the folder contents.
Preferred

myFancyPlot.R

Discouraged

utility_functions.R
MyFancyPlot.R
my_fancy_plot.R
my.fancy.plot.R
my_fancy_plot.r

288 11 R with Style

3. R binary data filenames end in “.RData”. This is descriptive
of the file containing data for R and conforms to a capitalised
naming scheme.
Preferred

weather.RData

Discouraged

weather.rdata
weather.Rdata
weather.rData

4. Standard file names use lowercase where there is a choice.
Preferred

weather.csv

Discouraged

weather.CSV

5. For multiple scripts associated with a project that have a pro-
cessing order associated with them use a simple two digit num-
ber prefix scheme. Separating by 10’s allows additional script
files to be added into the sequence later.
Suggested

00_setup.R
10_ingest.R
20_observe.R
30_process.R
40_meta.R
50_save.R
60_classification.R
62_rpart.R
64_randomForest.R
66_xgboost.R
68_h20.R

Naming 289

70_regression.R
72_lm.R
74_rpart.R
76_mxnet.R
80_evaluate.R
90_deploy.R
99_all.R

6. Function names begin lowercase with capitalised verbs. A
common alternative is to use underscore to separate words but
we use this specifically for variables.
Preferred

displayPlotAgain()

Discouraged

DisplayPlotAgain()
displayplotagain()
display.plot.again()
display_plot_again()

7. Variable names use underscore separated nouns. A very com-
mon alternative is to use a period in place of the underscore.
However, the period is often used to identify class hierarchies
in R and the period has specific meanings in many database
systems which presents an issue when importing from and ex-
porting to databases.
Preferred

num_frames <- 10

Discouraged

num.frames <- 10
numframes <- 10
numFrames <- 10

290 11 R with Style

8. Function argument names use period separated nouns.
Function argument names do not risk being confused with class
hierarchies and the style is useful in differentiating the argu-
ment name from the argument value. Within the body of the
function it is also useful to be reminded of which variables are
function arguments and which are local variables.
Preferred

buildCyc(num.frames=10)
buildCyc(num.frames=num_frames)

Discouraged

buildCyc(num_frames=10)
buildCyc(numframes=10)
buildCyc(numFrames=10)

9. Keep variable and function names shorter but self explanatory.
A long variable or function name is problematic with layout
and similar names are hard to tell apart. Single letter names
like x and y are often used within functions and facilitate un-
derstanding, particularly for mathematically oriented functions
but should otherwise be avoided.
Preferred

Perform addition.

addSquares <- function(x, y)
{

return(x^2 + y^2)
}

Discouraged

Perform addition.

addSquares <- function(first_argument, second_argument)
{

return(first_argument^2 + second_argument^2)
}

Comments 291

11.3 Comments
10. Use a single # to introduce ordinary comments and separate

comments from code with a single empty line before and after
the comment. Comments should be full sentences beginning
with a capital and ending with a full stop.
Preferred

How many locations are represented in the dataset.

ds$location %>%
unique() %>%
length()

Identify variables that have a single value.

ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->

constants

11. Sections might begin with all uppercase titles and subsections
with initial capital titles. The last four dashes at the end of the
comment are a section marker supported by RStudio. Other
conventions are available for structuring a document and dif-
ferent environments support different conventions.
Preferred

DATA WRANGLING ----

Normalise Variable Names ----

Review the names of the dataset columns.

names(ds)

Normalise variable names and confirm they are as expected.

292 11 R with Style

names(ds) %<>% rattle::normVarNames() %T>% print()

Specifically Wrangle weatherAUS ----

Convert the character variable 'date' to a Date data type.

class(ds$date)
ds$date %<>%
lubridate::ymd() %>%
as.Date() %T>%
{class(.); print()}

11.4 Layout
12. Keep lines to less then 80 characters for easier reading and

fitting on a printed page.

13. Align curly braces so that an opening curly brace is on a line by
itself. This is at odds with many style guides. My motivation
is that the open and close curly braces belong to each other
more so than the closing curly brace belonging to the keyword
(while in the example). The extra white space helps to reduce
code clutter. This style also makes it easier to comment out, for
example, just the line containing the while and still have valid
syntax. We tend not to need to foucs so much any more on
reducing the number of lines in our code so we can now avoid
Egyptian brackets..
Preferred

while (blueSky())
{

openTheWindows()
doSomeResearch()

}
retireForTheDay()

Layout 293

Alternative

while (blueSky()) {
openTheWindows()
doSomeResearch()

}
retireForTheDay()

14. If a code block contains a single statement, then curly braces
remain useful to emphasise the limit of the code block; however,
some prefer to drop them.
Preferred

while (blueSky())
{

doSomeResearch()
}
retireForTheDay()

Alternatives

while (blueSky())
doSomeResearch()

retireForTheDay()

while (blueSky()) doSomeResearch()
retireForTheDay()

15. R is an interpretive language and encourages interactive de-
velopment of code within the R console. Consider typing the
following code into the R console.

if (TRUE)
{
seed <- 42

}
else
{
seed <- 666

}

294 11 R with Style

After the first closing brace the interactive interpreter identifies
a syntactically valid statement (an if with no else) and so
executes it. The following else becomes a syntactic error. This
will be true irrespective of whether we are interactively typing
the commands directly into the R console or we are sending the
commands from our editor in Emacs ESS or RStudio to the R
console.

Error: unexpected 'else' in "else"

> source("examples.R")
Error in source("examples.R") : tmp.R:5:1: unexpected 'else'
4: }
5: else

^

This is not an issue when the if statement is embedded inside
a block of code as within curly braces as we might use within
a function definition. Here the text we enter is not parsed until
we hit the final closing brace.

{
if (TRUE)
{
seed <- 42

}
else
{
seed <- 666

}
}

There is no simple solution for the interpreter so we might need
to do something less satisfactory for top level statements in a
script file or when writing interactively:

if (TRUE)
{
seed <- 42

} else
{

Layout 295

seed <- 666
}

16. Use a consistent indentation. I personally prefer 2 spaces within
both Emacs ESS and RStudio with a good font (e.g., Courier
font in RStudio works well but Courier 10picth is too com-
pressed). Some argue that 2 spaces is not enough to show the
structure when using smaller fonts. If it is an issue, then try 4
or choose a different font. We still often have limited lengths on
lines on some forms of displays where we might want to share
our code and about 80 characters seems about right. Indenting
8 characters is probably too much because it makes it difficult
to read through the code with such large leaps for our eyes to
follow to the right. Nonetheless, there are plenty of tools to
reindent to a different level as we choose.
Preferred

window_delete <- function(action, window)
{

if (action %in% c("quit", "ask"))
{
ans <- TRUE
msg <- "Terminate?"
if (! dialog(msg))
ans <- TRUE

else
if (action == "quit")

quit(save="no")
else
ans <- FALSE

}
return(ans)

}

Not Ideal

window_delete <- function(action, window)
{

if (action %in% c("quit", "ask"))
{

296 11 R with Style

ans <- TRUE
msg <- "Terminate?"
if (! dialog(msg))

ans <- TRUE
else

if (action == "quit")
quit(save="no")

else
ans <- FALSE

}
return(ans)

}

17. Always use spaces rather than the invisible tab character.

18. Align the assignment operator for blocks of assignments. The
rationale for this style suggestion is that it is easier for us to read
the assignments in a tabular form than it is when it is jagged.
This is akin to reading data in tables—such data is much easier
to read when it is aligned. Space is used to enhance readability.
Preferred

a <- 42
another <- 666
b <- mean(x)
brother <- sum(x)/length(x)

Default

a <- 42
another <- 666
b <- mean(x)
brother <- sum(x)/length(x)

19. In the same vein we might think to align the magrittr::%>%
operator in pipelines and the base::+ operator for ggplot2
(Wickham and Chang, 2016) layers. This provides a visual sym-
metry and avoids the operators being lost amongst the text.

Layout 297

Such alignment though requires extra work and is not suppor-
ted by editors. Also, there is a risk the operator too far to the
right is overlooked on an inspection of the code.
Preferred

ds <- weatherAUS
names(ds) <- rattle::normVarNames(names(ds))
ds %>%

group_by(location) %>%
mutate(rainfall=cumsum(risk_mm)) %>%
ggplot(aes(date, rainfall)) +
geom_line() +
facet_wrap(~location) +
theme(axis.text.x=element_text(angle=90))

Alternative

ds <- weatherAUS
names(ds) <- rattle::normVarNames(names(ds))
ds %>%

group_by(location) %>%
mutate(rainfall=cumsum(risk_mm)) %>%
ggplot(aes(date, rainfall)) +
geom_line() +
facet_wrap(~location) +
theme(axis.text.x=element_text(angle=90))

20. An interesting variation on the alignment of pipelines includ-
ing graphics layering is to indent the graphics layering and in-
clude it within a code block (surrounded by curly braces). This
highlights the graphics layering as a different type of concept
to the data pipeline and ensures the graphics layering stands
out as a separate stanza to the pipeline narrative. Note that a
period is then required in the ggplot2::ggplot() call to ac-
cess the pipelined dataset. The pipeline can of course continue
on from this expression block. Here we show it being piped into
a base::print() to have the plot displayed and then saved
into a variable for later processing.

298 11 R with Style

Preferred

ds <- weatherAUS
names(ds) <- rattle::normVarNames(names(ds))
ds %>%

group_by(location) %>%
mutate(rainfall=cumsum(risk_mm)) %>%
{

ggplot(., aes(date, rainfall)) +
geom_line() +
facet_wrap(~location) +
theme(axis.text.x=element_text(angle=90))

} %T>%
print() ->

plot_cum_rainfall_by_location

11.5 Functions
21. Functions should be no longer than a screen or a page. Long

functions generally suggest the opportunity to consider more
modular design. Take the opportunity to split the larger func-
tion into smaller functions.

22. Generally prefer a single base::return() from a function. Un-
derstanding a function with multiple and nested returns can be
difficult. Sometimes though, particularly for simple functions
as in the alternative below, multiple returns work just fine.
Preferred

factorial <- function(x)
{

if (x==1)
{
result <- 1

}
else
{
result <- x * factorial(x-1)

Functions 299

}

return(result)
}

Alternative

factorial <- function(x)
{

if (x==1)
{

return(1)
}
else
{

return(x * factorial(x-1))
}

}

23. Align function arguments in a function definition one per line.
Preferred

showDialPlot <- function(label="UseR!",
value=78,
dial.radius=1,
label.cex=3,
label.color="black")

{
...

}

Discouraged

showDialPlot <- function(label="UseR!", value=78,
dial.radius=1, label.cex=3,
label.color="black")

{
...

}

showDialPlot <- function(label="UseR!",

300 11 R with Style

value=78,
dial.radius=1,
label.cex=3,
label.color="black")

Alternative

showDialPlot <- function(
label="UseR!",
value=78,
dial.radius=1,
label.cex=3,
label.color="black"
)

24. Don’t add spaces around the = for named arguments in para-
meter lists. Visually this ties the named arguments together and
highlights this as a parameter list. This style is at odds with
the default R printing style and is the only situation where I
tightly couple a binary operator. In all other situations there
should be a space around the operator.
Preferred

readr::read_csv(file="data.csv",
skip=1e5,
na=".",
progress=FALSE)

Discouraged

read.csv(file = "data.csv", skip =
1e5, na = ".", progress
= FALSE)

25. Arguments to function calls can also be aligned similarly to the
function definition. An advantage of doing this is that all but
the last argument can easily be commented out during testing
of different options in using the function. An idiosyncratic al-
ternative illustrated below places the comma at the beginning

Functions 301

of the line. This is actually particularly useful and works well to
easily comment out specific arguments except for the first one.
Often the first argument is the most important argument and
is perhaps even a non-optional argument. Later arguments are
often optional and we will explore different options and tune
our code by commenting them in and out. This is quite a com-
mon style amongst SQL programmers and can be useful for R
programming too.
Preferred

dialPlot(value=78,
label="UseR!",
dial.radius=1,
label.cex=3,
label.color="black")

Alternative

dialPlot(value=78
, label="UseR!"
, dial.radius=1
, label.cex=3
, label.color="black"
)

Discouraged

dialPlot(value=78, label="UseR!",dial.radius=1,
label.cex=3, label.color="black")

26. R has a mechanism (called namespaces) for identifying the
names of functions and variables from specific packages. There
is no rule that says a package provided by one author cannot
use a function name already used by another package or by base
R. Thus, functions from one package might overwrite the defin-
ition of a function with the same name from another package
or from base R itself. A mechanism to ensure we are using the
correct function is to prefix the function call with the name of
the package providing the function, just like dplyr::mutate().

302 11 R with Style

Generally in commentary we will use this notation to clearly
identify the package which provides the function. In our inter-
active R usage and in scripts we tend not to use the namespace
notation. It can clutter the code and arguably reduce its read-
ability even though there is the benefit of clearly identifying
where the function comes from.
For common packages we tend not to use namespaces but for
less well-known packages a namespace at least on first usage
provides valuable information. Also, when a package provides
a function that has the same name as a function in another
namespace, it is useful to explicitly supply the namespace pre-
fix.
Preferred

library(dplyr) # Data wranlging, mutate().
library(lubridate) # Dates and time, ymd_hm().
library(ggplot2) # Visualize data.

ds <- get(dsname) %>%
mutate(timestamp=ymd_hm(paste(date, time))) %>%
ggplot(aes(timestamp, measure)) +
geom_line() +
geom_smooth()

Alternative

ds <- get(dsname) %>%
dplyr::mutate(timestamp=

lubridate::ymd_hm(paste(date, time))) %>%
ggplot2::ggplot(ggplot2::aes(timestamp, measure)) +
ggplot2::geom_line() +
ggplot2::geom_smooth()

11.6 Assignment
27. Avoid using base::= for assignment. It was introduced in S-

Plus in the late 1990s as a convenience but is ambiguous (named

Assignment 303

arguments in functions, mathematical concept of equality). The
traditional backward assignment operator base::<- implies a
flow of data and for readability is explicit about the intention.
Preferred

a <- 42
b <- mean(x)

Discouraged

a = 42
b = mean(x)

28. The forward assignment base::-> should generally be avoided.
A single use case justifies it in pipelines where logically we do an
assignment at the end of a long sequence of operations. As a side
effect operator it is vitally important to highlight the assigned
variable whenever possible and so out-denting the variable after
the forward assignment to highlight it is recommended.
Preferred

ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->

constants

Traditional

constants <-
ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print()

304 11 R with Style

Discouraged

ds[vars] %>%
sapply(function(x) all(x == x[1L])) %>%
which() %>%
names() %T>%
print() ->
constants

11.7 Miscellaneous
29. Do not use the semicolon to terminate a statement unless it

makes a lot of sense to have multiple statements on one line.
Line breaks in R make the semicolon optional.
Preferred

threshold <- 0.7
maximum <- 1.5
minimum <- 0.1

Alternative

threshold <- 0.7; maximum <- 1.5; minimum <- 0.1

Discouraged

threshold <- 0.7;
maximum <- 1.5;
minimum <- 0.1;

30. Do not abbreviate TRUE and FALSE to T and F.
Preferred

is_windows <- FALSE
open_source <- TRUE

Exercises 305

Discouraged

is_windows <- F
open_source <- T

31. Separate parameters in a function call with a comma followed
by a space.
Preferred

dialPlot(value=78, label="UseR!", dial.radius=1)

Dicouraged

dialPlot(value=78,label="UseR!",dial.radius=1)

32. Ensure that files are under version control such as with git-
hub to allow recovery of old versions of the file and to support
multiple people working on the same files.

11.8 Exercises

Exercise 11.1
Choose an R package from amongst those available on github
(visit https://github.com/cran and choose a package). Perform
a code walk-through and review for one or more of the R source
files within the package. Produce a report with recommendations.

Exercise 11.2
Repeat this code walk-through for another package from github.
Identify any differences in coding style and comment.

https://github.com/

306 11 R with Style

Exercise 11.3
There are a number of R coding style guides available on the
Internet. Identify at least two others and compare them to the
guide presented here. Critically review the differences and decide
on which you personally might prefer. Write a report or blog post
to compare and justify your choices.

Bibliography

Auguie B (2016). gridExtra: Miscellaneous Functions for ”Grid”
Graphics. R package version 2.2.1, URL https://CRAN.
R-project.org/package=gridExtra.

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator
for R. R package version 1.5, URL https://CRAN.R-project.
org/package=magrittr.

Bates D, Maechler M (2017). Matrix: Sparse and Dense Matrix
Classes and Methods. R package version 1.2-10, URL https:
//CRAN.R-project.org/package=Matrix.

BITRE (2014). “Ports: job generation in the context of regional de-
velopment.” Information sheet, Bureau of Infrastructure, Trans-
port and Regional Economics, Department of Infrastructure
and Regional Development. Material from the report used un-
der the terms of the Creative Commons Attribution 3.0 Aus-
tralia Licence available from http://creativecommons.org/
licenses/by/3.0/au/deed.en, URL http://bitre.gov.au/
publications/2014/files/is_056.pdf.

Breiman L, Cutler A, Liaw A, Wiener M (2015). randomForest:
Breiman and Cutler’s Random Forests for Classification and
Regression. R package version 4.6-12, URL https://CRAN.
R-project.org/package=randomForest.

Chamberlain S (2015). ckanr: Client for the Comprehensive Know-
ledge Archive Network (’CKAN’) ’API’. R package version 0.1.0,
URL https://CRAN.R-project.org/package=ckanr.

Chen T, He T, Benesty M, Khotilovich V, Tang Y (2017). xg-
boost: Extreme Gradient Boosting. R package version 0.6-4, URL
https://CRAN.R-project.org/package=xgboost.

307

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
 http://creativecommons.org/licenses/by/3.0/au/deed.en
 http://creativecommons.org/licenses/by/3.0/au/deed.en
http://bitre.gov.au/publications/2014/files/is_056.pdf
http://bitre.gov.au/publications/2014/files/is_056.pdf
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=ckanr
https://CRAN.R-project.org/package=xgboost

308 Bibliography

Dahl DB (2016). xtable: Export Tables to LaTeX or HTML.
R package version 1.8-2, URL https://CRAN.R-project.org/
package=xtable.

Durant W (1926). The Story of Philosophy. 2012 edition. Simon
and Schuster.

Gagolewski M, Tartanus B, , other contributors; IBM, other con-
tributors; Unicode, Inc (2017). stringi: Character String Pro-
cessing Facilities. R package version 1.1.5, URL https://CRAN.
R-project.org/package=stringi.

Grolemund G, Spinu V, Wickham H (2016). lubridate: Make Deal-
ing with Dates a Little Easier. R package version 1.6.0, URL
https://CRAN.R-project.org/package=lubridate.

Harrell Jr FE (2017). Hmisc: Harrell Miscellaneous. R package
version 4.0-3, URL https://CRAN.R-project.org/package=
Hmisc.

Henrion M (2007). “Open-Source Policy Modeling.” Journal of
Law and Policy for the Information Society.

Hocking TD (2017). directlabels: Direct Labels for Multicolor Plots.
R package version 2017.03.31, URL https://CRAN.R-project.
org/package=directlabels.

Knuth DE (1984). “Literate Programming.” The Computer
Journal (British Computer Society), 27(2), 97–111. URL http:
//www.literateprogramming.com/knuthweb.pdf.

Kuhn M (2017). caret: Classification and Regression Training. R
package version 6.0-76, URL https://CRAN.R-project.org/
package=caret.

Lobo-Pulo A (2016). “Evaluating Government Policies using Open
Source Models.” Technical report, Phoensight. URL http://
phoensight.com.

https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=xtable
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=lubridate
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=directlabels
https://CRAN.R-project.org/package=directlabels
http://www.literateprogramming.com/knuthweb.pdf
http://www.literateprogramming.com/knuthweb.pdf
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
http://phoensight.com
http://phoensight.com

Bibliography 309

Müller K, Wickham H (2017). tibble: Simple Data Frames. R
package version 1.3.3, URL https://CRAN.R-project.org/
package=tibble.

Neuwirth E (2014). RColorBrewer: ColorBrewer Palettes. R
package version 1.1-2, URL https://CRAN.R-project.org/
package=RColorBrewer.

R Core Team (2017). R: A Language and Environment for Stat-
istical Computing. R Foundation for Statistical Computing, Vi-
enna, Austria. URL https://www.R-project.org/.

Romanski P, Kotthoff L (2016). FSelector: Selecting Attributes.
R package version 0.21, URL https://CRAN.R-project.org/
package=FSelector.

Schloerke B, Crowley J, Cook D, Briatte F, Marbach M, Thoen E,
Elberg A, Larmarange J (2016). GGally: Extension to ’ggplot2’.
R package version 1.3.0, URL https://CRAN.R-project.org/
package=GGally.

Sing T, Sander O, Beerenwinkel N, Lengauer T (2015). ROCR:
Visualizing the Performance of Scoring Classifiers. R package
version 1.0-7, URL https://CRAN.R-project.org/package=
ROCR.

Soetaert K (2014). diagram: Functions for visualising simple
graphs (networks), plotting flow diagrams. R package version
1.6.3, URL https://CRAN.R-project.org/package=diagram.

Therneau T, Atkinson B, Ripley B (2017). rpart: Recursive Par-
titioning and Regression Trees. R package version 4.1-11, URL
https://CRAN.R-project.org/package=rpart.

Wickham H (2016). scales: Scale Functions for Visualization.
R package version 0.4.1, URL https://CRAN.R-project.org/
package=scales.

Wickham H (2017a). stringr: Simple, Consistent Wrappers for
Common String Operations. R package version 1.2.0, URL
https://CRAN.R-project.org/package=stringr.

https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
https://www.R-project.org/
https://CRAN.R-project.org/package=FSelector
https://CRAN.R-project.org/package=FSelector
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=ROCR
https://CRAN.R-project.org/package=ROCR
https://CRAN.R-project.org/package=diagram
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=stringr

310 Bibliography

Wickham H (2017b). tidyr: Easily Tidy Data with ’spread()’ and
’gather()’ Functions. R package version 0.6.1, URL https://
CRAN.R-project.org/package=tidyr.

Wickham H, Bryan J (2017). readxl: Read Excel Files. R package
version 1.0.0, URL https://CRAN.R-project.org/package=
readxl.

Wickham H, Chang W (2016). ggplot2: Create Elegant Data Visu-
alisations Using the Grammar of Graphics. R package version
2.2.1, URL https://CRAN.R-project.org/package=ggplot2.

Wickham H, Francois R, Henry L, Müller K (2017a). dplyr: A
Grammar of Data Manipulation. R package version 0.7.0, URL
https://CRAN.R-project.org/package=dplyr.

Wickham H, Hester J, Francois R (2017b). readr: Read Rect-
angular Text Data. R package version 1.1.0, URL https:
//CRAN.R-project.org/package=readr.

Williams GJ (1987). “Some Experiments in Decision Tree In-
duction.” Australian Computer Journal, 19(2), 84–91. URL
http://togaware.com/papers/acj87_dtrees.pdf.

Williams GJ (1988). “Combining decision trees: Initial results from
the MIL (multiple inductive learning) algorithm.” In JS Gero,
RB Stanton (eds.), Artificial Intelligence Developments and Ap-
plications: Selected papers from the first Australian Joint Ar-
tificial Intelligence Conference, Sydney, Australia, 2-4 Novem-
ber, 1987, pp. 273–289. Elsevier Science Publishers B.V. (North-
Holland). ISBN 0444704655.

Williams GJ (2009). “Rattle: A Data Mining GUI for R.” The R
Journal, 1(2), 45–55. URL http://journal.r-project.org/
archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of
excavating data for knowledge discovery. Use R! Springer, New
York.

https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=readr
http://togaware.com/papers/acj87_dtrees.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf

Bibliography 311

Williams GJ (2017). rattle: Graphical User Interface for Data
Mining in R. R package version 5.0.14, URL http://rattle.
togaware.com/.

Xie Y (2016). knitr: A General-Purpose Package for Dynamic
Report Generation in R. R package version 1.15.1, URL https:
//CRAN.R-project.org/package=knitr.

Zhou ZH, Chawla NV, Jin Y, Williams GJ (2014). “Big Data
Opportunities and Challenges: Discussions from Data Analytics
Perspectives.” IEEE Computational Intelligence Magazine, 9(4),
62–74.

http://rattle.togaware.com/
http://rattle.togaware.com/
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr

http://taylorandfrancis.com

Index

<- (base), 28, 33, 45, 303
+ (base), 30, 296
-> (base), 33, 303
.GlobalEnv (R variable), 24
= (base), 302
? (utils), 41
%<>% (magrittr), 36, 51,

137
%>% (magrittr), 32, 95, 296
%T>% (magrittr), 37
%s+% (stringi), 76

abs() (base), 73
aes() (ggplot2), 129
aes_string() (ggplot2), 62
alpha= (option), 39, 277
angle= (option), 107
API, 149
argument, 22, 23
arrange() (dplyr), 73
artificial intelligence, 1, 2
as.factor() (base), 62
as.integer() (base), 81, 139
assignment, 28
assignment pipe, see %<>%
assignment pipe, see %<>%
attach, 23, 24, 26
attr() (base), 191
Autoloads (R variable), 24
axis.text= (option), 107

bar chart, 102
base (package), 26

<-, 28, 33, 45, 303
+, 30, 296
->, 33, 303
=, 302
abs(), 73
as.factor(), 62
as.integer(), 81, 139
attr(), 191
data.frame(), 56, 73
dim(), 36, 38, 48
exp(), 139
factor(), 56, 58
format(), 81, 265
get(), 47
invisible(), 249
is.na(), 39
is.numeric(), 72
lapply(), 56
length(), 67
library(), 19, 24, 26, 29,

41
load(), 94, 177
log(), 139
mean(), 264
names(), 41, 49, 50, 68,

84, 86, 151, 155
ncol(), 48

313

314 Index

nrow(), 48, 67
paste(), 274
print(), 28, 29, 37, 83,

122, 152, 181, 182,
297

rep(), 125
return(), 248, 249, 254,

298
sapply(), 56, 57, 67, 72,

86
search(), 24, 25
seq(), 125
set.seed(), 90, 268
sort(), 125
sprintf(), 243
subset(), 277
sum(), 27, 186
summary(), 32, 34, 182
switch(), 81
Sys.time(), 274
t(), 130
table(), 55–57
unique(), 55, 65, 67, 158
unlink(), 156
unlist(), 229
unz(), 156
which(), 67, 72

booktabs= (option), 269
boosting, 227–238
box plot, 111
brewer.pal()

(RColorBrewer), 105

caption= (option), 270, 274
caret (package), 176
categoric, see factor, 54
cfs() (FSelector), 76, 77
character (class), 52, 54, 57

characters, 22
CKAN, 149
ckanr (package), 149–151

package_search(), 152
servers(), 150

classes
character, 52, 54, 57
Date, 52
factor, 54
numeric, 52

colour= (option), 101
comcat() (rattle), 38, 48
comma() (scales), 106
command, 22, 27, 29, 41
commands, 27
computer science, 2, 3
coord_flip() (ggplot2), 143
cor() (stats), 73
cp= (option), 201
CSV file, 44

data, 3
data frame, 45
data mining, 2
data science, 1, 2, 5–7
data scientist, 1–5, 13
data wrangling, 68
data-driven, 1
data.frame() (base), 56, 73
data_frame() (dplyr), 131
Date (class), 52
decision tree, 180–184
deep neural network, 239
definition, 24
diag= (option), 73
diagram (package), 258
digits= (option), 268
dim() (base), 36, 38, 48

Index 315

directlabels (package), 120
download.file() (utils), 120,

156
dplyr (package), 22, 23, 25,

26, 43, 97, 120, 149,
176, 215, 258

arrange(), 73
data_frame(), 131
filter(), 33, 36, 38, 39,

136, 137, 152, 169
glimpse(), 23, 25, 99,

157, 160, 167
group_by(), 83, 95, 161
left_join(), 134
mutate(), 73, 81, 84, 109,

124, 126, 131, 139,
143, 301

sample_n(), 53
select(), 32, 36, 56, 57
summarise(), 95, 161
summarise_all(), 83
tbl_df(), 56, 73, 131, 266
union(), 66

echo= (option), 267, 278
Egyptian brackets, 292
ensembles, 215–238
equals() (magrittr), 67
error rate, 180
errorMatrix() (rattle), 188
eval= (option), 277, 278
excel_sheets() (readxl), 121
exp() (base), 139
extract() (magrittr), 125, 152
extract() (tidyr), 125, 152
extract2() (magrittr), 83, 125

facet_grid() (ggplot2), 129

factor (class), 54
factor() (base), 56, 58
fancyRpartPlot() (rattle),

184
fig.cap= (option), 281
fig.height= (option), 279
fig.pos= (option), 281
fig.width= (option), 278, 279
fill= (option), 62, 103, 107,

111, 129
filter() (dplyr), 33, 36, 38,

39, 136, 137, 152, 169
format() (base), 81, 265
formula, 88
formula() (stats), 88
FSelector (package), 43, 76

cfs(), 76, 77
information.gain(), 76, 77

fun.y= (option), 107
function, 27, 29, 41
functions, 27

gather() (tidyr), 73, 126,
133, 139

generic variable, 47
generic variable, 46, 47
geom_bar() (ggplot2), 62,

102, 106, 129
geom_boxplot() (ggplot2),

111
geom_density() (ggplot2), 39
geom_point() (ggplot2), 101,

102, 137
geom_text() (ggplot2), 137,

138
get() (base), 47
GGally (package), 97
ggplot() (ggplot2), 39, 62,

316 Index

101, 102, 107, 110,
111, 128, 136, 137,
142, 192, 277, 297

ggplot2 (package), 20, 23, 26,
43, 62, 97–99, 102,
104, 117, 119, 120,
149, 176, 215, 258,
276, 277, 296

aes(), 129
aes_string(), 62
coord_flip(), 143
facet_grid(), 129
geom_bar(), 62, 102,

106, 129
geom_boxplot(), 111
geom_density(), 39
geom_point(), 101, 102,

137
geom_text(), 137, 138
ggplot(), 39, 62, 101,

102, 107, 110, 111,
128, 136, 137, 142,
192, 277, 297

ggsave(), 103
labs(), 39, 106
qplot(), 19, 20, 23
scale_fill_manual(), 127
theme(), 107, 111

ggsave() (ggplot2), 103
ggVarImp() (rattle), 183,

218, 231
glimpse() (dplyr), 23, 25, 99,

157, 160, 167
glimpse() (tibble), 49, 52
GNU, x
grDevices (package)

pdf(), 279

grid (package)
viewport(), 141

gridExtra (package), 97
group_by() (dplyr), 83, 95,

161

head() (utils), 37, 39, 53, 264
height= (option), 103
heuristic search, 175
Hmisc (package), 258, 266

latexTranslate(), 266
hold-out, 180

IDE, 16
importance= (option), 217
include.rownames= (option),

271
infix, 30
information, 3
information.gain()

(FSelector), 76, 77
input variables, 88
insight, 1
install.packages() (utils), 19,

22, 27
integrated development

environment, 16
intelligence, 3
invisible() (base), 249
is.na() (base), 39
is.numeric() (base), 72

kable() (knitr), 266, 269–272
kmeans() (stats), 82, 83
knitr (package), x, 258, 259,

263–266, 276, 278,
279, 282

kable(), 266, 269–272

Index 317

knowledge, 1, 3
knowledge discovery, 1
knowledge discovery, 2

label= (option), 270
labs() (ggplot2), 39, 106
lapply() (base), 56
latexTranslate() (Hmisc),

266
left_join() (dplyr), 134
legend.position= (option),

111
length() (base), 67
levels, 54
library, 22, 23, 26
library() (base), 19, 24, 26,

29, 41
Linux, x
literate programming, 257
load() (base), 94, 177
log() (base), 139
log= (option), 183
loss= (option), 204
lubridate (package), 43, 97

machine learning, 1, 2,
180–184

magrittr (package), 26, 31,
44, 97, 120, 125, 149,
176, 215, 241, 258

%<>%, 36, 51, 137
%>%, 32, 95, 296
%T>%, 37
equals(), 67
extract(), 125, 152
extract2(), 83, 125
not(), 39
set_colnames(), 73

set_names(), 124, 131
Matrix (package), 215

sparse.model.matrix(),
228

maxdepth= (option), 201
mean() (base), 264
median, 111
memory usage, 46
metadata, 93
minbucket= (option), 201
minsplit= (option), 201
model, 88
mutate() (dplyr), 73, 81, 84,

109, 124, 126, 131,
139, 143, 301

na.action (R variable), 79
na.action= (option), 217
na.omit() (stats), 73, 79, 99,

133
na.rm= (option), 220
na.roughfix()

(randomForest), 78,
99, 217, 228

names() (base), 41, 49, 50,
68, 84, 86, 151, 155

ncol() (base), 48
normVarNames() (rattle), 41,

50, 152, 167
not() (magrittr), 39
nrounds= (option), 229
nrow() (base), 48, 67
numeric (class), 52

observations, 45
open source software, 2, 7–9,

22
operator, 27, 28, 30, 41

318 Index

options
alpha=, 39, 277
angle=, 107
axis.text=, 107
booktabs=, 269
caption=, 270, 274
colour=, 101
cp=, 201
diag=, 73
digits=, 268
echo=, 267, 278
eval=, 277, 278
fig.cap=, 281
fig.height=, 279
fig.pos=, 281
fig.width=, 278, 279
fill=, 62, 103, 107, 111,

129
fun.y=, 107
height=, 103
importance=, 217
include.rownames=, 271
label=, 270
legend.position=, 111
log=, 183
loss=, 204
maxdepth=, 201
minbucket=, 201
minsplit=, 201
na.action=, 217
na.rm=, 220
nrounds=, 229
ordered=, 58
out.height=, 280
out.width=, 280
package=, 24, 25
parms=, 204

pkgs=, 22
position=, 106, 129
print_every_n=, 229
row.names=, 131, 268
stat=, 107
stringsAsFactors=, 131
type=, 185, 186
USE.NAMES=, 86
verbose=, 246
width=, 62, 103
x=, 23, 25, 101, 107, 111
y=, 101, 107, 111

ordered= (option), 58
out.height= (option), 280
out.width= (option), 280
outlier, 111

package, 22, 24
package= (option), 24, 25
package_search() (ckanr),

152
packages, 26

base, 26
caret, 176
ckanr, 149–151
diagram, 258
directlabels, 120
dplyr, 22, 23, 25, 26, 43,

97, 120, 149, 176,
215, 258

FSelector, 43, 76
GGally, 97
ggplot2, 20, 23, 26, 43,

62, 97–99, 102, 104,
117, 119, 120, 149,
176, 215, 258, 276,
277, 296

gridExtra, 97

Index 319

Hmisc, 258, 266
knitr, x, 258, 259,

263–266, 276, 278,
279, 282

lubridate, 43, 97
magrittr, 26, 31, 44, 97,

120, 125, 149, 176,
215, 241, 258

Matrix, 215
randomForest, 43, 97,

176, 215, 241
rattle, 19, 23, 25, 26, 41,

43–45, 97, 98, 120,
149, 177, 193, 215,
241, 258, 266, 277

RColorBrewer, 97
readr, 26, 43, 120, 149
readxl, 120
ROCR, 176, 215, 241
rpart, 177
scales, 43, 97, 120, 149,

177, 215, 241
stringi, 43, 97, 120, 149,

177, 215, 241
stringr, 43, 97, 120, 149
tibble, 44, 177, 216
tidyr, 44, 120, 149
utils, 41
xgboost, 216
xtable, 149, 258, 270

parms= (option), 204
paste() (base), 274
pdf() (grDevices), 279
performance() (ROCR), 190,

191
philosophy, 1
pipe, 31, 32

pipeline, 35
pkgs= (option), 22
position= (option), 106, 129
predict() (stats), 185, 186,

191, 231
prediction() (ROCR), 190,

191
print() (base), 28, 29, 37, 83,

122, 152, 181, 182,
297

print.xtable() (xtable), 271
print_every_n= (option),

229
programming, 2, 13, 18
programming by example, 14

qplot() (ggplot2), 19, 20, 23

R script file, 27
rain_tomorrow (R variable),

89
random forest, 217–227
randomForest (package), 43,

97, 176, 215, 241
na.roughfix(), 78, 99,

217, 228
randomForest(), 78, 217

randomForest()
(randomForest), 78,
217

rattle (package), 19, 23, 25,
26, 41, 43–45, 97, 98,
120, 149, 177, 193,
215, 241, 258, 266,
277

comcat(), 38, 48
errorMatrix(), 188
fancyRpartPlot(), 184

320 Index

ggVarImp(), 183, 218,
231

normVarNames(), 41, 50,
152, 167

rattleInfo(), xi
riskchart(), 193, 199
weatherAUS, 19, 20, 23,

31–33, 39, 42
rattleInfo() (rattle), xi
RColorBrewer (package), 97

brewer.pal(), 105
read_csv() (readr), 45, 60,

156, 177
read_excel() (readxl), 120
readr (package), 26, 43, 120,

149
read_csv(), 45, 60, 156,

177
readxl (package), 120

excel_sheets(), 121
read_excel(), 120

rep() (base), 125
return() (base), 248, 249,

254, 298
risk variable, 65
risk_mm (R variable), 91
riskchart() (rattle), 193, 199
ROCR (package), 176, 215,

241
performance(), 190, 191
prediction(), 190, 191

row.names= (option), 131,
268

rpart (package), 177
rpart(), 78, 180, 201
rpart.control(), 201

rpart() (rpart), 78, 180, 201

rpart.control() (rpart), 201
RStudio, 15–21, 26, 27,

40–42, 45, 122,
258–261, 265, 291,
294, 295

runif() (stats), 264

sample_n() (dplyr), 53
sapply() (base), 56, 57, 67,

72, 86
scale_fill_manual()

(ggplot2), 127
scales (package), 43, 97, 120,

149, 177, 215, 241
comma(), 106

scatter plot, 20, 100
science, 1
search() (base), 24, 25
select() (dplyr), 32, 36, 56,

57
seq() (base), 125
server, 18
servers() (ckanr), 150
set.seed() (base), 90, 268
set_colnames() (magrittr),

73
set_names() (magrittr), 124,

131
software engineering, 3
sort() (base), 125
sparse.model.matrix()

(Matrix), 228
sprintf() (base), 243
stat= (option), 107
stats (package)

cor(), 73
formula(), 88
kmeans(), 82, 83

Index 321

na.omit(), 73, 79, 99, 133
predict(), 185, 186, 191,

231
runif(), 264
var(), 95

string, 22
stringi (package), 43, 97, 120,

149, 177, 215, 241
%s+%, 76

stringr (package), 43, 97,
120, 149

stringsAsFactors= (option),
131

subset() (base), 277
sum() (base), 27, 186
summarise() (dplyr), 95, 161
summarise_all() (dplyr), 83
summary() (base), 32, 34,

182
switch() (base), 81
synthesis, 1
Sys.time() (base), 274

t() (base), 130
table data frame, 45
table() (base), 55–57
tail() (utils), 53
target variable, 64, 88
tbl_df() (dplyr), 56, 73, 131,

266
template, 43, 47
template variable, 46
testing dataset, 89
theme() (ggplot2), 107, 111
tibble (package), 44, 177, 216

glimpse(), 49, 52
tidyr (package), 44, 120, 149

extract(), 125, 152

gather(), 73, 126, 133,
139

train, 89
training dataset, 64
training dataset, 89
type= (option), 185, 186

Ubuntu, x
union() (dplyr), 66
unique() (base), 55, 65, 67,

158
unlink() (base), 156
unlist() (base), 229
unz() (base), 156
USE.NAMES= (option), 86
utils (package), 41

?, 41
download.file(), 120, 156
head(), 37, 39, 53, 264
install.packages(), 19,

22, 27
tail(), 53
View(), 122

validation dataset, 89
var() (stats), 95
variable, 28
variables, 45

.GlobalEnv, 24
Autoloads, 24
na.action, 79
rain_tomorrow, 89
risk_mm, 91
vars, 167

vars (R variable), 167
vector, 28
verbose= (option), 246
View() (utils), 122

322 Index

viewport() (grid), 141
violin plot, 111

weatherAUS (rattle), 19, 20,
23, 31–33, 39, 42

which() (base), 67, 72
width= (option), 62, 103
wisdom, 1

x= (option), 23, 25, 101, 107,
111

xgboost (package), 216
xgboost(), 227, 228

xgboost() (xgboost), 227,
228

xtable (package), 149, 258,
270

print.xtable(), 271
xtable(), 162, 271

xtable() (xtable), 162, 271

y= (option), 101, 107, 111

	Cover

	Half Title

	Series Editors
	Published Titles
	Title

	Copyright

	Dedication

	Preface
	Contents
	List of Figures
	List of Tables
	Chapter 1 Data Science
	1.1 Exercises

	Chapter 2 Introducing R
	2.1 Tooling For R Programming
	2.2 Packages and Libraries
	2.3 Functions, Commands and Operators
	2.4 Pipes
	2.5 Getting Help
	2.6 Exercises

	Chapter
3 Data Wrangling
	3.1 Data Ingestion
	3.2 Data Review
	3.3 Data Cleaning
	3.4 Variable Roles
	3.5 Feature Selection
	3.6 Missing Data
	3.7 Feature Creation
	3.8 Preparing the Metadata
	3.9 Preparing for Model Building
	3.10 Save the Dataset
	3.11 A Template for Data Preparation
	3.12 Exercises

	Chapter
4 Visualising Data
	4.1 Preparing the Dataset
	4.2 Scatter Plot
	4.3 Bar Chart
	4.4 Saving Plots to File
	4.5 Adding Spice to the Bar Chart
	4.6 Alternative Bar Charts
	4.7 Box Plots
	4.8 Exercises

	Chapter
5 Case Study: Australian Ports
	5.1 Data Ingestion
	5.2 Bar Chart: Value/Weight of Sea Trade
	5.3 Scatter Plot: Throughput versus Annual Growth
	5.4 Combined Plots: Port Calls
	5.5 Further Plots
	5.6 Exercises

	Chapter
6 Case Study: Web Analytics
	6.1 Sourcing Data from CKAN
	6.2 Browser Data
	6.3 Entry Pages
	6.4 Exercises

	Chapter
7 A Pattern for Predictive Modelling
	7.1 Loading the Dataset
	7.2 Building a Decision Tree Model
	7.3 Model Performance
	7.4 Evaluating Model Generality
	7.5 Model Tuning
	7.6 Comparison of Performance Measures
	7.7 Save the Model to File
	7.8 A Template for Predictive Modelling
	7.9 Exercises

	Chapter
8 Ensemble of Predictive Models
	8.1 Loading the Dataset
	8.2 Random Forest
	8.3 Extreme Gradient Boosting
	8.4 Exercises

	Chapter 9 Writing Functions in R
	9.1 Model Evaluation
	9.2 Creating a Function
	9.3 Function for ROC Curves
	9.4 Exercises

	Chapter
 10 Literate Data Science
	10.1 Basic LATEX Template
	10.2 A Template for our Narrative
	10.3 Including R Commands
	10.4 Inline R Code
	10.5 Formatting Tables Using Kable
	10.6 Formatting Tables Using XTable
	10.7 Including Figures
	10.8 Add a Caption and Label
	10.9 Knitr Options
	10.10Exercises

	Chapter
11 R with Style
	11.1 Why We Should Care
	11.2 Naming
	11.3 Comments
	11.4 Layout
	11.5 Functions
	11.6 Assignment
	11.7 Miscellaneous
	11.8 Exercises

	Bibliography
	Index

