




Early praise for Data Science Essentials in Python

This book does a fantastic job at summarizing the various activities when wrangling
data with Python. Each exercise serves an interesting challenge that is fun to
pursue. This book should no doubt be on the reading list of every aspiring data
scientist.

➤ Peter Hampton
Ulster University

Data Science Essentials in Python gets you up to speed with the most common
tasks and tools in the data science field. It’s a quick introduction to many different
techniques for fetching, cleaning, analyzing, and storing your data. This book
helps you stay productive so you can spend less time on technology research and
more on your intended research.

➤ Jason Montojo
Coauthor of Practical Programming: An Introduction to Computer Science Using
Python 3

For those who are highly curious and passionate about problem solving and
making data discoveries, Data Science Essentials in Python provides deep insights
and the right set of tools and techniques to start with. Well-drafted examples and
exercises make it practical and highly readable.

➤ Lokesh Kumar Makani
CASB expert, Skyhigh Networks
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I must instruct you in a little science by-and-by, to distract your thoughts.

➤ Marie Corelli, British novelist

Preface
This book was inspired by an introductory data science course in Python that
I taught in summer 2015 to a small group of select undergraduate students
of Suffolk University in Boston. The course was expected to be the first in a
two-course sequence, with an emphasis on obtaining, cleaning, organizing,
and visualizing data, sprinkled with some elements of statistics, machine
learning, and network analysis.

I quickly came to realize that the abundance of systems and Python modules
involved in these operations (databases, natural language processing frame-
works, JSON and HTML parsers, and high-performance numerical data
structures, to name a few) could easily overwhelm not only an undergraduate
student, but also a seasoned professional. In fact, I have to confess that while
working on my own research projects in the fields of data science and network
analysis, I had to spend more time calling the help() function and browsing
scores of online Python discussion boards than I was comfortable with. In
addition, I must admit to some embarrassing moments in the classroom when
I seemed to have hopelessly forgotten the name of some function or some
optional parameter.

As a part of teaching the course, I compiled a set of cheat sheets on various
topics that turned out to be a useful reference. The cheat sheets eventually
evolved into this book. Hopefully, having it on your desk will make you think
more about data science and data analysis than about function names and
optional parameters.

About This Book
This book covers data acquisition, cleaning, storing, retrieval, transformation,
visualization, elements of advanced data analysis (network analysis), statistics,
and machine learning. It is not an introduction to data science or a general
data science reference, although you’ll find a quick overview of how to do data
science in Chapter 1, What Is Data Science?, on page 1. I assume that you
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have learned the methods of data science, including statistics, elsewhere. The
subject index at the end of the book refers to the Python implementations of
the key concepts, but in most cases you will already be familiar with the
concepts.

You’ll find a summary of Python data structures; string, file, and web func-
tions; regular expressions; and even list comprehension in Chapter 2, Core
Python for Data Science, on page 9. This summary is provided to refresh
your knowledge of these topics, not to teach them. There are a lot of excellent
Python texts, and having a mastery of the language is absolutely important
for a successful data scientist.

The first part of the book looks at working with different types of text data,
including processing structured and unstructured text, processing numeric
data with the NumPy and Pandas modules, and network analysis. Three more
chapters address different analysis aspects: working with relational and non-
relational databases, data visualization, and simple predictive analysis.

This book is partly a story and partly a reference. Depending on how you see
it, you can either read it sequentially or jump right to the index, find the
function or concept of concern, and look up relevant explanations and
examples. In the former case, if you are an experienced Python programmer,
you can safely skip Chapter 2, Core Python for Data Science, on page 9. If
you do not plan to work with external databases (such as MySQL), you can
ignore Chapter 4, Working with Databases, on page 47, as well. Lastly,
Chapter 9, Probability and Statistics, on page 147, assumes that you have no
idea about statistics. If you do, you have an excuse to bypass the first two
units and find yourself at Unit 47, Doing Stats the Python Way, on page 152.

About the Audience
At this point, you may be asking yourself if you want to have this book on
your bookshelf.

The book is intended for graduate and undergraduate students, data science
instructors, entry-level data science professionals—especially those converting
from R to Python—and developers who want a reference to help them
remember all of the Python functions and options.

Is that you? If so, abandon all hesitation and enter.

Preface • xiv
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About the Software
Despite some controversy surrounding the transition from Python 2.7 to
Python 3.3 and above, I firmly stand behind the newer Python dialect. Most
new Python software is developed for 3.3, and most of the legacy software
has been successfully ported to 3.3, too. Considering the trend, it would be
unwise to choose an outdated dialect, no matter how popular it may seem at
the time.

All Python examples in this book are known to work for the modules mentioned
in the following table. All of these modules, with the exception of the community
module that must be installed separately1 and the Python interpreter itself,
are included in the Anaconda distribution, which is provided by Continuum
Analytics and is available for free.2

Used versionPackageUsed versionPackage

0.3community4.3.2BeautifulSoup
0.999html5lib2.0.9json
1.10.0networkx1.4.3matplotlib
1.10.1numpy3.1.0nltk
3.0.2pymongo0.17.0pandas
3.4.3python0.6.2pymysql
0.16.0scipy0.16.1scikit-learn

Table 1—Software Components Used in the Book

If you plan to experiment (or actually work) with databases, you will also need
to download and install MySQL3 and MongoDB.4 Both databases are free and
known to work on Linux, Mac OS, and Windows platforms.

Notes on Quotes
Python allows the user to enclose character strings in 'single', "double",
'''triple''', and even """triple double""" quotes (the latter two can be used for
multiline strings). However, when printing out strings, it always uses single
quote notation, regardless of which quotes you used in the program.

Many other languages (C, C++, Java) use single and double quotes differently:
single for individual characters, double for character strings. To pay tribute

1. pypi.python.org/pypi/python-louvain/0.3
2. www.continuum.io
3. www.mysql.com
4. www.mongodb.com
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to this differentiation, in this book I, too, use single quotes for single characters
and double quotes for character strings.

The Book Forum
The community forum for this book can be found online at the Pragmatic
Programmers web page for this book.5 There you can ask questions, post
comments, and submit errata.

Another great resource for questions and answers (not specific to this book)
is the newly created Data Science Stack Exchange forum.6

Your Turn
The end of each chapter features a unit called “Your Turn.” This unit has
descriptions of several projects that you may want to accomplish on your own
(or with someone you trust) to strengthen your understanding of the material.

The projects marked with a single star* are the simplest. All you need to work
on them is solid knowledge of the functions mentioned in the preceding
chapters. Expect to complete single-star projects in no more than thirty
minutes. You’ll find solutions to them in Appendix 2, Solutions to Single-Star
Projects, on page 175.

The projects marked with two stars** are hard(er). They may take you an hour
or more, depending on your programming skills and habits. Two-star projects
involve the use of intermediate data structures and well thought-out algorithms.

Finally, the three-star*** projects are the hardest. Some of the three-star projects
may not even have a perfect solution, so don’t get desperate if you cannot find
one! Just by working on these projects, you certainly make yourself a better
programmer and a better data scientist. And if you’re an educator, think of
the three-star projects as potential mid-semester assignments.

Now, let’s get started!

Dmitry Zinoviev

dzinoviev@gmail.com
August 2016

5. pragprog.com/book/dzpyds
6. datascience.stackexchange.com

Preface • xvi
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CHAPTER 1

It’s impossible to grasp the boundless.

➤ Kozma Prutkov, Russian author

What Is Data Science?
I’m sure you already have an idea about what data science is, but it never
hurts to remind! Data science is the discipline of the extraction of knowledge
from data. It relies on computer science (for data structures, algorithms,
visualization, big data support, and general programming), statistics (for
regressions and inference), and domain knowledge (for asking questions and
interpreting results).

Data science traditionally concerns itself with a number of dissimilar topics,
some of which you may be already familiar with and some of which you’ll
encounter in this book:

• Databases, which provide information storage and integration. You’ll find
information about relational databases and document stores in Chapter
4, Working with Databases, on page 47.

• Text analysis and natural language processing, which let us “compute
with words” by translating qualitative text into quantitative variables.
Interested in tools for sentiment analysis? Look no further than Unit 16,
Processing Texts in Natural Languages, on page 38.

• Numeric data analysis and data mining, which search for consistent pat-
terns and relationships between variables. These are the subjects of
Chapter 5, Working with Tabular Numeric Data, on page 63 and Chapter
6, Working with Data Series and Frames, on page 83.

• Complex network analysis, which is not complex at all. It is about complex
networks: collections of arbitrary interconnected entities. Chapter 7,
Working with Network Data, on page 121, makes complex network analysis
simpler.

• Data visualization, which is not just cute but is extremely useful, especially
when it comes to persuading your data sponsor to sponsor you again. If
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one picture is worth a thousand words, then Chapter 8, Plotting, on page
135, is worth the rest of the book.

• Machine learning (including clustering, decision trees, classification, and
neural networks), which attempts to get computers to “think” and make
predictions based on sample data. Chapter 10, Machine Learning, on page
157, explains how.

• Time series processing and, more generally, digital signal processing, which
are indispensable tools for stock market analysts, economists, and
researchers in audio and video domains.

• Big data analysis, which typically refers to the analysis of unstructured
data (text, audio, video) in excess of one terabyte, produced and captured
at high frequency. Big data is simply too big to fit in this book, too.

Regardless of the analysis type, data science is firstly science and only then
sorcery. As such, it is a process that follows a pretty rigorous basic sequence
that starts with data acquisition and ends with a report of the results. In this
chapter, you’ll take a look at the basic processes of data science: the steps
of a typical data analysis study, where to acquire data, and the structure of
a typical project report.

Chapter 1. What Is Data Science? • 2
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Unit 1

Data Analysis Sequence

The steps of a typical data analysis study are generally consistent with a
general scientific discovery sequence.

Your data science discovery starts with the question to be answered and the
type of analysis to be applied. The simplest analysis type is descriptive, where
the data set is described by reporting its aggregate measures, often in a
visual form. No matter what you do next, you have to at least describe the
data! During exploratory data analysis, you try to find new relationships
between existing variables. If you have a small data sample and would like
to describe a bigger population, statistics-based inferential analysis is right
for you. A predictive analyst learns from the past to predict the future. Causal
analysis identifies variables that affect each other. Finally, mechanistic data
analysis explores exactly how one variable affects another variable.

However, your analysis is only as good as the data you use. What is the ideal
data set? What data has the answer to your question in an ideal world? By
the way, the ideal data set may not exist at all or be hard or infeasible to
obtain. Things happen, but perhaps a smaller or not so feature-rich data set
would still work?

Fortunately, getting the raw data from the web or from a database is not that
hard, and there are plenty of Python tools that assist with downloading and
deciphering it. You’ll take a closer look in Unit 2, Data Acquisition Pipeline,
on page 5.

In this imperfect world, there is no perfect data. “Dirty” data has missing
values, outliers, and other “non-standard” items. Some examples of “dirty”
data are birth dates in the future, negative ages and weights, and email
addresses not intended for use (noreply@). Once you obtain the raw data, the
next step is to use data-cleaning tools and your knowledge of statistics to
regularize the data set.

With clean data in your files, you then perform descriptive and exploratory
analysis. The output of this step often includes scatter plots (mentioned on
page 143), histograms, and statistical summaries (explained on page 150). They
give you a smell and sense of data—an intuition that is indispensable for
further research, especially if the data set has many dimensions.
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And now you are just one step away from prognosticating. Your tools of the
trade are data models that, if properly trained, can learn from the past and
predict the future. Don’t forget about assessing the quality of the constructed
models and their prediction accuracy!

At this point you take your statistician and programmer hats off and put a
domain expert hat on. You’ve got some results, but are they domain-signifi-
cant? In other words, does anyone care about them and do they make any
difference? Pretend that you’re a reviewer hired to evaluate your own work.
What did you do right, what did you do wrong, and what would you do better
or differently if you had another chance? Would you use different data, run
different types of analysis, ask a different question, or build a different model?
Someone is going to ask these questions—it’s better if you ask them first.
Start looking for the answers when you are still deeply immersed in the context.

Last, but not least, you have to produce a report that explains how and why
you processed the data, what models were built, and what conclusions and
predictions are possible. You’ll take a look at the report structure at the end
of this chapter in Unit 3, Report Structure, on page 7.

As your companion to select areas of data science in the Python language,
this book’s focus is mainly on the earlier, least formalized, and most creative
steps of a typical data analysis sequence: getting, cleaning, organizing, and
sizing the data. Data modeling, including predictive data modeling, is barely
touched. (It would be unfair to leave data modeling out completely, because
that’s where the real magic happens!) In general, results interpretation, chal-
lenging, and reporting are very domain-specific and belong to specialized texts.

Chapter 1. What Is Data Science? • 4
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Unit 2

Data Acquisition Pipeline

Data acquisition is all about obtaining the artifacts that contain the input
data from a variety of sources, extracting the data from the artifacts, and
converting it into representations suitable for further processing, as shown
in the following figure.

Pickled file

Internet

File

Database

source representation

List, tuple, set

Array, matrix

Frame, series

Dictionary

CSV

HTML/XML

JSON

Tabular

format

structured

unstructured

Plain text

processing

The three main sources of data are the Internet (namely, the World Wide
Web), databases, and local files (possibly previously downloaded by hand or
using additional software). Some of the local files may have been produced
by other Python programs and contain serialized or “pickled” data (see Unit
12, Pickling and Unpickling Data, on page 27, for further explanation).

The formats of data in the artifacts may range widely. In the chapters that follow,
you’ll consider ways and means of working with the most popular formats:

• Unstructured plain text in a natural language (such as English or Chinese)

• Structured data, including:

– Tabular data in comma separated values (CSV) files

– Tabular data from databases

– Tagged data in HyperText Markup Language (HTML) or, in general,
in eXtensible Markup Language (XML)

– Tagged data in JavaScript Object Notation (JSON)
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Depending on the original structure of the extracted data and the purpose
and nature of further processing, the data used in the examples in this book
are represented using native Python data structures (lists and dictionaries)
or advanced data structures that support specialized operations (numpy arrays
and pandas data frames).

I attempt to keep the data processing pipeline (obtaining, cleaning, and
transforming raw data; descriptive and exploratory data analysis; and data
modeling and prediction) fully automated. For this reason, I avoid using
interactive GUI tools, as they can rarely be scripted to operate in a batch
mode, and they rarely record any history of operations. To promote modular-
ity, reusability, and recoverability, I’ll break a long pipeline into shorter sub-
pipelines, saving intermediate results into Pickle ( on page 27) or JSON ( on
page 36) files, as appropriate.

Pipeline automation naturally leads to reproducible code: a set of Python
scripts that anyone can execute to convert the original raw data into the final
results as described in the report, ideally without any additional human
interaction. Other researchers can use reproducible code to validate your
models and results and to apply the process that you developed to their own
problems.

Chapter 1. What Is Data Science? • 6
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Unit 3

Report Structure

The project report is what we (data scientists) submit to the data sponsor (the
customer). The report typically includes the following:

• Abstract (a brief and accessible description of the project)

• Introduction

• Methods that were used for data acquisition and processing

• Results that were obtained (do not include intermediate and insignificant
results in this section; rather, put them into an appendix)

• Conclusion

• Appendix

In addition to the non-essential results and graphics, the appendix contains
all reproducible code used to process the data: well-commented scripts that
can be executed without any command-line parameters and user interaction.

The last but not least important part of the submission is the raw data: any
data file that is required to execute the code in a reproducible way, unless
the file has been provided by the data sponsor and has not been changed. A
README file typically explains the provenance of the data and the format of
every attached data file.

Take this structure as a recommendation, not something cast in stone. Your
data sponsor and common sense may suggest an alternative implementation.
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Your Turn
In this introductory chapter, you looked at the basic processes of data science:
the steps in a typical data analysis study, where to obtain data and the differ-
ent formats of data, and the structure of a typical project report. The rest of
the book introduces the features of Python that are essential to elementary
data science, as well as various Python modules that provide algorithmic and
statistical support for a data science project of modest complexity.

Before you continue, let’s do a simple project to get our Python feet wet. (Do
pythons have feet?) Computer programmers have a good tradition of introduc-
ing beginners to a new programming language by writing a program that
outputs “Hello, World!” There is no reason for us not to follow the rule.

Hello, World!*

Write a program that outputs “Hello, World!” (less the quotes) on the
Python command line.

Chapter 1. What Is Data Science? • 8
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CHAPTER 2

And I spoke to them in as many languages as I had the least
smattering of, which were High and Low Dutch, Latin, French,
Spanish, Italian, and Lingua Franca, but all to no purpose.

➤ Jonathan Swift, Anglo-Irish satirist

Core Python for Data Science
Some features of the core Python language are more important for data
analysis than others. In this chapter, you’ll look at the most essential of them:
string functions, data structures, list comprehension, counters, file and web
functions, regular expressions, globbing, and data pickling. You’ll learn how
to use Python to extract data from local disk files and the Internet, store them
into appropriate data structures, locate bits and pieces matching certain
patterns, and serialize and de-serialize Python objects for future processing.
However, these functions are by no means specific to data science or data
analysis tasks and are found in many other applications.

It’s a common misunderstanding that the presence of high-level programming
tools makes low-level programming obsolete. With the Anaconda distribution
of Python alone providing more than 350 Python packages, who needs to split
strings and open files? The truth is, there are at least as many non-standard
data sources in the world as those that follow the rules.

All standard data frames, series, CSV readers, and word tokenizers follow the
rules set up by their creators. They fail miserably when they come across
anything out of compliance with the rules. That’s when you blow the dust off
this book and demote yourself from glorified data scientist to humble but very
useful computer programmer.

You may need to go as far “down” as to the string functions—in fact, they are
just around the corner on page 10.
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Unit 4

Understanding Basic String Functions

A string is a basic unit of interaction between the world of computers and the
world of humans. Initially, almost all raw data is stored as strings. In this
unit, you’ll learn how to assess and manipulate text strings.

All functions described in this unit are members of the str built-in class.

The case conversion functions return a copy of the original string s: lower()
converts all characters to lowercase; upper() converts all characters to upper-
case; and capitalize() converts the first character to uppercase and all other
characters to lowercase. These functions don’t affect non-alphabetic charac-
ters. Case conversion functions are an important element of normalization,
which you’ll look at on page 41.

The predicate functions return True or False, depending on whether the string s
belongs to the appropriate class: islower() checks if all alphabetic characters are
in lowercase; isupper() checks if all alphabetic characters are in uppercase; isspace()
checks if all characters are spaces; isdigit() checks if all characters are decimal
digits in the range 0–9; and isalpha() checks if all characters are alphabetic
characters in the ranges a–z or A–Z. You will use these functions to recognize
valid words, nonnegative integer numbers, punctuation, and the like.

Sometimes Python represents string data as raw binary arrays, not as char-
acter strings, especially when the data came from an external source: an
external file, a database, or the web. Python uses the b notation for binary
arrays. For example, bin = b"Hello" is a binary array; s = "Hello" is a string.
Respectively, s[0] is 'H' and bin[0] is 72, where 72 is the ASCII charcode for the
character 'H'. The decoding functions convert a binary array to a character
string and back: bin.decode() converts a binary array to a string, and s.encode()
converts a string to a binary array. Many Python functions expect that binary
data is converted to strings until it is further processed.

The first step toward string processing is getting rid of unwanted whitespaces
(including new lines and tabs). The functions lstrip() (left strip), rstrip() (right
strip), and strip() remove all whitespaces at the beginning, at the end, or all
around the string. (They don’t remove the inner spaces.) With all these
removals, you should be prepared to end up with an empty string!
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" Hello, world! \t\t\n".strip()

'Hello, world!'➾

Often a string consists of several tokens, separated by delimiters such as
spaces, colons, and commas. The function split(delim='') splits the string s into
a list of substrings, using delim as the delimiter. If the delimiter isn’t specified,
Python splits the string by all whitespaces and lumps all contiguous whites-
paces together:

"Hello, world!".split() # Two spaces!

['Hello,', 'world!']➾

"Hello, world!".split(" ") # Two spaces!

['Hello,', '', 'world!']➾

"www.networksciencelab.com".split(".")

['www', 'networksciencelab', 'com']➾

The sister function join(ls) joins a list of strings ls into one string, using the
object string as the glue. You can recombine fragments with join():

", ".join(["alpha", "bravo", "charlie", "delta"])

'alpha, bravo, charlie, delta'➾

In the previous example, join() inserts the glue only between the strings and
not in front of the first string or after the last string. The result of splitting a
string and joining the fragments again is often indistinguishable from
replacing the split delimiter with the glue:

"-".join("1.617.305.1985".split("."))

'1-617-305-1985'➾

Sometimes you may want to use the two functions together to remove
unwanted whitespaces from a string. You can accomplish the same effect by
regular expression-based substitution (which you’ll look at later on page 25).

" ".join("This string\n\r has many\t\tspaces".split())

'This string has many spaces'➾

The function find(needle) returns the index of the first occurrence of the sub-
string needle in the object string or -1 if the substring is not present. This
function is case-sensitive. It is used to find a fragment of interest in a string
—if it exists.
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"www.networksciencelab.com".find(".com")

21➾

The function count(needle) returns the number of non-overlapping occurrences
of the substring needle in the object string. This function is also case-sensitive.

"www.networksciencelab.com".count(".")

2➾

Strings are an important building block of any data-processing program, but
not the only building block—and not the most efficient building block, either.
You will also use lists, tuples, sets, and dictionaries to bundle string and
numeric data and enable efficient searching and sorting.
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Unit 5

Choosing the Right Data Structure

The most commonly used compound data structures in Python are lists,
tuples, sets, and dictionaries. All four of them are collections.

Python implements lists as arrays. They have linear search time, which makes
them impractical for storing large amounts of searchable data.

Tuples are immutable lists. Once created, they cannot be changed. They still
have linear search time.

Unlike lists and tuples, sets are not sequences: set items don’t have indexes.
Sets can store at most one copy of an item and have sublinear O(log(N)) search
time. They are excellent for membership look-ups and eliminating duplicates
(if you convert a list with duplicates to a set, the duplicates are gone):

myList = list(set(myList)) # Remove duplicates from myList

You can transform list data to a set for faster membership look-ups. For
example, let’s say bigList is a list of the first 10 million integer numbers repre-
sented as decimal strings:

bigList = [str(i) for i in range(10000000)]
"abc" in bigList # Takes 0.2 sec
bigSet = set(bigList)
"abc" in bigSet # Takes 15–30 μsec—10000 times faster!

Dictionaries map keys to values. An object of any hashable data type (number,
Boolean, string, tuple) can be a key, and different keys in the same dictionary
can belong to different data types. There is no restriction on the data types
of dictionary values. Dictionaries have sublinear O(log(N)) search time. They
are excellent for key-value look-ups.

You can create a dictionary from a list of (key, value) tuples, and you can use
a built-in class constructor enumerate(seq) to create a dictionary where the key
is the sequence number of an item in seq:

seq = ["alpha", "bravo", "charlie", "delta"]
dict(enumerate(seq))

{0: 'alpha', 1: 'bravo', 2: 'charlie', 3: 'delta'}➾
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Another smart way to create a dictionary from a sequence of keys (kseq) and
a sequence of values (vsec) is through a built-in class constructor, zip(kseq, vseq)
(the sequences must be of the same length):

kseq = "abcd" # A string is a sequence, too
vseq = ["alpha", "bravo", "charlie", "delta"]
dict(zip(kseq, vseq))

{'a': 'alpha', 'c': 'charlie', 'b': 'bravo', 'd': 'delta'}➾

Python implements enumerate(seq) and zip(kseq, vseq) (and the good old range(),
too) as list generators. List generators provide an iterator interface, which
makes it possible to use them in for loops. Unlike a real list, a list generator
produces the next element in a lazy way, only as needed. Generators facilitate
working with large lists and even permit “infinite” lists. You can explicitly
coerce a generator to a list by calling the list() function.
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Unit 6

Comprehending Lists Through List Comprehension

List comprehension is an expression that transforms a collection (not neces-
sarily a list) into a list. It is used to apply the same operation to all or some
list elements, such as converting all elements to uppercase or raising them
all to a power.

The transformation process looks like this:

1. The expression iterates over the collection and visits the items from the
collection.

2. An optional Boolean expression (default True) is evaluated for each item.

3. If the Boolean expression is True, the loop expression is evaluated for the
current item, and its value is appended to the result list.

4. If the Boolean expression is False, the item is ignored.

Here are some trivial list comprehensions:

# Copy myList; same as myList.copy() or myList[:], but less efficient
[x for x in myList]
# Extract non-negative items
[x for x in myList if x >= 0]
# Build a list of squares
[x**2 for x in myList]
# Build a list of valid reciprocals
[1/x for x in myList if x != 0]
# Collect all non-empty lines from the open file infile,
# with trailing and leading whitespaces removed
[l.strip() for l in infile if l.strip()]

In the latter example, the function strip() is evaluated twice for each list item.
If you don’t want the duplication, you can use nested list comprehensions.
The inner one strips off the whitespaces, and the outer one eliminates empty
strings:

[line for line in [l.strip() for l in infile] if line]
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If you enclose a list comprehension in parentheses rather than in square
brackets, it evaluates to a list generator object:

(x**2 for x in myList) # Evaluates to <generator object <genexpr> at 0x...>

Often the result of list comprehension is a list of repeating items: numbers,
words, word stems, and lemmas. You want to know which item is the most
or least common. Counter class, coming up next in Unit 7, Counting with
Counters, on page 17, is a poor man’s tool for collecting these sorts of statistics.
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Unit 7

Counting with Counters

A counter is a dictionary-style collection for tallying items in another collection.
It is defined in the module collections. You can pass the collection to be tallied
to the constructor Counter and then use the function most_common(n) to get a list
of n most frequent items and their frequencies (if you don’t provide n, the
function will return a list of all items).

from collections import Counter
phrase = "a man a plan a canal panama"
cntr = Counter(phrase.split())
cntr.most_common()

[('a', 3), ('canal', 1), ('panama', 1), ('plan', 1), ('man', 1)]➾

The latter list can be converted to a dictionary for easy look-ups:

cntrDict = dict(cntr.most_common())

{'a': 3, 'canal': 1, 'panama': 1, 'plan': 1, 'man': 1}➾

cntrDict['a']

3➾

You’ll look at more versatile, pandas-base counting tools in the unit Uniqueness,
Counting, Membership, on page 108.
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Unit 8

Working with Files

A file is a non-volatile container for long-term data storage. A typical file
operation involves opening a file, reading data from the file or writing data
into the file, and closing the file. You can open a file for reading (default mode,
denoted as "r"), [over]writing ("w"), or appending ("a"). Opening a file for writing
destroys the original content of the file without notice, and opening a non-
existing file for reading causes an exception:

f = open(name, mode="r")
«read the file»
f.close()

Python provides an efficient replacement to this paradigm: the with statement
allows us to open a file explicitly, but it lets Python close the file automatically
after exiting, thus saving us from tracking the unwanted open files.

with open(name, mode="r") as f:
«read the file»

Some modules, such as pickle (discussed in Unit 12, Pickling and Unpickling
Data, on page 27), require that a file be opened in binary mode ("rb", "wb", or
"ab"). You should also use binary mode for reading/writing raw binary arrays.
The following functions read text data from a previously opened file f:

f.read() # Read all data as a string or a binary
f.read(n) # Read the first n bytes as a string or a binary
f.readline() # Read the next line as a string
f.readlines() # Read all lines as a list of strings

You can mix and match these functions, as needed. For example, you can
read the first string, then the next five bytes, then the next line, and finally
the rest of the file. The newline character is not removed from the results
returned by any of these functions. Generally, it is unsafe to use the functions
read() and readlines() if you cannot assume that the file size is reasonably small.

The following functions write text data to a previously opened file f:

f.write(line) # Write a string or a binary
f.writelines(ines) # Write a list of strings

These functions don’t add a newline character at the end of the written strings
—that’s your responsibility.
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Unit 9

Reaching the Web

According to WorldWideWebSize,1 the indexed web contains at least 4.85
billion pages. Some of them may be of interest to us. The module urllib.request
contains functions for downloading data from the web. While it may be feasible
(though not advisable) to download a single data set by hand, save it into the
cache directory, and then analyze it using Python scripts, some data analysis
projects call for automated iterative or recursive downloads.

The first step toward getting anything off the web is to open the URL with the
function urlopen(url) and obtain the open URL handle. Once opened, the URL
handle is similar to a read-only open file handle: you can use the functions
read(), readline(), and readlines() to access the data.

Due to the dynamic nature of the web and the Internet, the likelihood of failing
to open a URL is higher than that of opening a local disk file. Remember to
enclose any call to a web-related function in an exception handling statement:

import urllib.request
try:

with urllib.request.urlopen("http://www.networksciencelab.com") as doc:
html = doc.read()
# If reading was successful, the connection is closed automatically

except:
print("Could not open %s" % doc, file=sys.err)
# Do not pretend that the document has been read!
# Execute an error handler here

If the data set of interest is deployed at a website that requires authentication,
urlopen() will not work. Instead, use a module that provides Secure Sockets
Layer (SSL; for example, OpenSSL).

The module urllib.parse supplies friendly tools for parsing and unparsing
(building) URLs. The function urlparse() splits a URL into a tuple of six elements:
scheme (such as http), network address, file system path, parameters, query,
and fragment:

1. www.worldwidewebsize.com
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import urllib.parse
URL = "http://networksciencelab.com/index.html;param?foo=bar#content"
urllib.parse.urlparse(URL)

ParseResult(scheme='http', netloc='networksciencelab.com',➾

path='/index.html', params='param', query='foo=bar',➾

fragment='content')➾

The function urlunparse(parts) constructs a valid URL from the parts returned by
urlparse(). If you parse a URL and then unparse it again, the result may be
slightly different from the original URL—but functionally fully equivalent.
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Unit 10

Pattern Matching with Regular Expressions

Regular expressions are a powerful mechanism for searching, splitting, and
replacing strings based on pattern matching. The module re provides a pattern
description language and a collection of functions for matching, searching,
splitting, and replacing strings.

From the Python point of view, a regular expression is simply a string containing
the description of a pattern. You can make pattern matching much more efficient
if you compile a regular expression that you plan to use more than once:

compiledPattern = re.compile(pattern, flags=0)

Compilation substantially improves pattern matching time but doesn’t affect
correctness. If you want, you can specify pattern matching flags, either at the
time of compilation or later at the time of execution. The most common flags
are re.I (ignores character case) and re.M (tells re to work in a multiline mode,
and lets the operators ̂  and $ also match the start or end of line). If you want
to combine several flags, simply add them.

Understanding Regular Expression Language
The regular expression language is partially summarized in the following table.

Basic operators

Any character except newline.

The character a itselfa

The string ab itselfab

x or yx|y

Escapes a special character y, such as ^+{}$()[]|\-?.*\y

Character classes

One character of: a,b,c,d[a-d]

One character except: a,b,c,d[^a-d]

One digit\d

One non-digit\D

One whitespace\s

One non-whitespace\S
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One alphanumeric character\w

One non-alphanumeric character\W

Quantifiers

Zero or more xsx*

One or more xsx+

Zero or one xx?

Exactly two xsx{2}

Between two and five xsx{2,5}

Escaped characters

Newline\n

Carriage return\r

Tab\t

Assertions

Start of string^

Word boundary\b

Non-word boundary\B

End of string$

Groups

Capturing group(x)

Non-capturing group(?:x)

Table 2—Regular Expression Language

The caret (^) and dash (-) operators in the middle or at the end of a character
class expression don’t have a special meaning and represent characters '^'
and '-'. Groups change the order of operations. Substrings that match captur-
ing groups are also included in the list of results, when appropriate.

Note that regular expressions make extensive use of backslashes ('\'). A
backslash is an escape character in Python. To be treated as a regular char-
acter, it must be preceded by another backslash ('\\'), which results in clumsy
regular expressions with endless pairs of backslashes. Python supports raw
strings where backslashes are not interpreted as escape characters.

To define a raw string, put the character r immediately in front of the opening
quotation mark. The following two strings are equal, and neither of them
contains a newline character:

"\\n"
r"\n"
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You will always write regular expressions as raw strings.

Now it’s time to have a look at some useful regular expressions. The purpose
of these examples is not to scare you off, but to remind you that life is hard,
computer science is harder, and pattern matching is the hardest.

r"\w[-\w\.]*@\w[-\w]*(\.\w[-\w]*)+"
An email address.

r"<TAG\b[^>]*<(.*?)</TAG>"
Specific HTML tag with a matching closing tag.

r"[-+]?((\d*\.?\d+)|(\d\.))([eE][-+]?\d+)?"
A floating point number.

It’s tempting to write a regular expression that matches a valid URL, but this
is notoriously hard. Bravely resist the temptation and use the module urllib.parse,
which was explained earlier on page 19, to parse URLs.

Irregular Regular Expressions

Python regular expressions are not the only kind of regular
expressions on the block. The Perl language uses regular expres-
sions with different syntax and somewhat different semantics (but
the same expressive power). In some simple cases (like file name
matching), you can use the glob module, discussed in Unit 11,
Globbing File Names and Other Strings, on page 26, which is yet
another type of regular expression.

Searching, Splitting, and Replacing with Module re
Once you write and compile a regular expression, you can use it for splitting,
matching, searching, and replacing substrings. The module re provides all
necessary functions, and most functions accept patterns in two forms: raw
and compiled.

re.function(rawPattern, ...)
compiledPattern.function(...)

The function split(pattern, string, maxsplit=0, flags=0) splits a string into at most
maxsplit substrings by the pattern and returns the list of substrings (if maxsplit==0,
all substrings are returned). You can use it, among other things, as a poor
man’s word tokenizer for word analysis:
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re.split(r"\W", "Hello, world!")

['Hello', '', 'world', '']➾

# Combine all adjacent non-letters
re.split(r"\W+", "Hello, world!")

['Hello', 'world', '']➾

The function match(pattern, string, flags=0) checks if the beginning of a string
matches the regular expression. The function returns a match object or None
if the match was not found. The matching object, if any, has the functions
start(), end(), and group() that return the start and end indexes of the matching
fragment, and the fragment itself.

mo = re.match(r"\d+", "067 Starts with a number")

<_sre.SRE_Match object; span=(0, 3), match='067'>➾

mo.group()

'067'➾

re.match(r"\d+", "Does not start with a number")

None➾

The function search(pattern, string, flags=0) checks if any part of a string matches
the regular expression. The function returns a match object or None if the match
was not found. Use this function instead of match() if the matching fragment
is not expected to be at the beginning of a string.

re.search(r"[a-z]+", "0010010 Has at least one 010 letter 0010010", re.I)

<_sre.SRE_Match object; span=(8, 11), match='Has'>➾

# Case-sensitive version
re.search(r"[a-z]+", "0010010 Has at least one 010 letter 0010010")

<_sre.SRE_Match object; span=(9, 11), match='as'>➾

The function findall(pattern, string, flags=0) finds all substrings that match the
regular expression. The function returns a list of substrings. (The list, of
course, can be empty.)

re.findall(r"[a-z]+", "0010010 Has at least one 010 letter 0010010", re.I)

['Has', 'at', 'least', 'one', 'letter']➾
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Capturing vs. Non-Capturing Groups

A non-capturing group is simply a part of a regular expression that re treats as a
single token. The parentheses enclosing a non-capturing group serve the same purpose
as the parentheses in arithmetic expressions. For example, r"cab+" matches a substring
that starts with a "ca", followed by at least one "b", but r"c(?:ab)+" matches a substring
that starts with a "c", followed by one or more "ab"s. Note that there are no spaces
between "(?:" and the rest of the regular expression.

A capturing group, in addition to grouping, also delineates the substring returned
by search() or findall(): r"c(ab)+" describes at least one "ab" after a "c", but only the "ab"s
are returned.

The function sub(pattern, repl, string, flags=0) replaces all non-overlapping matching
parts of a string with repl. You can restrict the number of replacements with
the optional parameter count.

re.sub(r"[a-z ]+", "[...]", "0010010 has at least one 010 letter 0010010")

'0010010[...]010[...]0010010'➾

Regular expressions are great, but in many cases (for example, when it comes
to matching file names by extension) they are simply too powerful, and you
can accomplish comparable results by globbing, which you’ll look at how to
do in the next unit.
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Unit 11

Globbing File Names and Other Strings

Globbing is the process of matching specific file names and wildcards, which
are simplified regular expressions. A wildcard may contain the special symbols
'*' (represents zero or more characters) and '?' (represents exactly one charac-
ter). Note that '\', '+', and '.' are not special symbols!

The module glob provides a namesake function for matching wildcards. The
function returns a list of all file names that match the wildcard passed as the
parameter:

glob.glob("*.txt")

['public.policy.txt', 'big.data.txt']➾

The wildcard '*' matches all file names in the current directory (folder), except
for those that start with a period ('.'). To match the special file names, use the
wildcard ".*".
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Unit 12

Pickling and Unpickling Data

The module pickle implements serialization—saving arbitrary Python data
structures into a file and reading them back as a Python expression. You can
read a pickled expression from the file with any Python program, but not with
a program written in another language (unless an implementation of the
pickle protocol exists in that language).

You must open a pickle file for reading or writing in binary mode:

# Dump an object into a file
with open("myData.pickle", "wb") as oFile:

pickle.dump(object, oFile)

# Load the same object back
with open("myData.pickle", "rb") as iFile:

object = pickle.load(iFile)

You can store more than one object in a pickle file. The function load() either
returns the next object from a pickle file or raises an exception if the end of
the file is detected. You can also use pickle to store intermediate data processing
results that are unlikely to be processed by software with no access to pickle.
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Your Turn
In this chapter, you looked at how to extract data from local disk files and
the Internet, store them into appropriate data structures, extract bits and
pieces matching certain patterns, and pickle for future processing. There is
nothing infinite in computer science, but there is an infinite number of sce-
narios requiring data extraction, broadly ranging in type, purpose, and com-
plexity. Here are just some of them.

Word Frequency Counter*

Write a program that downloads a web page requested by the user and
reports up to ten most frequently used words. The program should treat
all words as case-insensitive. For the purpose of this exercise, assume
that a word is described by the regular expression r"\w+".

File Indexer**

Write a program that indexes all files in a certain user-designated directory
(folder). The program should construct a dictionary where the keys are all
unique words in all the files (as described by the regular expression r"\w+";
treat the words as case-insensitive), and the value of each entry is a list
of file names that contain the word. For instance, if the word “aloha” is
mentioned in the files “early-internet.dat” and “hawaiian-travel.txt,” the
dictionary will have an entry {..., 'aloha': ['early-internet.dat', 'hawaiian-travel.txt'], ...}.

The program will pickle the dictionary for future use.

Phone Number Extractor***

Write a program that extracts all phone numbers from a given text file.
This is not an easy task, as there are several dozens of national conven-
tions for writing phone numbers (see en.wikipedia.org/wiki/National_conven-
tions_for_writing_telephone_numbers). Can you design one regular expression that
catches them all?

And if you thought that this wasn’t that hard, try extracting postal
addresses!
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CHAPTER 3

Who was this Jason, and why did the gods favor him so?
Where did he come from, and what was his story?

➤ Homer, Greek poet

Working with Text Data
Often raw data comes from all kinds of text documents: structured documents
(HTML, XML, CSV, and JSON files) or unstructured documents (plain, human-
readable text). As a matter of fact, unstructured text is perhaps the hardest
data source to work with because the processing software has to infer the
meaning of the data items.

All data representations mentioned in the previous paragraph are human-
readable. (That’s what makes them text documents.) If necessary, we can
open any text file in a simple text editor (Notepad on Windows, gedit on Linux,
TextEdit on Mac OS X) and read it with our bare eyes or edit it by hand. If no
other tools are available, we could treat text documents as texts, regardless
of the representation scheme, and explore them using core Python string
functions (as discussed in Unit 4, Understanding Basic String Functions, on
page 10).

Fortunately, Anaconda supplies several excellent modules—BeautifulSoup, csv,
json, and nltk—that make the daunting work of text analysis almost exciting.
Following the Occam’s razor principle—Entities must not be multiplied beyond
necessity (which was actually formulated by John Punch, not by Occam)—
we should avoid reinventing existing tools. This is true not just for text-pro-
cessing tools, but for any Anaconda package.

Let’s start working with text data by looking at the simple case of structured
data. You’ll then figure out how to add some structure to the unstructured
text via natural language processing techniques.
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Unit 13

Processing HTML Files

The first type of structured text document you’ll look at is HTML—a markup
language commonly used on the web for human-readable representation of
information. An HTML document consists of text and predefined tags (enclosed
in angle brackets <>) that control the presentation and interpretation of the
text. The tags may have attributes. The following table shows some HTML
tags and their attributes.

PurposeAttributesTag

Whole HTML documentHTML

Document headerHEAD

Document titleTITLE

Document bodybackground, bgcolorBODY

Section headersH1, H2, H3, etc.

EmphasisI, EM

Strong emphasisB, STRONG

Preformatted textPRE

Paragraph, span, divisionP, SPAN, DIV

Line breakBR

HyperlinkhrefA

Imagesrc, width, heightIMG

Tablewidth, borderTABLE

Table rowTR

Table header/data cellTH, TD

Numbered/itemized listOL, UL

List itemLI

Description listDL

Description topic, definitionDT, DD

User input fieldnameINPUT

Pull-down menunameSELECT

Table 3—Some Frequently Used HTML Tags and Attributes
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HTML is a precursor to XML, which is not a language but rather a family of
markup languages having similar structure and intended in the first place
for machine-readable documents. Users like us define XML tags and their
attributes as needed.

XML ≠ HTML

Though XML and HTML look similar, a typical HTML document
is in general not a valid XML document, and an XML document
is not an HTML document.

XML tags are application-specific. Any alphanumeric string can
be a tag, as long as it follows some simple rules (enclosed in angle
brackets and so on). XML tags don’t control the presentation of
the text—only its interpretation. XML is frequently used in docu-
ments not intended directly for human eyes. Another language,
eXtensible Stylesheet Language Transformation (XSLT), transforms
XML to HTML, and yet another language, Cascading Style Sheets
(CSS), adds style to resulting HTML documents.

The module BeautifulSoup is used for parsing, accessing, and modifying HTML
and XML documents. You can construct a BeautifulSoup object from a markup
string, a markup file, or a URL of a markup document on the web:

from bs4 import BeautifulSoup
from urllib.request import urlopen

# Construct soup from a string
soup1 = BeautifulSoup("<HTML><HEAD>«headers»</HEAD>«body»</HTML>")
# Construct soup from a local file
soup2 = BeautifulSoup(open("myDoc.html"))

# Construct soup from a web document
# Remember that urlopen() does not add "http://"!
soup3 = BeautifulSoup(urlopen("http://www.networksciencelab.com/"))

The second optional argument to the object constructor is the markup parser
—a Python component that is in charge of extracting HTML tags and entities.
BeautifulSoup comes with four preinstalled parsers:

• "html.parser" (default, very fast, not very lenient; used for “simple” HTML
documents)

• "lxml" (very fast, lenient)

• "xml" (for XML files only)
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• "html5lib" (very slow, extremely lenient; used for HTML documents with
complicated structure, or for all HTML documents if the parsing speed is
not an issue)

When the soup is ready, you can pretty print the original markup document
with the function soup.prettify().

The function soup.get_text() returns the text part of the markup document with
all tags removed. Use this function to convert markup to plain text when it’s
the plain text you’re interested in.

htmlString = '''
<HTML>
<HEAD><TITLE>My document</TITLE></HEAD>
<BODY>Main text.</BODY></HTML>

'''
soup = BeautifulSoup(htmlString)
soup.get_text()

'\nMy document\nMain text.\n'➾

Often markup tags are used to locate certain file fragments. For example, you
might be interested in the first row of the first table. Plain text alone is not
helpful in getting there, but tags are, especially if they have class or id attributes.

BeautifulSoup uses a consistent approach to all vertical and horizontal relations
between tags. The relations are expressed as attributes of the tag objects and
resemble a file system hierarchy. The soup title, soup.title, is the soup object
attribute. The value of the name object of the title’s parent element is
soup.title.parent.name.string, and the first cell in the first row of the first table is
probably soup.body.table.tr.td.

Any tag t has a name t.name, a string value (t.string with the original content
and a list of t.stripped_strings with removed whitespaces), the parent t.parent, the
next t.next and the previous t.prev tags, and zero or more children t.children (tags
within tags).

BeautifulSoup provides access to HTML tag attributes through a Python dictionary
interface. If the object t represents a hyperlink (such as <a href="foobar.html">,
then the string value of the destination of the hyperlink is t["href"].string. Note
that HTML tags are case-insensitive.

Perhaps the most useful soup functions are soup.find() and soup.find_all(), which
find the first instance or all instances of a certain tag. Here’s how to find things:
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• All instances of the tag <H2>:

level2headers = soup.find_all("H2")

• All bold or italic formats:

formats = soup.find_all(["i", "b", "em", "strong"])

• All tags that have a certain attribute (for example, id="link3"):

soup.find(id="link3")

• All hyperlinks and also the destination URL of the first link, using either
the dictionary notation or the tag.get() function:

links = soup.find_all("a")
firstLink = links[0]["href"]
# Or:
firstLink = links[0].get("href")

By the way, both expressions in the last example fail if the attribute is not
present. You must use the tag.has_attr() function to check the presence of an
attribute before you extract it. The following expression combines BeautifulSoup
and list comprehension to extract all links and their respective URLs and
labels (useful for recursive web crawling):

with urlopen("http://www.networksciencelab.com/") as doc:
soup = BeautifulSoup(doc)

links = [(link.string, link["href"])
for link in soup.find_all("a")
if link.has_attr("href")]

The value of links is a list of tuples:

[('Network Science Workshop',➾

'http://www.slideshare.net/DmitryZinoviev/workshop-20212296'),➾

«...»,('Academia.edu',➾

'https://suffolk.academia.edu/DmitryZinoviev'), ('ResearchGate',➾

'https://www.researchgate.net/profile/Dmitry_Zinoviev')]➾

The versatility of HTML/XML is its strength, but this versatility is also its
curse, especially when it comes to tabular data. Fortunately, you can store
tabular data in rigid but easy-to-process CSV files, which you’ll look at in the
next unit.
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Unit 14

Handling CSV Files

CSV is a structured text file format used to store and move tabular or nearly
tabular data. It dates back to 1972 and is a format of choice for Microsoft
Excel, Apache OpenOffice Calc, and other spreadsheet software. Data.gov,1

a U.S. government website that provides access to publicly available data,
alone provides 12,550 data sets in the CSV format.

A CSV file consists of columns representing variables and rows representing
records. (Data scientists with a statistical background often call them obser-
vations.) The fields in a record are typically separated by commas, but other
delimiters, such as tabs (tab-separated values [TSV]), colons, semicolons, and
vertical bars, are also common. Stick to commas when you write your own
files, but be prepared to face other separators in files written by those who
don’t follow this advice.

Keep in mind that sometimes what looks like a delimiter is not a delimiter at
all. To allow delimiter-like characters within a field as a part of the variable
value (as in ...,"Hello, world",...), enclose the fields in quote characters.

For convenience, the Python module csv provides a CSV reader and a CSV
writer. Both objects take a previously opened text file handle as the first
parameter (in the example, the file is opened with the newline='' option to avoid
the need to strip the lines). You may provide the delimiter and the quote
character, if needed, through the optional parameters delimiter and quotechar.
Other optional parameters control the escape character, the line terminator,
and so on.

with open("somefile.csv", newline='') as infile:
reader = csv.reader(infile, delimiter=',', quotechar='"')

The first record of a CSV file often contains column headers and may be
treated differently from the rest of the file. This is not a feature of the CSV
format itself, but simply a common practice.

A CSV reader provides an iterator interface for use in a for loop. The iterator
returns the next record as a list of string fields. The reader doesn’t convert
the fields to any numeric data type (it’s still our job!) and doesn’t strip them

1. catalog.data.gov/dataset?res_format=CSV
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of the leading whitespaces, unless instructed by passing the optional
parameter skipinitialspace=True.

If the size of the CSV file is not known and is potentially large, you don’t want
to read all records at once. Instead, use incremental, iterative, row-by-row
processing: read a row, process the row, discard the row, and then get
another one.

A CSV writer provides the functions writerow() and writerows(). writerow() writes a
sequence of strings or numbers into the file as one record. The numbers are
converted to strings, so you have one less thing to worry about. In a similar
spirit, writerows() writes a list of sequences of strings or numbers into the file
as a collection of records.

In the following example, we’ll use the csv module to extract the “Answer.Age”
column from a CSV file. We’ll assume that the index of the column is not
known, but that the column definitely exists. Once we get the numbers, we’ll
know the mean and the standard deviation of the age variable with some little
help from the module statistics.

First, open the file and read the data:

with open("demographics.csv", newline='') as infile:
data = list(csv.reader(infile))

Examine data[0], which is the first record in the file. It must contain the column
header of interest:

ageIndex = data[0].index("Answer.Age")

Finally, access the field of interest in the remaining records and calculate
and display the statistics:

ages = [int(row[ageIndex]) for row in data[1:]]
print(statistics.mean(ages), statistics.stdev(ages))

The modules csv and statistics are low-end, “quick and dirty” tools. Later, in
Chapter 6, Working with Data Series and Frames, on page 83, you’ll look at
how to use pandas data frames for a project that goes beyond the trivial
exploration of a few columns.
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Unit 15

Reading JSON Files

JSON is a lightweight data interchange format. Unlike pickle (mentioned earlier
on page 27), JSON is language-independent but more restricted in terms of
data representation.

JSON: Who Cares?

Many popular websites, such as Twitter,2 Facebook,3 and Yahoo!
Weather,4 provide APIs that use JSON as the data interchange
format.

JSON supports the following data types:

• Atomic data types—strings, numbers, true, false, null

• Arrays—an array corresponds to a Python list; it’s enclosed in square
brackets []; the items in an array don’t have to be of the same data type:

[1, 3.14, "a string", true, null]

• Objects—an object corresponds to a Python dictionary; it is enclosed in curly
braces {}; every item consists of a key and a value, separated by a colon:

{"age" : 37, "gender" : "male", "married" : true}

• Any recursive combinations of arrays, objects, and atomic data types
(arrays of objects, objects with arrays as item values, and so on)

Unfortunately, some Python data types and structures, such as sets and
complex numbers, cannot be stored in JSON files. Therefore, you need to
convert them to representable data types before exporting to JSON. You can
store a complex number as an array of two double numbers and a set as an
array of items.

Storing complex data into a JSON file is called serialization. The opposite
operation is called deserialization. Python handles JSON serialization and
deserialization via the functions in the module json.

2. dev.twitter.com/overview/documentation
3. developers.facebook.com
4. developer.yahoo.com/weather/
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The function dump() exports (“dumps”) a representable Python object to a
previously opened text file. The function dumps() exports a representable Python
object to a text string (for the purpose of pretty printing or interprocess com-
munications). Both functions are responsible for serialization.

The Value of Pickling

When you save data to a JSON file, the values of your variables
are saved; after loading back, the values become independent.
When you pickle the same data, the references to the original
variables are saved; after loading back, all references to the same
variable keep referencing the same variable.

The function loads() converts a valid JSON string into a Python object (it “loads”
the object into Python). This conversion is always possible. In the same spirit,
the function load() converts the content of a previously opened text file into
one Python object. It is an error to store more than one object in a JSON file,
but if an existing file still contains more than one object, you can read it as
text, convert the text into an array of objects (by adding square brackets
around the text and comma separators between the individual objects), and
use loads() to deserialize the text to a list of objects.

The following code fragment subjects an arbitrary (but serializable) object to
a sequence of serializations and deserializations:

object = «some serializable object»
# Save an object to a file
with open("data.json", "w") as out_json:
json.dump(object, out_json, indent=None, sort_keys=False)

# Load an object from a file
with open("data.json") as in_json:

object1 = json.load(in_json)
# Serialize an object to a string
json_string = json.dumps(object1)
# Parse a string as JSON
object2 = json.loads(json_string)

Tadaaam! Despite four painful conversions, object, object1, and object2 still have
the same value.

Generally, use JSON representation to store final processing results when
you anticipate that the results may be further processed by or imported into
another program.

report erratum  •  discuss

Reading JSON Files • 37

http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


Unit 16

Processing Texts in Natural Languages

As a rule of thumb, somewhere around 80% of all potentially usable data is
unstructured—which includes audio, video, images (all of them are beyond
the scope of this book), and texts written in natural languages.5 A text in a
natural language has no tags, no delimiters, and no data types, but it still
may be a rich source of information. We may want to know if (and how often)
certain words are used in the text (word and sentence tokenization), what kind
of text it is (text classification), whether it conveys a positive or negative message
(sentiment analysis), who or what is mentioned in the text (entity extraction),
and so on. We can read and process a text or two with our own eyes, but
massive text analysis calls for automated natural language processing (NLP).

A lot of NLP functionality is implemented in the Python module nltk (Natural
Language Toolkit). The module is organized around corpora (collections of
words and expressions), functions, and algorithms.

NLTK Corpora
A corpus is a structured or unstructured collection of words or expressions.
All NLTK corpora are stored in the module nltk.corpus. Some examples follow:

• gutenberg—contains eighteen English texts from the Gutenberg Project,
such as Moby Dick and the Bible.

• names—a list of 8,000 male and female names.

• words—a list of 235,000 most frequently used English words and forms.

• stopwords—a list of stop words (the most frequently used words) in fourteen
languages. The English list is in stopwords.words("english"). Stop words are
usually eliminated from the text for most analyses types because they
usually don’t add anything to our understanding of texts.

5. www.informationweek.com/software/information-management/structure-models-and-meaning/d/d-id/1030187
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• cmudict—a pronunciation dictionary composed at Carnegie Mellon Univer-
sity (hence the name), with over 134,000 entries. Each entry in cmu-
dict.entries() is a tuple of a word and a list of syllables. The same word may
have several different pronunciations. You can use this corpus to identify
homophones (“soundalikes”).

The object nltk.corpus.wordnet is an interface to another corpus—an online
semantic word network WordNet (Internet access is required). The network
is a collection of synsets (synonym sets)—words tagged with a part-of-speech
marker and a sequential number:

wn = nltk.corpus.wordnet # The corpus reader
wn.synsets("cat")

[Synset('cat.n.01'), Synset('guy.n.01'), «more synsets»]➾

For each synset, you can look up its definition, which may be quite unexpect-
ed:

wn.synset("cat.n.01").definition()
wn.synset("cat.n.02").definition()

'feline mammal usually having thick soft fur «...»'➾

'an informal term for a youth or man'➾

A synset may have hypernyms (less specific synsets) and hyponyms (more
specific synsets), which make synsets look like OOP classes with subclasses
and superclasses.

wn.synset("cat.n.01").hypernyms()
wn.synset("cat.n.01").hyponyms()

[Synset('feline.n.01')]➾

[Synset('domestic_cat.n.01'), Synset('wildcat.n.03')]➾

Finally, you can use WordNet to calculate semantic similarity between two
synsets. The similarity is a double number in the range [0...1]. If the similar-
ity is 0, the synsets are unrelated; if it is 1, the synsets are full synonyms.

x = wn.synset("cat.n.01")
y = wn.synset("lynx.n.01")
x.path_similarity(y)

0.04➾
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So, how close are two arbitrary words? Let’s have a look at all synsets for
“dog” and “cat” and find the definitions of the most semantically close of them:

[simxy.definition() for simxy in max(
(x.path_similarity(y), x, y)

for x in wn.synsets('cat')
for y in wn.synsets('dog')
if x.path_similarity(y) # Ensure the synsets are related at all

)[1:]]

['an informal term for a youth or man', 'informal term for a man']➾

Surprise!

In addition to using the standard corpora, you can create your own corpora
through the PlaintextCorpusReader. The reader looks for the files in the root direc-
tory that match the glob pattern.

myCorpus = nltk.corpus.PlaintextCorpusReader(root, glob)

The function fileids() returns the list of files included in the newly minted cor-
pus. The function raw() returns the original “raw” text in the corpus. The
function sents() returns the list of all sentences. The function words() returns
the list of all words. You’ll find out in the next section how the magic of con-
verting raw text into sentences and words happens.

myCorpus.fileids()
myCorpus.raw()
myCorpus.sents()
myCorpus.words()

Use the latter function (described on page 42) in conjunction with a Counter
object (described on page 17) to calculate word frequencies and identify the
most frequently used words.

NLTK Is a Hollow Module

When you install the module NLTK, you actually install only the
classes—but not the corpora. The corpora are considered too large
to be included in the distribution. When you import the module
for the first time, remember to call the function download() (an
Internet connection is required) and install the missing parts,
depending on your needs.
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Normalization
Normalization is the procedure that prepares a text in a natural language for
further processing. It typically involves the following steps (more or less in
this order):

1. Tokenization (breaking the text into words). NLTK provides two simple
and two more advanced tokenizers. The sentence tokenizer returns a list
of sentences as strings. All other tokenizers return a list of words:

• word_tokenize(text)—word tokenizer

• sent_tokenize(text)—sentence tokenizer

• regexp_tokenize(text, re)—regular expression-based tokenizer; parameter
re is a regular expression that describes a valid word

Depending on the quality of the tokenizer and the punctuational structure
of the sentence, some “words” may contain non-alphabetic characters. For
the tasks that heavily depend on punctuation analysis, such as sentiment
analysis through emoticons, you need an advanced WordPunctTokenizer. Compare
how WordPunctTokenizer.tokenize() and word_tokenize() parse the same text:

from nltk.tokenize import WordPunctTokenizer
word_punct = WordPunctTokenizer()
text = "}Help! :))) :[ ..... :D{"
word_punct.tokenize(text)

["}", "Help", "!", ":)))", ":[", ".....", ":", "D", "{"]➾

nltk.word_tokenize(text)

["}", "Help", "!", ":", ")", ")", ")", ":", "[", "...",➾

"..", ":", "D", "{"]➾

2. Conversion of the words to all same-case characters (all uppercase or
lowercase).

3. Elimination of stop words. Use the corpus stopwords and additional appli-
cation-specific stop word lists as the reference. Remember that the words
in stopwords are in lowercase. If you look up “THE” (definitely a stop word)
in the corpus, it won’t be there.

4. Stemming (conversion of word forms to their stems). NLTK supplies two
basic stemmers: a less aggressive Porter stemmer and a more aggressive
Lancaster stemmer. Due to its aggressive stemming rules, the Lancaster
stemmer produces more homonymous stems. Both stemmers have the
function stem(word) that returns the alleged stem of word:
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pstemmer = nltk.PorterStemmer()
pstemmer.stem("wonderful")

'wonder'➾

lstemmer = nltk.LancasterStemmer()
lstemmer.stem("wonderful")

'wond'➾

Apply either stemmer only to single words, not to complete phrases. That’s
how they work!

5. Lemmatization—a slower and more conservative stemming mechanism.
The WordNetLemmatizer looks up calculated stems in WordNet and accepts
them only if they exist as words or forms. (Internet access is required to
use the lemmatizer.) The function lemmatize(word) returns the lemma of word.

lemmatizer = nltk.WordNetLemmatizer()
lemmatizer.lemmatize("wonderful")

'wonderful'➾

Though technically not a part of the normalization sequence, the part-of-
speech tagging (POS tagging) is nonetheless an important step in text prepro-
cessing. The function nltk.pos_tag(text) assigns a part-of-speech tag to every word
in the text, which is given as a list of words. The return value is a list of tuples,
where the first element of a tuple is the original word and the second element
is a tag.

nltk.pos_tag(["beautiful", "world"])
# An adjective and a noun

[('beautiful', 'JJ'), ('world', 'NN')]➾

To put everything together, let’s display the ten most frequently used non-
stop word stems in the file index.html. (Note the use of BeautifulSoup previously
introduced on page 30!)

from bs4 import BeautifulSoup
from collections import Counter
from nltk.corpus import stopwords
from nltk import LancasterStemmer

# Create a new stemmer
ls = nltk.LancasterStemmer()

# Read the file and cook a soup
with open("index.html") as infile:

soup = BeautifulSoup(infile)

# Extract and tokenize the text
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words = nltk.word_tokenize(soup.text)

# Convert to lowercase
words = [w.lower() for w in words]

# Eliminate stop words and stem the rest of the words
words = [ls.stem(w) for w in text if w not in
stopwords.words("english") and w.isalnum()]

# Tally the words
freqs = Counter(words)
print(freqs.most_common(10))

Think of this code fragment as the first step toward topic extraction.

Other Text-Processing Procedures
A lengthy discussion of other advanced NLP procedures is outside of the scope
of this book, but here’s a brief rundown of the options to pique your interest:

• Segmentation—recognition of “word” boundaries in a text that has no
syntactic word boundaries (in a Chinese text, for example). You can apply
segmentation to any character or numeric sequences (for example, to a
sequence of purchases or DNA fragments).

• Text classification—assigning a text to one of the preset categories, based
on predefined criteria. A special case of text classification is sentiment
analysis, which is typically based on the analysis of frequencies of emo-
tionally charged words.

• Entity extraction—detection of words or phrases with predetermined
properties, usually referring to entities, such as persons, geographical
locations, companies, products, and brands.

• Latent semantic indexing—identification of patterns in the relationships
between the terms and concepts contained in an unstructured collection
of text, using singular value decomposition (SVD). Incidentally, SVD is
also known as principal component analysis (PCA) in statistics.
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Your Turn
At this point, you know how to extract valuable data from an existing HTML,
XML, CSV, or JSON file, or even from plain text. You understand HTML and
XML tags and their structure, and you can separate tags from data and nor-
malize words (at least to some extent). There are a lot of powerful projects
that literally require just that—and some patience. Let’s practice!

Broken Link Detector*

Write a program that, given a URL of a web page, reports the names and
destinations of broken links in the page. For the purpose of this exercise,
a link is broken if an attempt to open it with urllib.request.urlopen() fails.

Wikipedia Miner**

MediaWiki (a Wikimedia project6) provides a JSON-based API that enables
programmable access to Wikipedia data and metadata. Write a program
that reports ten most frequently used stems in the Wikipedia page titled
“Data science.”

Implementation hints:

• Use HTTP, not HTTPS.

• Read the “simple example” at the MediaWiki site and use it as the
foundation of your program.

• First, get the page ID by title, then get the page by its ID.

• Visually explore the JSON data, especially the keys at different levels
of hierarchy: at the time of writing, the answer is six levels deep!

Music Genre Classifier***

Write a program that uses Wikipedia to calculate semantic similarity
between different rock/pop music genres. Start with the list of major
music groups by genre7 (note that the list is hierarchical and contains
subcategories!). Recursively process the list and its descendants until all
relevant groups are found (you may want to restrict your exploration to
select subcategories, such as British rock groups, to save time and traffic).
For each discovered group, extract the genres, if possible. Use the Jaccard
similarity index8 as a measure of semantic similarity: for each pair of
genres A and B, J(A,B)=|A∩B|/|A∪B|=|C|/(|A|+|B|-|C|), where |A|

6. www.mediawiki.org/wiki/API:Main_page
7. en.wikipedia.org/wiki/Category:Rock_music_groups_by_genre
8. en.wikipedia.org/wiki/Jaccard_index
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and |B| are the number of groups that list A or B as their genre, respec-
tively, and |C| is the number of groups that list both A and B. Pickle the
results for future use: you don’t want to run this program more than once!

By the way, how many genres are out there and what are the most
strongly related genres?

report erratum  •  discuss

Your Turn • 45

http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


CHAPTER 4

Which are the goddesses?...The tenth is Vor, who is so wise and
searching that nothing can be concealed from her.

➤ Snorri Sturluson, Icelandic historian, poet, and politician

Working with Databases
You study (or practice) data science. (Check!) You import raw data from disk
files into Python data structures. (Check!) But all good things come in threes,
and here’s another data chapter: databases are where you will store your
data in the long run.

Databases are important components of the data analysis pipeline:

• Input data is often provided in the form of database tables. You must
retrieve it from the database for further processing.

• Databases provide highly optimized, fast, non-volatile storage that you
can use for storing raw data and intermediate and final results, even if
the original raw data was not stored in a database.

• Databases provide highly optimized data transformations: sorting, selec-
tion, joining. If the raw data or the intermediate results are already in a
database, you can use the database not just for storage, but also for
aggregation.

In this chapter, you’ll explore how to set up, configure, populate, and query
MySQL and MongoDB—one of the most popular relational databases and the
most popular document store (or NoSQL database), respectively. Though most
likely you’ll use these databases as preconfigured and prepopulated data
sources, understanding the rich inner world of the database engine not only
makes you a better programmer, but it also lays a solid foundation for intro-
ducing pandas in the future ( on page 83).
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Unit 17

Setting Up a MySQL Database

A relational database is a collection of permanently stored and possibly sorted
and indexed tables. Relational databases are excellent for storing tabular
data (such as data found in CSV files), where one table represents a variable
type, the columns of the table represent variables, and the rows represent
observations, or records.

You don’t need Python to operate a database; however, you must know
Structured Query Language (SQL) or its specific implementation, such as
MySQL, to access a relational database either from its command line or from
a Python application.

To interact with a running MySQL database server from the command line,
you need a MySQL client, such as mysql. All MySQL commands are case-
insensitive and must end with a semicolon.

To start a new database project, use mysql as the database administrator (these
operations are executed only once):

1. Start mysql on the shell command line:

c:\myProject> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
«More mysql output»
mysql>

Enter all further instructions at the mysql command-line prompt.

2. Create a new database user (“dsuser”) and password (“badpassw0rd”):

CREATE USER 'dsuser'@'localhost' IDENTIFIED BY 'badpassw0rd';

3. Create a new database for the project (“dsdb”):

CREATE DATABASE dsdb;

4. Grant the new user access to the new database:

GRANT ALL ON dsdb.* TO 'dsuser'@'localhost';

Now, it’s time to create a new table in an existing database. Use the same
mysql client, but log in as a regular database user:
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c:\myProject> mysql -u dsuser -p dsdb
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
«More mysql output»
mysql>

Typically a table is created once and accessed many times. You can later
change the table’s properties to accommodate your project needs. The com-
mand CREATE TABLE, followed by the new table name and a list of columns,
creates a new table. For each column, define its name and data type (in this
order). The most common MySQL data types are TINYINT, SMALLINT, INT, FLOAT,
DOUBLE, CHAR, VARCHAR, TINYTEXT, TEXT, DATE, TIME, DATETIME, and TIMESTAMP.

The following command creates the table employee with the columns empname
(text of variable length), salary (floating point number), and hired (date). Each
record in the table describes one employee.

USE dsdb;
CREATE TABLE employee (empname TINYTEXT, salary FLOAT, hired DATE);

Query OK, 0 rows affected (0.17 sec)➾

When you don’t need a table anymore, you can drop it from the database.

DROP TABLE employee;

Query OK, 0 rows affected (0.05 sec)➾

The DROP command is short, elegant, and bitterly irreversible, like spilling
your milk. Think twice before you drop anything!

Database Schema

A database schema is the structure of the database that describes
all tables, columns, data types, indexes, constraints, and relations
between different tables. A schema is a hole in the donut: it’s
what’s left of a database after all data is deleted from all tables.

Though not required by the language standard, you should always add an
autogenerated primary key and auto-updated last modification timestamp to
each record (as long as storage space permits). The primary key enables
unique record identification and speeds up searches. The last modification
timestamp adds a sense of history, and the NOT NULL keyword enforces that
the marked columns actually have non-garbage values:

CREATE TABLE employee (id INT PRIMARY KEY AUTO_INCREMENT,
updated TIMESTAMP, empname TINYTEXT NOT NULL, salary FLOAT NOT NULL,
hired DATE);
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If you want to use a column (variable) for sorting, searching, or joining, add
an index to that column, too:

ALTER TABLE employee ADD INDEX(hired);

Query OK, 0 rows affected (0.22 sec)➾

Records: 0 Duplicates: 0 Warnings: 0➾

Note that indexes dramatically improve query times, but also substantially
increase insertion and deletion times. Indexes should be created only after
the main bulk of data is inserted into the table. If a new batch of data needs
to be inserted, first remove the existing indexes:

DROP INDEX hired ON employee;

You can then insert the data and add the indexes back.

If all the values in a column are unique (such as employee ID numbers or
names), add a UNIQUE constraint to that column. If the column data type has
a variable width (such as VARCHAR, TINYTEXT, or TEXT), you must specify how
much of each entry in the column must be unique:

ALTER TABLE employee ADD UNIQUE(empname(255));

The primary key always has a value (it is NOT NULL), it’s always an INDEX, and
it’s UNIQUE.
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Unit 18

Using a MySQL Database: Command Line

MySQL supports five basic database operations: insertion, deletion, mutation,
selection, and join. They are used to populate database tables and modify
and retrieve the existing data. These operations would normally originate in
your data analysis program, but to get the sense of them, we will first practice
them at the mysql command-line prompt.

Insertion
First things first. We’ll insert a new record into a table, and then another one,
and another one, until the table has all observations:

INSERT INTO employee VALUES(NULL,NULL,"John Smith",35000,NOW());

Query OK, 1 row affected, 1 warning (0.18 sec)➾

The first two NULLs are placeholder values of the index and the timestamp.
The server calculates them automatically. The function NOW() returns the
current date and time, but only the “date” part is used to populate the record.
Note that the query produced a warning, and the reason for it is the latter
truncation. Let’s look at the verbal descriptions and codes of the most recent
warning(s) and error(s):

SHOW WARNINGS;

+-------+------+--------------------------------------------+➾

| Level | Code | Message |➾

+-------+------+--------------------------------------------+➾

| Note | 1265 | Data truncated for column 'hired' at row 1 |➾

+-------+------+--------------------------------------------+➾

1 row in set (0.00 sec)➾

If an insertion operation violates the UNIQUE constraint, the server aborts it
unless you specify the IGNORE keyword, in which case the insertion fails:

INSERT INTO employee VALUES(NULL,NULL,"John Smith",35000,NOW());

ERROR 1062 (23000): Duplicate entry 'John Smith' for key 'empname'➾

INSERT IGNORE INTO employee VALUES(NULL,NULL,"John Smith",35000,NOW());

Query OK, 0 rows affected, 1 warning (0.14 sec)➾
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You could insert more rows by hand, but the preferred way is to let Python
do the rest of the insertions.

Deletion
Deletion removes from the table all the records that match the search criterion.
If you don’t specify the search criterion, the server will remove all records:

-- Remove John Smith if he is low-paid
DELETE FROM employee WHERE salary<11000 AND empname="John Smith";
-- Remove everyone
DELETE FROM employee;

If you want to remove only a particular record, use its unique primary key or
any other unique identifying condition:

DELETE FROM employee WHERE id=387513;

Remember that deletion is irreversible!

Mutation
Mutation updates the values of specified columns in the records that match
the search criterion. If you don’t specify the search criterion, the operation
will affect all records:

-- Reset all recent hires' salary
UPDATE employee SET salary=35000 WHERE hired=CURDATE();
-- Increase John Smith's salary again
UPDATE employee SET salary=salary+1000 WHERE empname="John Smith";

Query OK, 1 row affected (0.06 sec)➾

Rows matched: 1 Changed: 1 Warnings: 0➾

And you’ve guessed it right: mutation is irreversible, too. Just like deletion,
it is a destructive operation.

Selection
Selection selects all requested columns from all records that match the search
criterion. If you don’t specify the search criterion, you’ll get all records, which
may be way more than you want:

SELECT empname,salary FROM employee WHERE empname="John Smith";

+------------+--------+➾

| empname | salary |➾

+------------+--------+➾

| John Smith | 36000 |➾

+------------+--------+➾

1 row in set (0.00 sec)➾
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SELECT empname,salary FROM employee;

+--------------+--------+➾

| empname | salary |➾

+--------------+--------+➾

| John Smith | 36000 |➾

| Jane Doe | 75000 |➾

| Abe Lincoln | 0.01 |➾

| Anon I. Muss | 14000 |➾

+--------------+--------+➾

4 rows in set (0.00 sec)➾

You can enhance selection by sorting, grouping, aggregating, and filtering
the results. To sort the results, use the ORDER BY modifier (sorting by multiple
columns in either DESCending or ASCending order is possible):

SELECT * FROM employee WHERE hired>='2000-01-01' ORDER BY salary DESC;

+----+---------------------+--------------+--------+------------+➾

| id | updated | empname | salary | hired |➾

+----+---------------------+--------------+--------+------------+➾

| 4 | 2016-01-09 17:35:11 | Jane Doe | 75000 | 2011-11-11 |➾

| 1 | 2016-01-09 17:31:29 | John Smith | 36000 | 2016-01-09 |➾

| 6 | 2016-01-09 17:55:24 | Anon I. Muss | 14000 | 2011-01-01 |➾

+----+---------------------+--------------+--------+------------+➾

3 rows in set (0.01 sec)➾

To group and aggregate the results, use the GROUP BY modifier and an aggrega-
tion function, such as COUNT(), MIN(), MAX(), SUM(), or AVG():

SELECT (hired>'2001-01-01') AS Recent,AVG(salary)
FROM employee
GROUP BY (hired>'2001-01-01');

+--------+----------------------+➾

| Recent | AVG(salary) |➾

+--------+----------------------+➾

| 0 | 0.009999999776482582 |➾

| 1 | 41666.666666666664 |➾

+--------+----------------------+➾

2 rows in set (0.00 sec)➾

The latter statement calculates and reports the average salary of each group
of employees based on whether they were hired before or after 01/01/2001,
as well as the hiring range itself.

The keywords WHERE and HAVING filter the selection results; the server executes
WHERE before grouping and HAVING after grouping.

SELECT AVG(salary),MIN(hired),MAX(hired) FROM employee
GROUP BY YEAR(hired)
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HAVING MIN(hired)>'2001-01-01';

+-------------+------------+------------+➾

| AVG(salary) | MIN(hired) | MAX(hired) |➾

+-------------+------------+------------+➾

| 44500 | 2011-01-01 | 2011-11-11 |➾

| 36000 | 2016-01-09 | 2016-01-09 |➾

+-------------+------------+------------+➾

2 rows in set (0.00 sec)➾

This statement calculates and reports the average salary and the earliest and
latest hiring dates for each group hired on the same year after 01/01/2001.

Join
The join operation combines the contents of two tables based on one or more
columns. MySQL supports five types of joins: inner (with a flavor called straight
join), left, right, outer, and natural. The latter can also be left or right. The
inner join returns rows with at least one match in both tables. Left/right joins
all rows from the left/right table, respectively, even if there is no match on
the other side. Outer returns rows with a match in either table. If one table
doesn’t have a match, the server returns a NULL instead. A natural join behaves
like outer, except that it implicitly involves all columns with the same names.

The following commands create a new table with employee positions, add an
index to the column that will be used for joining, and extract employee names
and positions from both tables (the syntax in the latter example is for an
implicit inner join):

-- Prepare and populate another table
CREATE TABLE position (eid INT, description TEXT);
INSERT INTO position (eid,description) VALUES (6,'Imposter'),
(1,'Accountant'),(4,'Programmer'),(5,'President');

ALTER TABLE position ADD INDEX(eid);

-- Fetch the joined data
SELECT employee.empname,position.description

FROM employee,position WHERE employee.id=position.eid
ORDER BY position.description;

+--------------+-------------+➾

| empname | description |➾

+--------------+-------------+➾

| John Smith | Accountant |➾

| Anon I. Muss | Imposter |➾

| Abe Lincoln | President |➾

| Jane Doe | Programmer |➾

+--------------+-------------+➾

4 rows in set (0.00 sec)➾
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Unit 19

Using a MySQL Database: pymysql

Python uses a database driver module to communicate with MySQL. Several
database drivers, such as pymysql, are freely available. For this exercise, you’ll
use pymysql, which is a part of Anaconda. The driver, when activated, connects
to the database server and then transforms Python function calls into database
queries and, conversely, database results into Python data structures.

The function connect() requires the information about the database (its name),
the whereabouts of the database server (the host and the port number), and
the database user (name and password). If successfully connected, it returns
the connection identifier. As the next step, create a database cursor associated
with the connection:

conn = pymysql.connect(host="localhost", port=3306,
user="dsuser", passwd="badpassw0rd", db="dsdb")

cur = conn.cursor()

The execute() function of the cursor submits a query for execution and returns
the number of affected rows (zero, if the query is non-destructive). The query
is simply a character string that you prepare based on what you learned in
the previous unit. Unlike a command-line MySQL query, a pymysql query needs
no terminating semicolon.

query = '''
SELECT employee.empname,position.description

FROM employee,position WHERE employee.id=position.eid
ORDER BY position.description

'''
n_rows = cur.execute(query)

If you submit a non-destructive query (such as SELECT), use the cursor function
fetchall() to obtain all matching records. The function returns a generator that
you can convert into a list of tuples of column fields:

results = list(cur.fetchall())

[('John Smith', 'Accountant'), ('Anon I. Muss', 'Imposter'),➾

('Abe Lincoln', 'President'), ('Jane Doe', 'Programmer')]➾
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If the query is destructive (such as UPDATE, DELETE, or INSERT), you must commit
it. (Note that it’s the connection, not the cursor, that provides the function
commit().)

conn.commit()

If you don’t commit a destructive query, the server will not modify the tables.

Relational databases have been around since 1974 (Ingres).1 They have a
venerable legacy and work great with normalized data—that is, the data that
can naturally be split into tables, columns, and rows. Honestly, any data set
can be normalized, but the price of normalizing can be prohibitively high
(both in terms of normalization effort and eventual query performance). Certain
types of data (text documents, images, audio and video clips, and irregular
data structures in the first place) naturally resist normalization. Don’t force
them to fit the procrustean SQL-ean bed; rather, choose a NoSQL document
store instead, which is introduced next.

1. quickbase.intuit.com/articles/timeline-of-database-history
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Unit 20

Taming Document Stores: MongoDB

A document store (a NoSQL database) is a non-volatile collection of objects,
often known as documents, with attributes. Many different implementations
of document stores have been developed. In this unit, you’ll look closely at
one of them—MongoDB—and take a quick peek at its chief competitor,
CouchDB.2

MongoDB is a non-relational database. One MongoDB server can support
several unrelated databases. A database consists of one or more collections
of documents. All documents in a collection have unique identifiers.

A Python MongoDB client is implemented in the Python module pymongo as
an instance of the class MongoClient. You can create a client with no parameters
(works for a typical local server installation), with the host name and port
number of the server as the parameters, or with the Uniform Resource Iden-
tifier (URI) of the server as the parameter:

import pymongo as mongo
# Default initialization
client1 = mongo.MongoClient()
# Explicit host and port
client2 = mongo.MongoClient("localhost", 27017)
# Explicit host and port as a URI
client3 = mongo.MongoClient("mongodb://localhost:27017/")

Once the client establishes a connection to the database server, select the
active database and then the active collection. You can use either the object-
oriented (“dotted”) or dictionary-style notation. If the selected database or
collection do not exist, the server will create them at once:

# Two ways to create/select the active database
db = client1.dsdb
db = client1["dsdb"]

# Two ways to create/select the active collection
people = db.people
people = db["people"]

2. couchdb.apache.org

report erratum  •  discuss

Taming Document Stores: MongoDB • 57

http://couchdb.apache.org
http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


pymongo represents MongoDB documents as Python dictionaries. Each dictio-
nary representing an object must have the _id key. If the key is absent, the
server autogenerates it.

A collection object provides functions for inserting, searching, removing,
updating, replacing, and aggregating documents in the collection, as well as
for creating indexes.

The functions insert_one(doc) and insert_many(docs) insert a document or a list of
documents into a collection. They return the objects InsertOneResult or Insert-
ManyResult, respectively, which, in turn, provide the attributes inserted_id and
inserted_ids. Use these attributes to discover the documents’ keys if the docu-
ments have no explicit keys. If the _id key is specified, it won’t change after
insertion:

person1 = {"empname" : "John Smith", "dob" : "1957-12-24"}
person2 = {"_id" : "XVT162", "empname" : "Jane Doe", "dob" : "1964-05-16"}
person_id1 = people.insert_one(person1).inserted_id

ObjectId('5691a8720f759d05092d311b')➾

# Note the new "_id" field!
person1

{'empname': 'John Smith', 'dob': '1957-12-24',➾

'_id': ObjectId('5691a8720f759d05092d311b')}➾

person_id2 = people.insert_one(person2).inserted_id

"XVT162"➾

persons = [{"empname" : "Abe Lincoln", "dob" : "1809-02-12"},
{"empname" : "Anon I. Muss"}]

result = people.insert_many(persons)
result.inserted_ids

[ObjectId('5691a9900f759d05092d311c'),➾

ObjectId('5691a9900f759d05092d311d')]➾

The functions find_one() and find() report one or many documents that optionally
match certain properties. find_one() returns the document, and find() returns a
cursor (a generator) that you can convert to a list with the list() function or
use as an iterator in a for loop. If you pass a dictionary as the parameter to
either of these functions, the functions report the documents whose values
are equal to all dictionary values for the respective keys:
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everyone = people.find()
list(everyone)

[{'empname': 'John Smith', 'dob': '1957-12-24',➾

'_id': ObjectId('5691a8720f759d05092d311b')},➾

{'empname': 'Jane Doe', 'dob': '1964-05-16', '_id': 'XVT162'},➾

{'empname': 'Abe Lincoln', 'dob': '1809-02-12',➾

'_id': ObjectId('5691a9900f759d05092d311c')},➾

{'empname': 'Anon I. Muss', '_id': ObjectId('5691a9900f759d05092d311d')}]➾

list(people.find({"dob" : "1957-12-24"}))

[{'empname': 'John Smith', 'dob': '1957-12-24',➾

'_id': ObjectId('5691a8720f759d05092d311b')}]➾

people.find_one()

[{'empname': 'John Smith', 'dob': '1957-12-24',➾

'_id': ObjectId('5691a8720f759d05092d311b')}]➾

people.find_one({"empname" : "Abe Lincoln"})

{'empname': 'Abe Lincoln', 'dob': '1809-02-12',➾

'_id': ObjectId('5691a9900f759d05092d311c')}➾

people.find_one({"_id" : "XVT162"})

{'empname': 'Jane Doe', 'dob': '1964-05-16', '_id': 'XVT162'}➾

Several grouping and sorting functions allow data aggregation and sorting.
The function sort() sorts the results of the query. When you call it with no
arguments, sort() sorts by the key _id in the ascending order. The function
count() returns the number of documents in the query or in the entire collection:

people.count()

4➾

people.find({"dob": "1957-12-24"}).count()

1➾

people.find().sort("dob")

[{'empname': 'Anon I. Muss', '_id': ObjectId('5691a9900f759d05092d311d')},➾

{'empname': 'Abe Lincoln', 'dob': '1809-02-12',➾

'_id': ObjectId('5691a9900f759d05092d311c')},➾

{'empname': 'John Smith', 'dob': '1957-12-24',➾

'_id': ObjectId('5691a8720f759d05092d311b')},➾

{'empname': 'Jane Doe', 'dob': '1964-05-16', '_id': 'XVT162'}]➾
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The functions delete_one(doc) and delete_many(docs) remove a document or docu-
ments identified by the dictionary doc from the collection. To remove all of the
documents, but keep the collection, call delete_many({}) with an empty dictionary
as the parameter:

result = people.delete_many({"dob" : "1957-12-24"})
result.deleted_count

1➾

CouchDB

Another popular NoSQL database is CouchDB. Unlike MongoDB, CouchDB favors
availability over consistency. If CouchDB is replicated (runs on more than one comput-
er), then all its users can always use it but do not necessarily observe the same docu-
ments. If MongoDB is replicated, then its users see exactly the same documents, but
for some users the database may not be available at all. If you don’t plan to replicate
your database, the choice between CouchDB and MongoDB is purely aesthetic.
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Your Turn
Managing databases is a major scientific field that is well beyond the scope
of this book. Reading this chapter alone won’t make you a seasoned database
administrator or a versatile database programmer. But, now you can create
a table or two, store data into them, and get the data back when you need it,
and you can do it two ways: with or without SQL.

MySQL File Indexer*

Write a Python program that, for each word in a given file, records the
word itself (not the stem!), its ordinal number in the file (starting from 1),
and the part-of-speech marker in a MySQL database. Use NLTK WordPunct-
Tokenizer (introduced on page 41) to recognize words. Assume that the
words are short enough to fit in the TINYTEXT MySQL data type. Design the
database schema, create all necessary tables, and play with them via the
command-line interface before starting any Python coding.

MySQL to MongoDB Converter**

The MySQL statement DESCRIBE table_name reports the names, data types,
constraints, default values, and so on of all columns in the table. Write
a Python program that transfers all data from a MySQL table (designated
by the user) to a MongoDB document. The program must not modify
timestamps.
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CHAPTER 5

It is a capital mistake to theorize before one has data.

➤ Sir Arthur Conan Doyle, British writer

Working with Tabular Numeric Data
Often raw data comes from all kinds of text documents. Quite often the text
actually represents numbers. Excel and CSV spreadsheets and especially
database tables may contain millions or billions of numerical records. Core
Python is an excellent text-processing tool, but it sometimes fails to deliver
adequate numeric performance. That’s where numpy comes to the rescue.

NumPy—Numeric Python (imported as numpy)—is an interface to a family of
efficient and parallelizable functions that implement high-performance
numerical operations. The module numpy provides a new Python data structure
—array—and a toolbox of array-specific functions, as well as support for
random numbers, data aggregation, linear algebra, Fourier transform, and
other goodies.

Bridge to Terabytia

If your program needs access to huge amounts of numerical data
—terabytes and more—you can’t avoid using the module h5py.1

The module is a portal to the HDF5 binary data format that works
with a lot of third-party software, such as IDL and MATLAB. h5py
imitates familiar numpy and Python mechanisms, such as arrays
and dictionaries. Once you know how to use numpy, you can go
straight to h5py—but not in this book.

In this chapter, you’ll learn how to create numpy arrays of different shapes and
from different sources, reshape and slice arrays, add array indexes, and apply
arithmetic, logic, and aggregation functions to some or all array elements.

1. www.h5py.org
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Unit 21

Creating Arrays

numpy arrays are more compact and faster than native Python lists, especially
in multidimensional cases. However, unlike lists, arrays are homogeneous:
you cannot mix and match array items that belong to different data types.

There are several ways to create a numpy array. The function array() creates an
array from array-like data. The data can be a list, a tuple, or another array.
numpy infers the type of the array elements from the data, unless you explicitly
pass the dtype parameter. numpy supports close to twenty data types, such as
bool_, int64, uint64, float64, and <U32 (for Unicode strings).

When numpy creates an array, it doesn’t copy the data from the source to the
new array, but it links to it for efficiency reasons. This means that, by default,
a numpy array is a view of its underlying data, not a copy of it. If the underlying
data object changes, the array data changes, too. If this behavior is undesirable
(which it always is, unless the amount of data to copy is prohibitively large),
pass copy=True to the constructor.

Lists Are Arrays, and Arrays Are Arrays, Too

Contrary to their name, Python “lists” are actually implemented
as arrays, not as lists. No storage is reserved for forward pointers,
because no forward pointers are used. Large Python lists require
only about 13% more storage than “real” numpy arrays. However,
Python executes some simple built-in operations, such as sum(),
five to ten times faster on lists than on arrays. Ask yourself if you
really need any numpy-specific features before you start a numpy
project!

Let’s create our first array—a silly array of the first ten positive integer numbers:

import numpy as np
numbers = np.array(range(1, 11), copy=True)

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])➾
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The functions ones(), zeros(), and empty() construct arrays of all ones, all zeros,
and all uninitialized entries, respectively. They then take a required shape
parameter—a list or tuple of array dimensions.

ones = np.ones([2, 4], dtype=np.float64)

array([[ 1., 1., 1., 1.],➾

[ 1., 1., 1., 1.]])➾

zeros = np.zeros([2, 4], dtype=np.float64)

array([[ 0., 0., 0., 0.],➾

[ 0., 0., 0., 0.]])➾

empty = np.empty([2, 4], dtype=np.float64)
# The array content is not always zeros!

array([[ 0., 0., 0., 0.],➾

[ 0., 0., 0., 0.]])➾

numpy stores the number of dimensions, the shape, and the data type of an
array in the attributes ndim, shape, and dtype.

ones.shape # The original shape, unless reshaped

(2, 4)➾

numbers.ndim # Same as len(numbers.shape)

1➾

zeros.dtype

dtype('float64')➾

The function eye(N, M=None, k=0, dtype=np.float) constructs an N×M eye-dentity
matrix with ones on the kth diagonal and zeros elsewhere. Positive k denotes
the diagonals above the main diagonal. When M is None (default), M=N.

eye = np.eye(3, k=1)

array([[ 0., 1., 0.],➾

[ 0., 0., 1.],➾

[ 0., 0., 0.]])➾

When you need to multiply several matrices, use an identity matrix as the
initial value of the accumulator in the multiplication chain.
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In addition to the good old built-in range(), numpy has its own, more efficient
way of generating arrays of regularly spaced numbers: the function arange([start,]
stop[, step,], dtype=None).

np_numbers = np.arange(2, 5, 0.25)

array([ 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 , 3.75, 4. ,➾

4.25, 4.5 , 4.75])➾

Just like with range(), the value of stop can be smaller than start—but then step
must be negative, and the order of numbers in the array is decreasing.

numpy records the type of items at the time of array creation, but the type is
not immutable: you can change it later by calling the astype(dtype, casting="unsafe",
copy=True) function. In the case of type narrowing (converting to a more specific
data type), some information may be lost. This is true about any narrowing,
not just in numpy.

np_inumbers = np_numbers.astype(np.int)

array([2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4])➾

Most numpy operations (such as transposing, which is discussed in the next
unit on page 67) return a view, not a copy of the original array. To preserve
original data, the function copy() creates a copy of an existing array. Any
changes to the original array don’t affect the copy, but if your array has one
billion items, think twice before copying it.

np_inumbers_copy = np_inumbers.copy()

Let’s now proceed to more advanced operations.
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Unit 22

Transposing and Reshaping

Unlike the great monuments of the past, numpy arrays are not carved in stone.
They can easily change their shape and orientation without being called
opportunists. Let’s build a one-dimensional array of some S&P stock symbols
and twist it in every possible way:

# Some S&P stock symbols
sap = np.array(["MMM", "ABT", "ABBV", "ACN", "ACE", "ATVI", "ADBE", "ADT"])

array('MMM', 'ABT', 'ABBV', 'ACN', 'ACE', 'ATVI', 'ADBE', 'ADT'],➾

dtype='<U4')➾

The function reshape(d0, d1, ...) changes the shape of an existing array. The
arguments define the new dimensions. The total number of items in the old
and new shapes must be equal: the conservation law still holds in numpyland!

sap2d = sap.reshape(2, 4)

array([['MMM', 'ABT', 'ABBV', 'ACN'],➾

['ACE', 'ATVI', 'ADBE', 'ADT']],➾

dtype='<U4')➾

sap3d = sap.reshape(2, 2, 2)

array([[['MMM', 'ABT'],➾

['ABBV', 'ACN']],➾
➾

[['ACE', 'ATVI'],➾

['ADBE', 'ADT']]],➾

dtype='<U4')➾

To transpose an array, you don’t even need to call a function: the value of
the attribute T is the transposed view of the array (for a one-dimensional
array, data.T==data; for a two-dimensional array, the rows and the columns
are swapped).

sap2d.T

array([['MMM', 'ACE'],➾

['ABT', 'ATVI'],➾

['ABBV', 'ADBE'],➾

['ACN', 'ADT']],➾

dtype='<U4')➾
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Essentially, the attribute T shows us the matrix through a relabeling cross-
hair: axis number 0 (“vertical”) becomes axis number 1 (“horizontal”), and
the other way around. The function swapaxes() is a more general version of the
T. It transposes a multidimensional array by swapping any two axes that you
pass as the parameters. Naturally, passing the axes 0 and 1 for a two-
dimensional array simply transposes the array, just as before.

sap3d.swapaxes(1, 2)

array([[['MMM', 'ABBV'],➾

['ABT', 'ACN']],➾
➾

[['ACE', 'ADBE'],➾

['ATVI', 'ADT']]],➾

dtype='<U4')➾

The function transpose() is even more general than swapaxes() (despite its name
implying similarity to the T attribute). transpose() permutes some or all axes of
a multidimensional array according to its parameter, which must be a tuple.
In the following example, the first axis remains “vertical,” but the other two
axes are swapped.

sap3d.transpose((0, 2, 1))

array([[['MMM', 'ABBV'],➾

['ABT', 'ACN']],➾
➾

[['ACE', 'ADBE'],➾

['ATVI', 'ADT']]],➾

dtype='<U4')➾

Incidentally, the result is the same as for swapaxes(1, 2)!
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Unit 23

Indexing and Slicing

numpy arrays support the same indexing [i] and slicing [i:j] operations as Python
lists. In addition, they implement Boolean indexing: you can use an array of
Boolean values as an index, and the result of the selection is the array of
items of the original array for which the Boolean index is True. Often the
Boolean array is in turn a result of broadcasting. You can use Boolean
indexing on the right-hand side (for selection) and on the left-hand side (for
assignment).

Suppose your data sponsor told you that all data in the data set dirty is strictly
non-negative. This means that any negative value is not a true value but an
error, and you must replace it with something that makes more sense—say,
with a zero. This operation is called data cleaning. To clean the dirty data, locate
the offending values and substitute them with reasonable alternatives.

dirty = np.array([9, 4, 1, -0.01, -0.02, -0.001])
whos_dirty = dirty < 0 # Boolean array, to be used as Boolean index

array([False, False, False, True, True, True], dtype=bool)➾

dirty[whos_dirty] = 0 # Change all negative values to 0

array([9, 4, 1, 0, 0, 0])➾

You can combine several Boolean expressions with the operators | (logical or),
& (logical and), and - (logical not). Which of the items in the following list are
between -0.5 and 0.5? Ask numpy!

linear = np.arange(-1, 1.1, 0.2)
(linear <= 0.5) & (linear >= -0.5)

array([False, False, False, True, True, True, True, True, False,➾

False, False], dtype=bool)➾
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Boolean and “Boolean”

Relational operators (such as < and ==) have lower precedence
than the bit-wise operators &, |, and ! that represent “Boolean”
operators on numpy arrays. This is very confusing, because “normal”
Python Boolean operators—or, and, and not—have lower precedence
than the relational operators. You must enclose array comparisons
in parentheses to ensure that numpy evaluates them first.

Another cool feature of numpy arrays is “smart” indexing and “smart” slicing,
whereby an index is not a scalar but an array or list of indexes. The result of
the selection is the array of items that are referenced in the index. Let’s select
the second, the third, and the last stock symbols from our S&P list. (That’s
“smart” indexing.)

sap[[1, 2, -1]]

array(['ABT', 'BBV', 'ADT'],➾

dtype='<U4')➾

Why not extract all rows in the middle column from the reshaped array?
(That’s “smart” slicing.) In fact, you can do it two ways:

sap2d[:, [1]]

array([['ABT'],➾

['ATVI']],➾

dtype='<U4')➾

sap2d[:, 1]

array(['ABT', 'ATVI'],➾

dtype='<U4')➾

Python is famous for giving us many similar problem-solving tools and not
forgiving us for choosing a wrong one. Compare the two selections shown
earlier. The first selection is a two-dimensional matrix; the second one is a
one-dimensional array. Depending on what you wanted to extract, one of
them is wrong. Oops. Make sure you check that you’ve gotten what you
wanted.
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Unit 24

Broadcasting

numpy arrays eagerly engage in vectorized arithmetic operations with other
arrays—as long as they’re of the same shape. To add two arrays element-wise
without numpy, you must use a for loop or list comprehension; with numpy, you
simply add them up:

a = np.arange(4)
b = np.arange(1, 5)
a + b

array([1, 3, 5, 7])➾

Vectorized operations on arrays are known as broadcasting. Broadcasting
along two dimensions is possible if they are equal (as above) or one of them
is a scalar (as below):

a * 5

array([0, 5, 10, 15])➾

Be Fruitful or Multiply?

The star operator (*) behaves differently in Python and numpy. The
“core” Python expression seq * 5 replicates the list seq five times.
The same numpy expression multiplies each element of array seq
by five.

You can mix and match different arithmetic operations on arrays and scalars.
Let’s create a diagonal matrix and add some small (but not random) noise to it:

noise = np.eye(4) + 0.01 * np.ones((4, ))

array([[ 1.01, 0.01, 0.01, 0.01],➾

[ 0.01, 1.01, 0.01, 0.01],➾

[ 0.01, 0.01, 1.01, 0.01],➾

[ 0.01, 0.01, 0.01, 1.01]])➾

But what if you want some small and random noise? We will seriously talk
about random number generators later in Unit 47, Doing Stats the Python
Way, on page 152, but here’s a sneak preview:
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noise = np.eye(4) + 0.01 * np.random.random([4, 4])
np.round(noise, 2)

array([[ 1.01, 0. , 0.01, 0. ],➾

[ 0.01, 1.01, 0. , 0.01],➾

[ 0. , 0. , 1. , 0. ],➾

[ 0. , 0. , 0.01, 1. ]])➾

Here we rounded the matrix with the universal function round()—all items in
one function call! In Unit 25, Demystifying Universal Functions, on page 73,
we’ll become real ufuncs wizards.

By the way, if you run the previous example several times, you will get different
results. That’s because the random numbers are...random!

A more detailed and highly graphic study of real-world, noisy, sine wave–style
signal generation awaits you in Unit 30, Generating a Synthetic Sine Wave,
on page 80.

Chapter 5. Working with Tabular Numeric Data • 72

report erratum  •  discuss

http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


Unit 25

Demystifying Universal Functions

Vectorized universal functions, or ufuncs, are a functional counterpart of
broadcasting. You can apply ufuncs to all array items at once in one function
call. numpy provides a lot of ufuncs, and here are some of them:

• arithmetic: add(), multiply(), negative(), exp(), log(), sqrt()

• trigonometric: sin(), cos(), hypot()

• bitwise: bitwise_and(), left_shift()

• relational and logical: less(), logical_not(), equal()

• maximum() and minimum()

• functions for working with floating-point numbers: isinf(), isfinite(), floor(), isnan()

Let’s say we recorded the stock prices for the eight sap symbols after and
before the weekend of 01/10/2016 in a one-dimensional array called stocks:

stocks

array([ 140.49, 0.97, 40.68, 41.53, 55.7 , 57.21, 98.2 ,➾

99.19, 109.96, 111.47, 35.71, 36.27, 87.85, 89.11,➾

30.22, 30.91])➾

We want to know which stock prices fell over the weekend. We’ll first group
the prices by symbols and put newer quotes after older quotes—by reshaping
the original array into a 2×8 matrix:

stocks = stocks.reshape(8, 2).T

array([[ 140.49, 40.68, 55.7 , 98.2 , 109.96, 35.71, 87.85,➾

30.22],➾

[ 0.97, 41.53, 57.21, 99.19, 111.47, 36.27, 89.11,➾

30.91]])➾

Now we can apply the function greater() to both rows, perform a column-wise
comparison, and find out the symbol of interest using Boolean indexing:
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fall = np.greater(stocks[0], stocks[1])

array([True, False, False, False, False, False, False, False], dtype=bool)➾

sap[fall]

array(['MMM'],➾

dtype='<U4')➾

Incidentally, MMM is a Ponzi scheme–based Russian company that has never
been listed at any stock exchange. No wonder its stock is in decline.

In addition to “traditional” numbers, numpy fully supports the IEEE 754
floating-point standard and provides symbols for positive infinity (inf) and not-
a-number (nan). They exist outside numpy as float("inf") and float("nan"). In accor-
dance with the data scientific tradition, we will use nan as a placeholder for
missing data (previously introduced on page 3).

The universal function isnan() is an excellent tool for locating the outcasts.
And though replacing the missing data with a zero in the following example
is probably a very bad idea, we did it before ( on page 69), so let’s do it again:

# Pretend the new MMM quote is missing
stocks[1, 0] = np.nan
np.isnan(stocks)

array([[False, False, False, False, False, False, False, False],➾

[ True, False, False, False, False, False, False, False]], dtype=bool)➾

# Repair the damage; it can't get worse than this
stocks[np.isnan(stocks)] = 0

array([[ 140.49, 40.68, 55.7 , 98.2 , 109.96, 35.71, 87.85,➾

30.22],➾

[ 0. , 41.53, 57.21, 99.19, 111.47, 36.27, 89.11,➾

30.91]])➾

Universal functions expand the possibilities of Python arithmetic functions
and relational operators. Conditional functions are Python logical operators
on steroids.
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Unit 26

Understanding Conditional Functions

The function where(c, a, b) is the numpy idea of the ternary operator if-else. It takes
a Boolean array (c) and two other arrays (a and b) and returns array d[i]=a[i] if
c[i] else b[i]. All three arrays must be of the same shape.

The functions any() and all() return True if any or all array elements are True,
respectively.

The function nonzero() returns the indexes of all non-zero elements.

In Unit 25, Demystifying Universal Functions, on page 73, we recorded some
S&P stock prices in an array sap. To find out which stock changed substan-
tially (by more than $1.00 per share), let’s replace “small” changes with zeros,
locate the non-zero elements, and use their indexes as a “smart index” into
the array of stock symbols:

changes = np.where(np.abs(stocks[1] - stocks[0]) > 1.00,
stocks[1] - stocks[0], 0)

array([-139.52, 0. , 1.51, 0. , 1.51, 0. , 1.26, 0. ])➾

sap[np.nonzero(changes)]

array(['MMM', 'ABBV', 'ACE', 'ADBE'],➾

dtype='<U4')➾

You could surely get the same answer using Boolean indexes alone:

sap[np.abs(stocks[1] - stocks[0]) > 1.00]

array(['MMM', 'ABBV', 'ACE', 'ADBE'],➾

dtype='<U4')➾

But it would not be so much fun!
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Unit 27

Aggregating and Ordering Arrays

Data ordering and aggregation are at the core of data science. You start with
large amounts of data and gradually distill them by binning, averaging,
accumulating, and so on, until they hopefully boil down to a small, easily
presentable, and easily interpretable set. numpy provides the functions mean(),
sum(), std() (standard deviation), min(), and max() that return the respective
aggregated measures of a numpy array.

Let’s use a combination of broadcasting, aggregation functions, ufuncs, and
Boolean indexes—almost our entire toolset!—to extract the stocks from Unit
25, Demystifying Universal Functions, on page 73, that changed either way
by more than the average eight-stock portfolio:

sap[ np.abs(stocks[0] - stocks[1])
> np.mean(np.abs(stocks[0] - stocks[1]))]

array(['MMM'],➾

dtype='<U4')➾

But, honestly, mixing positive and negative stock quote changes sounds like
another horrible idea.

The functions cumsum(x) and cumprod(x) calculate cumulative sums and products:
cumsumi=Σ1

ixi and cumprodi=Π1
ixi. You can use them as poor man integrators

of additive (simple interest payments) and multiplicative (compound interest
payments) data. (Beware that if any array element is 0, its corresponding
cumprod() element and all subsequent elements are 0, too.)

Let’s compare simple and compound interest payments over 30 years with
the interest rate of 3.75%—all in two lines of numpy code, plus (plotting) fees
and taxes:

interest.py
# This is a partial listing
RATE = .0375
TERM = 30
simple = ( RATE * np.ones(TERM)).cumsum()
compound = ((1 + RATE) * np.ones(TERM)).cumprod() - 1
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The function sort() is perhaps the most boring function in the module. It simply
sorts an array in place (overwrites the original array order) and returns None.
If the original array is precious to you, make a copy before sorting.
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Unit 28

Treating Arrays as Sets

In some cases, the order of items in an array is less important than the array
composition—whether a particular item is in the array or not, or what kind of
items are in the array. numpy knows how to treat arrays as mathematical sets.

The function unique(x) returns an array of all unique elements of x. It’s a great
substitute for the Counter module (which you looked at in Unit 7, Counting
with Counters, on page 17), but it doesn’t really count the occurrences.

We all know that bioinformatics is the best thing since data science (which
is the best thing since sliced bread). Bioinformatics deals with genome
sequencing—figuring out the order of DNA nucleotides. Let’s do some pseudo
bioinformatics now and find out what kinds of nucleotides exist in a random
DNA fragment:

dna = "AGTCCGCGAATACAGGCTCGGT"
dna_as_array = np.array(list(dna))

array(['A', 'G', 'T', 'C', 'C', 'G', 'C', 'G', 'A', 'A', 'T', 'A', 'C',➾

'A', 'G', 'G', 'C', 'T', 'C', 'G', 'G', 'T'],➾

dtype='<U1')➾

np.unique(dna_as_array)

array(['A', 'C', 'G', 'T'],➾

dtype='<U1')➾

You knew it, didn’t you?2

The function in1d(needle, haystack) returns a Boolean array where an element is
True if the corresponding element of the needle is in the haystack. The arrays
needle and haystack don’t have to be of the same shape.

np.in1d(["MSFT", "MMM", "AAPL"], sap)

array([False, True, False], dtype=bool)➾

The functions union1d() and intersect1d() calculate the set theoretical union and
intersection of two one-dimensional arrays. The arrays don’t have to be of the
same size, either. However, you may want to stick to the native Python set
operators & and | . They are about twice as fast as their numpy brethren!

2. www.genomenewsnetwork.org/resources/whats_a_genome/Chp2_1.shtml
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Unit 29

Saving and Reading Arrays

You will probably be using numpy not on its own, but as a powerful back end
to pandas (Chapter 6, Working with Data Series and Frames, on page 83), networkx
(Chapter 7, Working with Network Data, on page 121), and machine learning
tools (Chapter 10, Machine Learning, on page 157). You will create numpy arrays
from the data provided by low-level, data-processing tools, and deliver them
to the higher-level analysis tools. It is unlikely you’ll need to save or read
numpy arrays directly.

However, just in case, numpy has a built-in facility for saving arrays to .npy files
(function save(file,arr)) and reading previously saved arrays from .npy files (function
load(file)). The files are in a binary format, and only numpy can handle them.

Both functions, perhaps recognizing their uselessness, are very friendly: file
can be either an open file handle or a string file name, and if file is a file name
without the .npy extension, the extension is added automatically.

# A silly way to copy an array
np.save("sap.npy", sap)
sap_copy = np.load("sap")

Another pair of functions, loadtxt() and savetxt(), loads tabular data from a text file
and saves an array to a text file. numpy automatically creates the file, if needed,
and opens it. numpy even goes as far as automatically zipping or unzipping the
file content if the file name ends with .gz. You can control the way numpy handles
commented lines and delimiters, and skips over unwanted rows:

arr = np.loadtxt(fname, comments="#", delimiter=None, skiprows=0,
dtype=float)

np.savetxt(fname, arr, comments="#", delimiter=" ", dtype=float)
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Unit 30

Generating a Synthetic Sine Wave

It’s time to impress our non-numpy friends and do something that data scientists
normally don’t do: generate a synthetic sine wave, a periodic signal that we
could have captured using a cheap, imperfect, and noisy instrument with a
limited range. The actual provenance of the signal and the nature of the
instrument are not really important. Perhaps it was a voltmeter that you hooked
into an electrical outlet, an outdoor digital thermometer that you left on your
lawn on Sunday night and collected only on Friday, or even a stock market
price ticker. (By the way, you can use synthetic periodic signals not just to
impress friends, but also to test new digital signal processing algorithms.)

The generating code is as follows. numpy shines at its best in the highlighted
portion of the code. That’s where the vectorized magic happens: you create
an array of sequential integer numbers, convert them to floating-point num-
bers, adjust to the right period, take the sine, magnify, displace, add Gaussian
noise (see Normal Distribution, on page 149), and truncate the result as if
measured by a limited-range instrument.

numpy_sinewave.py
# Import all good things
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

# The constants define the signal, noise, and "instrument"
# properties
SIG_AMPLITUDE = 10; SIG_OFFSET = 2; SIG_PERIOD = 100
NOISE_AMPLITUDE = 3
N_SAMPLES = 5 * SIG_PERIOD
INSTRUMENT_RANGE = 9

# Construct a sine wave and mix it with some random noise➤

times = np.arange(N_SAMPLES).astype(float)➤

signal = SIG_AMPLITUDE * np.sin(2 * np.pi * times / SIG_PERIOD) + SIG_OFFSET➤

noise = NOISE_AMPLITUDE * np.random.normal(size=N_SAMPLES)➤

signal += noise➤
➤

# Truncate spikes that are outside of the instrument range➤

signal[signal > INSTRUMENT_RANGE] = INSTRUMENT_RANGE➤

signal[signal < -INSTRUMENT_RANGE] = -INSTRUMENT_RANGE➤

# Plot the results
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matplotlib.style.use("ggplot")
plt.plot(times, signal)
plt.title("Synthetic sine wave signal")
plt.xlabel("Time")
plt.ylabel("Signal + noise")
plt.ylim(ymin = -SIG_AMPLITUDE, ymax = SIG_AMPLITUDE)

# Save the plot
plt.savefig("../images/signal.pdf")

The remaining, unhighlighted part of the code makes clever use of Matplotlib
to visualize the noisy signal.
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Synthetic sine wave signal

Matplotlib, numpy’s sister package, will be at the focus of our attention in Chapter
8, Plotting, on page 135.
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Your Turn
I hope I convinced you that numpy is an excellent toolset when it comes to
number crunching. It treats vectors and matrices as first-class citizens; pro-
vides vectorized arithmetic, logical, and other operations; and provides a
means for data reshaping, ordering, and aggregation. It even supplies a weird
creature called nan, which is a number that is not a number. Can you tame
some of the computationally intensive projects with numpy?

Array Differentiator*

Partial sums are a rough equivalent of an integral. In fact, calculus defines
an integral as an infinite sum of infinitesimal elements. Partial differences
arri+1-arri are a rough equivalent of a derivative. numpy doesn’t provide a
tool for calculating partial array differences. Write a program that, given
an array arr, calculates the partial differences of the array items. Assume
that the array is numerical.

HEI Locator**

Download the U.S. Higher Education Dataset from www.data.gov/education as
a CSV file. Write a program that reports ten higher education institutions
(HEIs) that are the closest geographically to the point defined by the mean
latitude and mean longitude of all HEIs in the data set. Calculate the
distances in degrees. Try to use numpy for data storage and processing as
much as possible. Remember that the first row of the CSV file contains
column headers, and that some fields or entire records in the file may be
invalid.

State Similarity Calculator**

The U.S. Census Bureau provides a summary of state-to-state population
flows (download the most recent XLS file from www.census.gov/hhes/migration/
data/acs/state-to-state.html and convert it to CSV by opening in Excel or
OpenOffice Calc and exporting as CSV). Write a program that reports ten
most similar pairs of states with respect to people migration. Consider
two states X and Y similar if more than PX/N people moved from X to Y,
where PX/Y is the total flow out of X, and N is the total number of states
and territories, less the territory of origin itself. Try to use numpy for data
storage and processing as much as possible. Are both states in each pair
typically on the same coast?
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CHAPTER 6

The art galleries of Paris contain the finest
collection of frames I ever saw.

➤ Humphry Davy, Cornish chemist and inventor

Working with Data Series and Frames
Data scientists traditionally admire tabular data (arrays, vectors, matrices).
Tabular data is nicely shaped and can be conveniently accessed both element-
wise and by rows and columns. Supercomputers and many modern high-end
personal computers provide vectorized arithmetic operations that are per-
formed on many or all tabular items at once (you saw a numpy implementation
of them in Unit 24, Broadcasting, on page 71). However, numpy fails to tie
numerical data itself with the data attributes: column and row names and
indexes. This lack of references makes working with a set of more than one
numpy array a real challenge.

Enter pandas.

The purpose of the pandas module is to add to Python the abstractions of data
series and frames that are the core of the rival R language—the original lan-
guage of data science. pandas is built on top of numpy and greatly extends and
partially re-implements its functionality.

A pandas data frame is essentially a “smart” spreadsheet: a labeled table with
columns (variables), observations (rows), and a multitude of built-in opera-
tions. (A series is simply a frame with only one column.) The data part of the
table (the cells) is implemented as a numpy array. Many operations (such as
data reshaping and aggregation and universal functions) also resemble their
numpy counterparts. Row and column labels provide convenient, no-nonsense
access to individual rows and columns. Furthermore, labeled rows and
columns allow pandas programmers (us) to combine frames by merging and
concatenating in “vertical” (stacking) and “horizontal” (side-by-side) directions.
In this sense, frames act like relational database tables. (To refresh your
knowledge of relational databases, revisit Chapter 4, Working with Databases,
on page 47.)
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Last but not least, pandas is nicely integrated with pyplot—a Python-based
plotting and data visualization system, which we’ll look at in Unit 41, Basic
Plotting with PyPlot, on page 136. Honestly, pandas is all you need to do data
science—in addition to all other tools, of course.

In this chapter, we’ll start our pandas journey by looking at two pandas contain-
ers: Series and DataFrame in Unit 31, Getting Used to Pandas Data Structures,
on page 85.

Chapter 6. Working with Data Series and Frames • 84

report erratum  •  discuss

http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


Unit 31

Getting Used to Pandas Data Structures

The module pandas adds two new containers to the already rich Python set of
data structure: Series and DataFrame. A series is a one-dimensional, labeled (in
other words, indexed) vector. A frame is a table with labeled rows and columns,
not unlike an Excel spreadsheet or MySQL table. Each frame column is a
series. With a few exceptions, pandas treats frames and series similarly.

Frames and series are not simply storage containers. They have built-in
support for a variety of data-wrangling operations, such as:

• Single-level and hierarchical indexing

• Handling missing data

• Arithmetic and Boolean operations on entire columns and tables

• Database-type operations (such as merging and aggregation)

• Plotting individual columns and whole tables

• Reading data from files and writing data to files

Frames and series should be used whenever you deal with one- or two-
dimensional tabular data. They are simply too convenient not to be used.

Series
A series is a one-dimensional data vector. Just like numpy arrays (you can find
more on them on page 64), series are homogeneous: all series items must
belong to the same data type.

You can create a simple series from any sequence: a list, a tuple, or an array.
Let’s use a tuple of recent U.S. inflation data to illustrate a pandas data series.
But first, a disclaimer: I packed the previously calculated inflation data into
a tuple to stress its immutable nature; aside from that, the following example
requires no advanced knowledge of economics or finance!
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import pandas as pd
# The last value is wrong, we will fix it later!
inflation = pd.Series((2.2, 3.4, 2.8, 1.6, 2.3, 2.7, 3.4, 3.2, 2.8, 3.8, \

-0.4, 1.6, 3.2, 2.1, 1.5, 1.5))

0 2.2➾

1 3.4➾

2 2.8➾

3 1.6➾

4 2.3➾

5 2.7➾

6 3.4➾

7 3.2➾

8 2.8➾

9 3.8➾

10 -0.4➾

11 1.6➾

12 3.2➾

13 2.1➾

14 1.5➾

15 1.5➾

dtype: float64➾

The built-in function len() is Python’s universal yardstick. It works for series, too:

len(inflation)

16➾

One Series, Two Series, Three Series...

The word series comes in both the singular and the plural form.
It traces back to the Latin serere, which means join or connect.

A simple series, like the one you just created, has a default integer index: the
first item’s label is 0, the second is 1, and so on. The values attribute of a series
has the list of all series values; the index attribute refers to the index of the
series (Index is yet another pandas data type); and the index.values attribute refers
to the array of all index values.

inflation.values

array([ 2.2, 3.4, 2.8, 1.6, 2.3, 2.7, 3.4, 3.2, 2.8,➾

3.8, -0.4, 1.6, 3.2, 2.1, 1.5, 1.5])➾

inflation.index

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],➾

dtype='int64')➾
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inflation.index.values

array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])➾

Note how pandas avoids reinventing the wheel and makes use of numpy arrays
as its underlying storage!

Somewhat surprising, all these arrays (and the series attributes that they
represent) are mutable. Changing values, index, and index.values actually changes
the series values and the index. Let’s use this fact to fix the last inflation item,
which is wrong:

inflation.values[-1] = 1.6

The problem with the series is that it looks like an array and acts like an
array and, according to the “duck test,” is a duck—that is, an array. For
example, it’s hard to tell which year the first series item refers to. You could
create another series of years and keep the two series together, but someone
taught me in high school that parallel series are a sure path to an eventual
disaster. So, let’s create a series with a customized index by passing a dictio-
nary to the Series constructor. The dictionary keys become the series index—
an indivisible part of the series:

inflation = pd.Series({1999 : 2.2, «more items», 2014 : 1.6, 2015 : np.nan})

1999 2.2➾

«more items»➾

2014 1.6➾

2015 NaN➾

Alternatively, you can create a new index from any sequence and then attach
it to an existing series:

inflation.index = pd.Index(range(1999, 2015))
inflation[2015] = numpy.nan

1999 2.2➾

«more items»➾

2014 1.6➾

2015 NaN➾

Series values and the index can have names, which are accessed and assigned
through the namesake attributes. The names are essentially a form of docu-
mentation to remind us (and future core readers) about the nature of both
sequences:

inflation.index.name = "Year"
inflation.name = "%"
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Year➾

1999 2.2➾

«more items»➾

2014 1.6➾

2015 NaN➾

Name: %, dtype: float64➾

You can look at the entire series, with the index and all the names, either by
printing it or typing its name on the command line in interactive mode, or by
calling the functions head() and tail(), which return the first five and the last
five rows of a series, respectively:

inflation.head()

Year➾

1999 2.2➾

2000 3.4➾

2001 2.8➾

2002 1.6➾

2003 2.3➾

Name: %, dtype: float64➾

inflation.tail()

Year➾

2011 3.2➾

2012 2.1➾

2013 1.5➾

2014 1.6➾

2015 NaN➾

Name: %, dtype: float64➾

Should you prefer a picture (worth a thousand words) to the head() and tail(),
see the figure on page 89. (We’ll learn about appropriate plotting tools in
Chapter 8, Plotting, on page 135.)

Series are great for recording observations of one variable. However, many
data sets have more than one variable. That’s where frames come in.

Frames
A data frame is a table with labeled rows and columns. You can construct a
frame from a two-dimensional numpy array, a list of tuples, a Python dictionary,
or another frame. In the dictionary case, the keys serve as column names,
and the values (which must be sequences) are column values. In the case of
another frame, pandas copies column names from the source frame to the new
frame. In the case of an array, you can supply the column names through
the optional parameter columns (a sequence of column names). Following the
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numpy approach, the frame index is called axis 0 (“vertical” dimension), and
frame columns are called axis 1 (“horizontal” dimension).

Let’s use a 2011 surveillance report by the National Institute on Alcohol Abuse
and Alcoholism1 to study frames. The report shows per capita alcohol con-
sumption per state, per category (beer, wine, and spirits), and per year between
1977–2009.

NIAAA Report

The NIAAA report is such an excellent source of data that I
included a preprocessed copy of it as a “code” item for you to
explore. But remember: do not drink and do data science!

You can create a simple frame with column names and an index by passing
a list of row tuples or other sequences of the same length to the constructor.
(Here I used a pandas CSV reader from Unit 37, Taming Pandas File I/O, on
page 116 to create the full frame alco and then selected a one-year timespan.)

1. pubs.niaaa.nih.gov/publications/surveillance92/CONS09.pdf
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alco2009 = pd.DataFrame([(1.20, 0.22, 0.58),
(1.31, 0.54, 1.16),
(1.19, 0.38, 0.74),
«more rows»],

columns=("Beer", "Wine", "Spirits"),
index=("Alabama", "Alaska", «more states»))

Beer Wine Spirits➾

Alabama 1.20 0.22 0.58➾

Alaska 1.31 0.54 1.16➾

Arizona 1.19 0.38 0.74➾

«more rows»➾

You can also use a dictionary of columns to the same effect:

alco2009 = pd.DataFrame({"Beer" : (1.20, 1.31, 1.19, «more rows»),
"Wine" : (0.22, 0.54, 0.38, «more rows»),
"Spirits" : (0.58, 1.16, 0.74, «more rows»)},

index=("Alabama", "Alaska", «more states»))
Individual frame columns can be accessed using either dictionary or object
notation. However, to add a new column, you must use the dictionary notation.
If the object notation is used, pandas will create a new frame attribute instead.
Just like with series, frames have a head() and a tail(). (Real pandas have tails, too!)

alco2009["Wine"].head()

State➾

Alabama 0.22➾

Alaska 0.54➾

Arizona 0.38➾

Arkansas 0.17➾

California 0.55➾

Name: Wine, dtype: float64➾

alco2009.Beer.tail()

State➾

Virginia 1.11➾

Washington 1.09➾

West Virginia 1.24➾

Wisconsin 1.49➾

Wyoming 1.45➾

Name: Beer, dtype: float64➾
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And just like series, frames support broadcasting: you can assign a value to
all rows of a column in one assignment statement. The column doesn’t even
have to exist; if it doesn’t, pandas will create it.

alco2009["Total"] = 0
alco2009.head()

Beer Wine Spirits Total➾

State➾

Alabama 1.20 0.22 0.58 0➾

Alaska 1.31 0.54 1.16 0➾

Arizona 1.19 0.38 0.74 0➾

Arkansas 1.07 0.17 0.60 0➾

California 1.05 0.55 0.73 0➾

The totals shown here are clearly wrong, but we’ll find out how to fix them
soon in Arithmetic Operations, on page 109.
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Unit 32

Reshaping Data

The main contribution of pandas to the tabular data cause is data labeling:
association of numerical or textual labels with columns (column names) and
rows (flat and hierarchical indexes). This association is flexible: if you change
the shape of the underlying numpy array (see the function reshape() on page
67) to make it match other frames, some rows may become columns, and
columns may become rows. For example, if a hierarchical index of one frame
has two levels (say, “Year” and “State”), but another frame has a flat “State”
index, you will convert the “Year” labels into column names. In this unit, you
will learn about flat and hierarchical indexing and reindexing, and other ways
to reorganize data labels.

Indexing
A frame index is a collection of labels assigned to the frame rows. (The labels
have to belong to the same data type, but don’t have to be unique.) You can
supply an index through the optional parameter index to the DataFrame() con-
structor. And just like in the case of a series, you can access and change
column names and the index through the attributes index.values and
columns.values.

alco2009.columns.values

array(['Beer', 'Wine', 'Spirits', 'Total'], dtype=object)➾

alco2009.index.values

array(['Alabama', 'Alaska', 'Arizona', «...»], dtype=object)➾

Any column in a frame can become an index—the functions reset_index() and
set_index(column) are responsible for deposing the existing index, if any, and
declaring a new one, respectively. Both functions return a new frame, but if
you supply the optional parameter inplace=True, the functions modify the object
frame itself:
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alco2009.reset_index().set_index("Beer").head()

State Wine Spirits Total➾

Beer➾

1.20 Alabama 0.22 0.58 0➾

1.31 Alaska 0.54 1.16 0➾

1.19 Arizona 0.38 0.74 0➾

1.07 Arkansas 0.17 0.60 0➾

1.05 California 0.55 0.73 0➾

A frame index is an important row access tool and a relevant row identifier.
Whatever column you use as the index, it must make sense. In the latter
example, the column used does not: beer consumption is a property of a state,
but not an identifier.

Once the index is in place, you can access individual rows through the row
index attribute ix, which is like a dictionary of row series, keyed by the index
labels. The frame columns serve as each series’ index:

alco2009.ix["Nebraska"]

Beer 1.46➾

Wine 0.20➾

Spirits 0.68➾

Total 0.00➾

Name: Nebraska, dtype: float64➾

The Python operator in checks if a row with a certain label is present in the
frame at all:

"Samoa" in alco2009.index

False➾

The function drop() returns a copy of a frame with a row or list of rows removed.
To remove the rows in the original frame, pass the optional parameter
inplace=True.

Reindexing
Reindexing creates a new frame or series from an existing frame or series by
selecting possibly permuted rows, columns, or both. Essentially, it’s a coun-
terpart of numpy “smart” indexing (which we looked at in Unit 23, Indexing
and Slicing, on page 69), except that if pandas doesn’t find the requested row
or column labels in the original frame, it will create a new row or column and
populate it (or them) with nans.
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In the next example, we create a list of states whose names begin with “S”
(including “Samoa,” which is not a state and is not in the alco2009 frame). Then
we take all frame columns, except for the last one (“Total,” which is not
properly initialized, anyway), and add another column named “Water.”
Finally, we extract the selected rows and columns from the original frame.
Because one row and one column don’t exist, pandas creates them:

s_states = [state for state in alco2009.index if state[0] == 'S'] + ["Samoa"]
drinks = list(alco2009.columns) + ["Water"]
nan_alco = alco2009.reindex(s_states, columns=drinks)

Beer Wine Spirits Water➾

State➾

South Carolina 1.36 0.24 0.77 NaN➾

South Dakota 1.53 0.22 0.88 NaN➾

Samoa NaN NaN NaN NaN➾

The optional parameter method with possible values "ffill" and "bfill" forward fills
or backward fills—imputes—the missing values. (This works only on monoton-
ically decreasing or increasing indexes.) You’ll learn more about data imputa-
tion on page 98.

Hierarchical Indexing
pandas supports hierarchical (multilevel) indexes and hierarchical (multilevel)
column names. The multilevel indexes are also known as multiindexes.

A multilevel index consists of three lists:

• Level names

• All possible labels per level

• Lists of actual values for each item in the frame or series (the lengths of
the lists are the same and equal to the number of levels in the index)

The following frame contains a complete version of the NIAAA data set, not
just for the year 2009. It has a multiindex both by state and year and is
sorted by both indexes: first by “State,” then by “Year.”

alco

Beer Wine Spirits➾

State Year➾

Alabama 1977 0.99 0.13 0.84➾

1978 0.98 0.12 0.88➾

1979 0.98 0.12 0.84➾

1980 0.96 0.16 0.74➾

1981 1.00 0.19 0.73➾

«...»➾
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Wyoming 2005 1.21 0.23 0.97➾

2006 1.47 0.23 1.05➾

2007 1.49 0.23 1.10➾

2008 1.54 0.23 1.12➾

2009 1.45 0.22 1.10➾

Data transformation operations often produce hierarchical indexes, but you
can construct them on purpose, too. The function MultiIndex.from_tuples() takes
a collection of tuples with labels and an optional list of level names and pro-
duces a multiindex. You can attach the multiindex to an existing frame or
series or pass it as a parameter to the DataFrame() constructor:

multi = pd.MultiIndex.from_tuples((
("Alabama", 1977), ("Alabama", 1978), ("Alabama", 1979), ...,
("Wyoming", 2009)),
names=["State", "Year"])

MultiIndex(levels=[['Alabama', 'Alaska', «...», 'Wyoming'],➾

[1977, 1978, 1979, 1980, «...», 2009]],➾

labels=[[0, 0, 0, 0, 0, 0, 0, 0, «...», 50],➾

[0, 1, 2, 3, 4, 5, 6, 7, «...», 32]],➾

names=['State', 'Year'])➾

alco.index = multi

A multiindex can be used the same way as a flat index. A partial selection (by
one of several labels) produces a frame; a complete selection produces a series.

alco.ix['Wyoming'].head()

Beer Wine Spirits➾

Year➾

1977 1.79 0.21 1.32➾

1978 1.82 0.22 1.36➾

1979 1.86 0.22 1.30➾

1980 1.85 0.24 1.32➾

1981 1.91 0.24 1.27➾

alco.ix['Wyoming', 1999]

Beer 1.41➾

Wine 0.18➾

Spirits 0.84➾

Name: (Wyoming, 1999), dtype: float64➾

pandas treats multilevel indexes and columns consistently—to the extent that
an index level may become a column level and the other way around.
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Stacking and Pivoting
You can fully or partially flatten a multilevel index—at the expense of intro-
ducing multilevel column names. You can fully or partially flatten multilevel
column names—at the expense of introducing a multiindex.

The stack() function increments the number of levels in the index and simulta-
neously decrements the number of levels in the column names. It makes the
frame taller and narrower, as shown in the following figure. If the column
names are already flat, a series is returned. The unstack() function does just
the opposite: it decrements the number of levels in the index and simultane-
ously increments the number of levels in the column names. It makes the
frame shorter and wider. If the index is already flat, a series is returned.

x

y

z

P1

P2

P3

Beer

Wine

Spirits

...

...

...

1977

1978

Alabama

1977

1978

1978

1977

Beer Wine Spirits

Alabama

Alaska

0.99 0.13 0.84

... ... ...

.........

... ... ...

Beer

Spirits

0.99

0.84

Wine 0.13

.......................

Beer Spirits

0.99 0.84

Wine

0.13

stackunstack

tall_alco = alco.stack()
tall_alco.index.names += ["Drink"]
tall_alco.head(10)

State Year Drink➾

Alabama 1977 Beer 0.99➾

Wine 0.13➾

Spirits 0.84➾

1978 Beer 0.98➾

Wine 0.12➾

Spirits 0.88➾

1979 Beer 0.98➾

Wine 0.12➾

Spirits 0.84➾

1980 Beer 0.96➾

dtype: float64➾

The result of the previous operation is a series with a three-level index (I had
to provide the name for the missing third level—“Drink”).
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wide_alco = alco.unstack()
wide_alco.head()

Beer ...➾

Year 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 ...➾

State ...➾

Alabama 0.99 0.98 0.98 0.96 1.00 1.00 1.01 1.02 1.06 1.09 ...➾

Alaska 1.19 1.39 1.50 1.55 1.71 1.75 1.76 1.73 1.68 1.68 ...➾

Arizona 1.70 1.77 1.86 1.69 1.78 1.74 1.62 1.57 1.67 1.77 ...➾

Arkansas 0.92 0.97 0.93 1.00 1.06 1.03 1.03 1.02 1.03 1.06 ...➾

California 1.31 1.36 1.42 1.42 1.43 1.37 1.37 1.38 1.32 1.36 ...➾
➾

[5 rows x 99 columns]➾

The result of the previous operation is a frame with a flat index and two-level,
hierarchical column names. You’ll often find these kinds of frames in CSV
and other tabular files. You may want to stack them to make the data “more
square” and easier to manage.

Stacking and unstacking are special cases of a more general operation—piv-
oting. The pivot(index,columns,values) function converts a frame into another frame
using column index as the new index, columns as the new list of column names,
and column values as the data.

In the following example, alco is reorganized into a “square” frame describing
wine consumption by year (new flat index) and state (column names):

alco.pivot("Year", "State", "Wine")

State Alabama Alaska Arizona Arkansas California Colorado Connecticut➾

Year➾

1977 0.13 0.42 0.34 0.10 0.67 0.36 0.35➾

1978 0.12 0.45 0.37 0.11 0.68 0.47 0.38➾

1979 0.12 0.47 0.39 0.10 0.70 0.47 0.40➾

1980 0.16 0.50 0.36 0.12 0.71 0.47 0.43➾

«...»➾
➾

[33 rows x 51 columns]➾

If index is None, pandas reuses the original frame index.
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Unit 33

Handling Missing Data

Data is almost never perfect. Some values are firm (no need to worry about
them); some are questionable (you’ve got to treat them with a grain of salt);
and some are simply missing.

pandas traditionally uses numpy.nan (explained on page 74) to represent missing
data—probably so as to not confuse it with any number and because its name
resembles the NA (“Not Available”) symbol from the R language. pandas also
provides functions for recognizing and imputing missing values.

There are several reasons values may be missing in series and frames: you
may have never collected them; you may have collected them but discarded
them as inappropriate; or you may have combined several complete data sets,
but their combination was not a complete data set anymore. Unfortunately,
you can’t do any serious data analysis before you take care of the missing
values. You must either delete or impute them—replace with some values
that make sense. Let’s find out how.

Deleting Missing Data
The simplest way to handle missing data is to pretend you never had it in the
first place (the “See No Evil, Hear No Evil” approach). The dropna() function
removes partially (how="any", default) or fully (how="all") invalid columns (axis=0,
default) or rows (axis=1) and returns a “clean” copy of the object frame. You
can use the optional parameter inplace=True to modify the original frame instead
of creating a copy.

nan_alco.dropna(how="all")

Beer Wine Spirits Water➾

State➾

South Carolina 1.36 0.24 0.77 NaN➾

South Dakota 1.53 0.22 0.88 NaN➾

nan_alco.dropna(how="all", axis=1)

Beer Wine Spirits➾

State➾

South Carolina 1.36 0.24 0.77➾

South Dakota 1.53 0.22 0.88➾

Samoa NaN NaN NaN➾
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You cannot remove a missing value alone without destroying the frame grid.
You can remove only the whole row or column containing the “dirty” cell, and
the resulting “clean” frame may be totally empty. Instead of seeing no evil,
you will see no data.

nan_alco.dropna()

Empty DataFrame➾

Columns: [Beer, Wine, Spirits, Water]➾

Index: []➾

Imputing Missing Data
Another way to deal with missing values is to impute the missing data. Imputing
missing values means replacing them with some “clean” values that make sense.
What makes sense, of course, depends on what kind of data it is. Only we, data
scientists, can tell whether the replacement is appropriate or not.

Two most common imputation techniques are replacing with a constant (a
zero, a one, and so on) and replacing with an average taken across the “clean”
values. But first, you need to identify what’s actually missing.

The functions isnull() and notnull() are complementary. They return True if a value
is a nan or not a nan, respectively. Note that according to the IEEE 754 floating-
point standard, the expression np.nan==np.nan is False, which makes a direct
comparison impossible!

nan_alco.isnull()

Beer Wine Spirits Water➾

State➾

South Carolina False False False True➾

South Dakota False False False True➾

Samoa True True True True➾

nan_alco.notnull()

Beer Wine Spirits Water➾

State➾

South Carolina True True True False➾

South Dakota True True True False➾

Samoa False False False False➾

Let’s fix the “Spirits” column by imputing the average (remember that -
[hyphen] is numpy’s idea of a negation operator):
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sp = nan_alco['Spirits'] # Selected a column with dirty rows
clean = sp.notnull() # The clean rows
sp[-clean] = sp[clean].mean() # Impute the clean mean into the dirty rows
nan_alco

Beer Wine Spirits Water➾

State➾

South Carolina 1.36 0.24 0.770 NaN➾

South Dakota 1.53 0.22 0.880 NaN➾

Samoa NaN NaN 0.825 NaN➾

You have to impute the means on a column-by-column (or row-by-row) basis,
but you can impute constants across the frame. The function fillna(val) in its
simplest form imputes val into the “holes.” Alternatively, the function propa-
gates the last valid observation along its column (axis=0}, default) or row (axis=1)
either forward (method="ffill") or backward (method="bfill"). The function returns
a new frame or series, unless you specify the parameter inplace=True.

nan_alco.fillna(0)

Beer Wine Spirits Water➾

State➾

South Carolina 1.36 0.24 0.77 0➾

South Dakota 1.53 0.22 0.88 0➾

Samoa 0.00 0.00 0.00 0➾

nan_alco.fillna(method="ffill")

Beer Wine Spirits Water➾

State➾

South Carolina 1.36 0.24 0.77 NaN➾

South Dakota 1.53 0.22 0.88 NaN➾

Samoa 1.53 0.22 0.88 NaN➾

Replacing Values
Another way to handle specific “dirty” values is to replace them selectively by
“clean” values on a case-by-case basis. The replace(val_or_list,new_val) function
replaces one value or a list of values by another value or a list of values. If
you use lists, they must be of the same length. The function returns a new
frame or series, unless you pass the inplace=True parameter.

The function combine_first(pegs) combines two frames or two series. It replaces
the missing values in the object frame/series by the corresponding values
from the argument frame/series. In a sense, the argument serves as a source
of default values.
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Unit 34

Combining Data

Once your data is in a series or frames, you may need to combine the data
to prepare for further processing, as some data may be in one frame and some
in another. pandas provides functions for merging and concatenating frames
—as long as you know whether you want to merge or to concatenate.

Merging
Merging frames is similar to merging database tables: pandas combines rows
with identical indexes (or identical values in other designated columns) from
the left and right frames. When there is only one match in the right frame for
each row in the left frame, that type of merging is called one-to-one. When
there is more than one match, that type of merging is called one-to-many. In
that case, pandas replicates the rows of the left frame as needed, and the
replication may cause row duplication (but we look at how to deal with this
on page 104). When there are several matches for some rows in each of the
frames, that type of merging is called many-to-many, and again, pandas repli-
cates rows as needed and inserts numpy.nans into the “holes.”

If both frames have a column with the same name (the key column), you can
merge the frames on that column. If not, you can designate other columns
as the keys, as shown here:

df = pd.merge(df1, df2, on="key")
df = pd.merge(df1, df2, left_on="key1", right_on="key2")

Use U.S. Census Bureau data2 to build a frame with the U.S. population as of
July 1, 2009. In addition to the state-by-state data, the frame has observations
for East, Northeast, Northwest, Midwest, West, South, and the U.S. as a whole.

population.head()

Population➾

State➾

Wyoming 544270➾

District of Columbia 599657➾

Vermont 621760➾

North Dakota 646844➾

Alaska 698473➾

2. www.census.gov/popest/data/historical/2000s/vintage_2009/state.html
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Because both population and alco2009 are indexed by “State,” you can remove
the indexes, merge both frames on all common columns, and observe the
population side-by-side with alcohol consumption:

df = pd.merge(alco2009.reset_index(),
population.reset_index()).set_index("State")

df.head()

Beer Wine Spirits Population➾

State➾

Alabama 1.20 0.22 0.58 4708708➾

Alaska 1.31 0.54 1.16 698473➾

Arizona 1.19 0.38 0.74 6595778➾

Arkansas 1.07 0.17 0.60 2889450➾

California 1.05 0.55 0.73 36961664➾

If two frames have columns with identical names, pandas adds the suffixes "_l"
and "_r" to the columns’ names. The optional parameter suffixes (a tuple of two
strings) controls the suffixes. If you want to merge on indexes rather than
general columns, use the optional parameters left_index=True and/or
right_index=True. The result of the following statement is the same as the one
previous, but the default sorting order may be different:

df = pd.merge(alco2009, population, left_index=True, right_index=True)
df.head()

Beer Wine Spirits Population➾

State➾

Wyoming 1.45 0.22 1.10 544270➾

District of Columbia 1.26 1.00 1.64 599657➾

Vermont 1.36 0.63 0.70 621760➾

North Dakota 1.63 0.25 1.16 646844➾

Alaska 1.31 0.54 1.16 698473➾

If both indexes are designated as keys, you may want to use join() instead of merge():

population.join(alco2009).tail(10)

Population Beer Wine Spirits➾

State➾

Illinois 12910409 1.22 0.39 0.73➾

Florida 18537969 1.21 0.48 0.92➾

New York 19541453 0.91 0.46 0.69➾

Texas 24782302 1.42 0.28 0.58➾

California 36961664 1.05 0.55 0.73➾

Northeast 55283679 NaN NaN NaN➾

Midwest 66836911 NaN NaN NaN➾

West 71568081 NaN NaN NaN➾

South 113317879 NaN NaN NaN➾

United States 307006550 NaN NaN NaN➾
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Both functions join() and merge() take an optional parameter how with the
acceptable values of "left" (default for join()), "right", "inner" (default for merge()), or
"outer". Left join uses the calling (left) frame’s index. Right join uses the
parameter (right) frame’s index. Outer join uses the union of the indexes.
Inner join uses the intersection of the indexes. (pandas join types are consistent
with MySQL join types that were introduced earlier in Join, on page 54.)

If the indexes of the frames are not identical, then left, right, and outer joins
and merges introduce rows with missing values. In the previous example,
this occurred where beer, wine, and spirits totals are not known. Inner
join/merge never introduces new missing values.

If two frames have columns with identical names, then you must provide the
optional parameters lsuffix (a string) and rsuffix (a string). pandas will append the
suffixes to the names of the common columns.

The function join() can also take the optional parameter on and join two frames
on a shared column name (but not on columns with different names or on a
column and an index).

Concatenating
The concat() function concatenates a list of frames by placing them next to
each other in one of the dimensions—“vertical” (axis=0, default) or “horizontal”
(axis=1)—and returns a new frame:

pd.concat([alco2009, population], axis=1).tail()

Beer Wine Spirits Population➾

Washington 1.09 0.51 0.74 6664195➾

West NaN NaN NaN 71568081➾

West Virginia 1.24 0.10 0.45 1819777➾

Wisconsin 1.49 0.31 1.16 5654774➾

Wyoming 1.45 0.22 1.10 544270➾

If the dimensions don’t match, pandas adds additional rows or columns with
missing values in the “holes.”

pandas faithfully preserves the indexes of all vertically stacked frames, which
may result in an index with duplicate keys. You can either live with this or
delete duplicates (we’ll learn how on page 104) or use the optional parameter
keys (a list of strings) that adds the second-level index to the new frame, thus
forming a hierarchical index. If you concatenate the frames “horizontally”
(column-wise), the same parameter creates hierarchical column names.
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Let’s use data from the Statistics Canada website3 to create a frame that has
the population of Canadian provinces in 2011. Now we can create a new frame
that describes both North American countries in a properly indexed way.
(Remember that the U.S. frame is two years older than the Canadian one.)

pop_na = pd.concat([population, pop_ca], keys=["US", "CA"])
pop_na.index.names = ("Country", "State")

Population➾

Country State➾

US Wyoming 544270➾

District of Columbia 599657➾

Vermont 621760➾

North Dakota 646844➾

Alaska 698473➾

«...»➾

CA Alberta 3790200➾

British Columbia 4499100➾

Yukon 35400➾

Northwest Territories 43500➾

Nunavut 34200➾

Remember that the hierarchical index can be flattened if necessary.

To Merge or to Concatenate?

Both merge() and concat() combine two or more frames. Use concat()
to combine frames that have similar content (such as populations
of U.S. states and Canadian provinces: “apples to apples”). Use
merge() to combine frames that have complementary content (such
as populations and alcohol consumption rates: “apples to
oranges”).

Deleting Duplicates
The duplicated([subset]) function returns a Boolean series denoting if each row in
all or subset (a list of column names) columns is duplicated. The optional
parameter keep controls whether the "first", "last", or each (True) duplicate is marked.

The drop_duplicates() function returns a copy of a frame or series with duplicates
from all or subset (a list of column names) columns removed. The optional
parameter keep controls whether the "first", "last", or each (True) duplicate is
removed. You can use the optional parameter inplace=True to remove duplicates
from the original object.

3. www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/demo02a-eng.htm
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Unit 35

Ordering and Describing Data

Having the data in a frame is not enough. What we need next is a yardstick
that ranks and describes the data that we have. The universal Python yard-
stick, len(), and its brethren, min() and max(), are a good starting point, but
often we want answers to more questions, aside from How many? and How
much? pandas provides a number of functions for sorting, ranking, counting,
membership testing, and getting descriptive statistics.

Sorting and Ranking
Series and frames can be sorted by index or by value (values). The sort_index()
function returns a frame sorted by the index (it doesn’t work for series). The
sorting order is always lexicographic (numeric for numbers, alphabetic for
strings), and you can use the ascending parameter (default True) to control it.
The option inplace=True, as always, insists that pandas sorts the original frame.

population.sort_index().head()

Population➾

State➾

Alabama 4708708➾

Alaska 698473➾

Arizona 6595778➾

Arkansas 2889450➾

California 36961664➾

The sort_values() function returns a frame or a series sorted by values. In the
case of a frame, the first parameter is a column name or a list of column
names, and the optional parameter ascending can be a Boolean value or a list
of Boolean values (one per column used for sorting). The parameter na_position
("first" or "last") specifies where to place the nans (at the beginning or at the end).

population.sort_values("Population").head()

Population➾

State➾

Wyoming 544270➾

District of Columbia 599657➾

Vermont 621760➾

North Dakota 646844➾

Alaska 698473➾
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Did you know that Wyoming has the smallest population of any state in the
United States? Now you do.

The rank() function computes a frame or a series of numerical ranks for each
frame or series value. If several values are equal, the function assigns them
all the average rank. The Boolean parameter numeric_only restricts ranking only
to numeric values. The parameter na_option ("top", "bottom", or "keep") specifies
how to treat nans: move them to the top or to the bottom of the result frame
or keep them wherever they were in the original frame.

pop_by_state = population.sort_index()
pop_by_state.rank().head()

Population➾

State➾

Alabama 29➾

Alaska 5➾

Arizona 38➾

Arkansas 20➾

California 51➾

It’s now just a matter of a dozen keystrokes to merge or join the latter output
with the original population frame and have the actual population and state’s
rank in one frame.

Descriptive Statistics
Descriptive statistical functions calculate sum(), mean(), median(), standard
deviation std(), count(), min(), and max() of a series or each column in a frame.
Each of them can take the Boolean parameter skipna, which specifies if nans
must be excluded from the analysis, and axis, which tells the function which
way to go (“vertically” or “horizontally”).

alco2009.max()

Beer 1.72➾

Wine 1.00➾

Spirits 1.82➾

dtype: float64➾

alco2009.min(axis=1)

State➾

Alabama 0.22➾

Alaska 0.54➾

Arizona 0.38➾

Arkansas 0.17➾

California 0.55➾

dtype: float64➾
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alco2009.sum()

Beer 63.22➾

Wine 19.59➾

Spirits 41.81➾

dtype: float64➾

The functions argmax() (for series) and idxmax() (for frames) find the index posi-
tions of the first occurrences of the maximal values. It’s easy to remember
these two functions: these are the only two functions in pandas that don’t treat
series and frames consistently.

pandas has limited support for pseudo-integration, pseudo-differentiation, and
other cumulative methods. The functions cumsum(), cumprod(), cummin(), and
cummax() calculate cumulative sums, products, minimums, and maximums,
starting from the first item in the series or each frame column. You can get
the cumulative alcohol consumption in Hawaii (or in any other state, for that
matter) with cumsum():

alco.ix['Hawaii'].cumsum().head()

Beer Wine Spirits Total➾

Year➾

1977 1.61 0.36 1.26 3.23➾

1978 2.99 0.82 2.56 6.37➾

1979 4.59 1.26 3.84 9.69➾

1980 6.24 1.72 5.05 13.01➾

1981 7.98 2.16 6.21 16.35➾

The diff() function calculates the running difference between the consecutive
column/series items. The first row of the result is undefined. With diff(), you
can find the yearly change of alcohol consumption in Hawaii, too:

alco.ix['Hawaii'].diff().head()

Beer Wine Spirits Total➾

Year➾

1977 NaN NaN NaN NaN➾

1978 -0.23 0.10 0.04 -9.000000e-02➾

1979 0.22 -0.02 -0.02 1.800000e-01➾

1980 0.05 0.02 -0.07 -4.440892e-16➾

1981 0.09 -0.02 -0.05 2.000000e-02➾

The name of the last column is misleading after the pseudo-differentiation.
You may want to change it to “Δ(Total),” “Change of Total,” or something else
to avoid confusion in the future.
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Uniqueness, Counting, Membership
numpy can treat arrays as sets (as discussed on page 78). pandas can treat
series as sets, too (but not frames). Let’s blow the dust off the pseudo bioin-
formatics example we started on page 78 and practice our serious series set
skills:

dna = "AGTCCGCGAATACAGGCTCGGT"
dna_as_series = pd.Series(list(dna), name="genes")
dna_as_series.head()

0 A➾

1 G➾

2 T➾

3 C➾

4 C➾

Name: genes, dtype: object➾

The functions unique() and value_counts() compute an array of distinct values
from the series and a frame with the counts of each distinct value (compare
with Counter on page 17), respectively. If the series contains nans, they are
included in the count.

dna_as_series.unique()

array(['A', 'G', 'T', 'C'], dtype=object)➾

dna_as_series.value_counts().sort_index()

A 5➾

C 6➾

G 7➾

T 4➾

Name: genes, dtype: int64➾

The isin() function is defined for both pandas principal data types. It returns a
Boolean series or frame of the same size specifying whether each series/frame
item is a member of a certain collection. We know that only nucleotides A, C,
G, and T are allowed in a DNA sequence. Are all our nucleotides valid?

valid_nucs = list("ACGT")
dna_as_series.isin(valid_nucs).all()

True➾

At this point, you’re probably so comfortable with the data that you can’t wait
until you can do some number crunching and perhaps even get some cool
results. The tools to transform data are just around the corner on page 109.
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Unit 36

Transforming Data

Now you’re ready to have a look at the pandas “powerhouse”: vectorized arith-
metic, logical operations, and other data transformation mechanisms.

Arithmetic Operations
pandas supports the four arithmetic operations (addition, subtraction, multi-
plication, and division) and numpy universal functions (or ufuncs, which were
explained on page 73). The operators and functions can be used to combine
frames of the same size and structure, frame columns and series, and series
of the same size.

We’re finally in the position to correct the “Total” column of the alco frame:

alco["Total"] = alco.Wine + alco.Spirits + alco.Beer
alco.head()

Beer Wine Spirits Total➾

State Year➾

Alabama 1977 0.99 0.13 0.84 1.96➾

1978 0.98 0.12 0.88 1.98➾

1979 0.98 0.12 0.84 1.94➾

1980 0.96 0.16 0.74 1.86➾

1981 1.00 0.19 0.73 1.92➾

If you want to measure total consumptions on a logarithmic scale, numpy
conveniently serves log10(), log(), and many other ufuncs:

np.log10(alco.Total).head()

State Year➾

Alabama 1977 0.292256➾

1978 0.296665➾

1979 0.287802➾

1980 0.269513➾

1981 0.283301➾

Name: Total, dtype: float64➾

All arithmetic operations preserve indexing. This feature is called data align-
ment: if you add two series, pandas adds an item with the index “C” in one
series to the namesake item in the other series. If the namesake item is
missing, the result is a nan. Let’s genetically engineer two more DNA fragments
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by cunningly removing the C and T nucleotides from the original fragment
on page 108, and then count the nucleotides by type in both fragments:

dna = "AGTCCGCGAATACAGGCTCGGT"
dna1 = dna.replace("C", "")
dna2 = dna.replace("T", "")
dna_as_series1 = pd.Series(list(dna1), name="genes") # No C's
dna_as_series2 = pd.Series(list(dna2), name="genes") # No T's
dna_as_series1.value_counts() + dna_as_series2.value_counts()

A 10➾

C NaN➾

G 14➾

T NaN➾

Name: genes, dtype: float64➾

Check the data. Perhaps it’s time to do some missing data cleanup (Unit 33,
Handling Missing Data, on page 98) before proceeding to data aggregation?

Data Aggregation
Data aggregation is a three-step procedure during which data is split, aggre-
gated, and combined:

1. At the split step, the data is split by key or keys into chunks.

2. At the apply step, an aggregation function (such as sum() or count()) is
applied to each chunk.

3. At the combine step, the calculated results are combined into a new series
or frame.

The power of pandas is in the groupby() function and a collection of aggregation
functions, which actually execute the three steps listed here automatically
so that all we have to do is sit tight and enjoy our coffee.

The groupby() function splits a frame by collecting the rows in groups based
on the values of one or more categorical keys. The function returns a group
generator that you can use in a loop (to access the content of the groups) or
in conjunction with an aggregation function.

The list of aggregation functions includes count() (returns the number of rows
in the group); sum() (returns the sum of numerical rows in the group); mean(),
median(), std(), and var() (each returns the namesake statistical measure of rows
in the group); min() and max() (returns the smallest and the largest row in the
group); prod() (returns the product of numerical rows in the group); and first()
and last() (returns the first and the last row in the group; this function is
meaningful only if the frame is ordered).
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Let’s tap into our good old alco frame and get the total alcohol consumption
in all states by year:

# We want to group by the "Year" column
alco_noidx = alco.reset_index()
sum_alco = alco_noidx.groupby("Year").sum()
sum_alco.tail()

Beer Wine Spirits Total➾

Year➾

2005 63.49 18.06 38.89 120.44➾

2006 64.37 18.66 40.15 123.18➾

2007 64.67 19.08 40.97 124.72➾

2008 64.67 19.41 41.59 125.67➾

2009 63.22 19.59 41.81 124.62➾

If you use more than one column for splitting, the result has a multiindex
with the levels corresponding to each column.

You can also access the content of each group by iteration over the groups in a
for loop. At each iteration, the generator returned by the groupby() function supplies
the index entry and the group of rows that corresponds to the entry (as a frame):

for year, year_frame in alco_noidx.groupby("Year"):
«do_something(year, year_frame)»

Sometimes you may wish you could group rows by a computable property
rather than by the existing column or columns. pandas allows data aggregation
through mappings using dictionaries or series. Let’s consider a dictionary
that maps states to the regions defined by the U.S. Census Bureau:4

state2reg

{'Idaho': 'West', 'West Virginia': 'South', 'Vermont': 'Northeast', «...»}➾

Now you can calculate mean alcohol consumption by region! Remember that
the dictionary operates on the row index labels, not values, so assign the
appropriate column as the frame index (at least temporarily, for the duration
of the grouping operation). The dictionary values (which are incidentally also
group names) become the index of the returned frame:

alco2009.groupby(state2reg).mean()

Beer Wine Spirits➾

Midwest 1.324167 0.265000 0.822500➾

Northeast 1.167778 0.542222 0.904444➾

South 1.207500 0.275625 0.699375➾

West 1.249231 0.470769 0.843846➾

4. www2.census.gov/geo/docs/maps-data/maps/reg_div.txt
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Using the terminology incorrectly attributed to William of Ockham, an English
Franciscan friar and scholastic philosopher and theologian,5 data aggregation
abridges entities and, therefore, is good for us. Discretization, on the contrary,
multiplies entities: it converts a value into categories. It would be bad for us
—unless it were very useful.

Discretization
Discretization refers to the conversion of a continuous variable to a discrete
(categorical) variable often for the purpose of histogramming and machine
learning (see Chapter 10, Machine Learning, on page 157).

The cut() function splits an array or series passed as the first parameter into
half-open bins—categories. The second parameter is either a number of
equally sized bins or a list of bins’ edges. If the goal is to split the sequence
into N bins, you would pass a list of N+1 bin edges. The categories produced
by cut() belong to an ordinal data type: you can rank them and compare them
to one another.

cats = pd.cut(alco2009['Wine'], 3).head()

State➾

Alabama (0.0991, 0.4]➾

Alaska (0.4, 0.7]➾

Arizona (0.0991, 0.4]➾

Arkansas (0.0991, 0.4]➾

California (0.4, 0.7]➾

Name: Wine, dtype: category➾

Categories (3, object): [(0.0991, 0.4] < (0.4, 0.7] < (0.7, 1]]➾

If you prefer to mint your own category labels, pass another optional param-
eter labels (a list of N labels, one label per bin).

cats = pd.cut(alco2009['Wine'], 3, labels=("Low", "Moderate", "Heavy"'))
cats.head()

State➾

Alabama Low➾

Alaska Moderate➾

Arizona Low➾

Arkansas Low➾

California Moderate➾

Name: Wine, dtype: category➾

Categories (3, object): [Low < Moderate < Heavy]➾

5. en.wikipedia.org/wiki/William_of_Ockham
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If you set labels=False, cut() numbers the bins instead of labeling them and
returns only the bin membership information:

cats = pd.cut(alco2009['Wine'], 3, labels=False).head()

State➾

Alabama 0➾

Alaska 1➾

Arizona 0➾

Arkansas 0➾

California 1➾

Name: Wine, dtype: int64➾

The qcuts() function is similar to cuts(), but operates in terms of quantiles, not
bin widths. You can use it to calculate quantiles (such as the median and
quartiles).

quants = pd.qcut(alco2009['Wine'], 3, labels=("Low", "Moderate", "Heavy"))
quants.head()

State➾

Alabama Low➾

Alaska Heavy➾

Arizona Moderate➾

Arkansas Low➾

California Heavy➾

Name: Wine, dtype: category➾

Categories (3, object): [Low < Moderate < Heavy]➾

Another way to discretize a variable with a small number of possible values
(that variable is already categorical!) is to decompose it into a set of dummy
indicator variables—one variable per possible value.

A dummy variable is a Boolean variable that is true for one value of a categor-
ical variable and false for all other values. Dummy variables are used in logit
regression (discussed on page 163) and in other forms of machine learning,
which are discussed in Chapter 10, Machine Learning, on page 157.

The get_dummies() function converts an array, series, or frame to another frame
with the same index as the original object and each column representing a
dummy variable. If the object is a frame, use the optional parameter columns
(the list of columns to be discretized).

Remember the state breakdown by regions that we prepared on page 111?
Here’s another way to look at it through the lens of indicators:
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pd.get_dummies(state2reg).sort_index().head()

Midwest Northeast South West➾

state➾

Alabama 0 0 1 0➾

Alaska 0 0 0 1➾

Arizona 0 0 0 1➾

Arkansas 0 0 1 0➾

California 0 0 0 1➾

Because each state belongs exactly to one region, the sum of all values in each
row is always one. This is true for any set of dummies, not just for the states.

Mapping
Mapping is the most general form of data transformation. It uses the map()
function to apply an arbitrary one-argument function to each element of a
selected column. The function can be either a built-in Python function, a
function from any imported module, a user-defined function, or an anonymous
lambda function.

As an example, let’s create three-letter abbreviations of state names.

with_state = alco2009.reset_index()
abbrevs = with_state["State"].map(lambda x: x[:3].upper())
abbrevs.head()

0 ALA➾

1 ALA➾

2 ARI➾

3 ARK➾

4 CAL➾

Name: State, dtype: object➾

Naturally, our attempt to create unique three-letter abbreviations failed, but
it was worth it!

Unlike the highly optimized and parallelized universal functions, the function
passed as the parameter to map() is executed by the Python interpreter and
cannot be optimized. This makes map() quite inefficient. Use it only when no
other options are feasible.

Cross-Tabulation
Cross-tabulation computes group frequencies and returns a frame with rows
and columns representing different values of two categorical variables (factors).
If you supply the optional parameter margins=True, the function also calculates
rows and columns subtotals.
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The following code fragment calculates the joint frequencies of a state being
or not being a “wine state” (consuming more wine than average) vs. being or
not being a “beer state” (consuming more beer than average):

wine_state = alco2009["Wine"] > alco2009["Wine"].mean()
beer_state = alco2009["Beer"] > alco2009["Beer"].mean()
pd.crosstab(wine_state, beer_state)

Beer False True➾

Wine➾

False 14 15➾

True 12 10➾

If the numbers in the table are not that different (they are not!), the two factors
are likely to be independent. We’ll come back to this observation in Calculating
Statistical Measures, on page 153.
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Unit 37

Taming Pandas File I/O

If you had no other reason to use pandas, you might still succumb to its mastery
of file input and output. pandas input/output facilities enable data exchange
between frames and series on one hand, and CSV files, tabular files, fixed-
width files, JSON files (earlier discussed on page 36), the operating system
clipboard, and so on, on the other hand. Among other things, pandas supports:

• Automatic indexing and column names extraction

• Data type inference, data conversion, and missing data detection

• Datetime parsing

• The elimination of “unclean” data (skipping rows, footers, and comments;
treating thousands’ separators)

• Data chunking

Reading CSV and Tabular Files
The read_csv() function reads a frame from a CSV file designated by name or
from an open file handle. With almost fifty optional parameters, this function
is a CSV Swiss Army knife; we certainly will use it instead of the CSV reader()
(which we looked at on page 34; perhaps it’s time to unlearn them?). Some
important optional parameters are:

• sep or delimiter—the column delimiter. read_csv() accepts regular expressions
here (for example, r"\s+" for “any number of white spaces”).

• header—the row number to use as column names. Pass None if you have
your own list of column names.

• index_col—the column name to use as the index. If you pass False, pandas
will generate a default numeric index.

• skiprows—the number of rows at the beginning of the file or a list of row
numbers to skip.

• thousands—the character used as the thousands separator in large numbers.

• names—a list of column names.
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• na_values—a string or a list of strings to treat as missing data. If you want
to use different strings for different columns (for example, "n/a" for string
data and -1 for numeric data), you can put them in a dictionary as values,
keyed by the column names.

Let’s go over the process of importing a list of U.S. states and Census Bureau
regions (first mentioned on page 111). The original CSV file has a regular but
sparse structure:

Northeast,New England,Connecticut
,,Maine
,,Massachusetts
,,New Hampshire
,,Rhode Island
,,Vermont
Northeast,Mid-Atlantic,New Jersey
,,New York
,,Pennsylvania
«more states»
It doesn’t have a header row and has many empty cells, but we know how to
fill in both the column names and the empties:

regions = pd.read_csv("code/regions.csv",
header=None,
names=("region", "division", "state"))

state2reg_series = regions.ffill().set_index("state")["region"]
state2reg_series.head()

state➾

Connecticut Northeast➾

Maine Northeast➾

Massachusetts Northeast➾

New Hampshire Northeast➾

Rhode Island Northeast➾

Name: region, dtype: object➾

The original state2reg is a dictionary, not a series, but pandas seems to have
conversion functions literally for every occasion:

state2reg = state2reg_series.to_dict()

{'Washington': 'West', 'South Dakota': 'Midwest', «more states»}➾

The function to_csv() writes a frame or a series back to a CSV file.

The function read_table() reads a frame from a tabular file designated by name
or from an open file handle. Essentially, it’s a read_csv() in disguise with the
default separator being a tab space, not a comma.
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Chunking
If you ever want to read tabular data from a large file in pieces (chunks), you
need chunking. If you need chunking, simply pass the parameter chunksize
(number of lines) to the function read_csv(). Instead of actually reading the
lines, the function returns a generator that you can use in a for loop.

Let the file code/regions_clean.csv have the same data as code/regions.csv but without
region and division omissions. Let’s pretend that the file is really big, and we
are scared of reading it all at once. The following code fragment creates a
TextFileReader object for iteration and an accumulator series and reads the CSV
file five lines at a time. For each piece, the column "region" is extracted, and
the values in the column are counted. Then the counts are added to the
accumulator. If a certain key doesn’t exist in the accumulator yet, simply set
it to 0 via the optional parameter fill_value to avoid nans.

chunker = pd.read_csv("code/regions_clean.csv", chunksize=5,
header=None, names=("region", "division", "state"))

accum = pd.Series()
for piece in chunker:
counts = piece["region"].value_counts()
accum = accum.add(counts, fill_value=0)

accum

Midwest 12➾

Northeast 9➾

South 17➾

West 13➾

dtype: float64➾

Reading Other Files
The read_json() function attempts to read a frame from a JSON file. Because
JSON files are not in general tabular but have a hierarchical structure,
coercing JSON data to a rectangular format is not always possible.

The read_fwf() function reads a frame from a file with fixed-width data. The
function uses either colspecs (a list of tuples with the start and end+1 positions
of a column in a line) or widths (a list of column widths).

The read_clipboard() function reads text from the system clipboard and then
passes it to read_table(). You can use this function for one-time extraction of
tables from web pages by copying them to the clipboard.
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Your Turn
pandas frames and series are convenient data containers that add an extra
level of abstraction and consistency on top of numpy arrays. Frames and series
are great for importing and exporting data from and to tabular files; structur-
ing, restructuring, merging, and aggregating data; and performing simple and
advanced arithmetic operations on it. And, unlike the R language frames, the
size of pandas frames is limited only by your imagination, not by the size of
your computer’s RAM.

Lynx Trappings*

Write a program that uses the annual Canadian lynx trappings data6 and
reports total lynx trappings by decade (ten years), sorted in the reverse
order (most “productive” decade first). The program should download the
data file into the cache directory—but only if the file is not in the cache
yet. If the directory doesn’t exist, it will be created. The program should
save the results as a CSV file in the directory doc. If the directory doesn’t
exist, it will be created.

GDP vs. Alcohol Consumption**

Wikipedia has plenty of data on various aspects of demographics,
including alcohol consumption per capita7 and GDP of countries and
dependencies per capita.8 Write a program that uses this data to cross-
tabulate GDP level (above average vs. below average) vs. alcohol consump-
tion level (above average vs. below average). Based on the table, do the
two measures seem to be correlated?

Weather vs. Alcohol Consumption***

Combine the historic alcohol consumption data with the historical
weather data by state. Use cross-tabulation to estimate if the drinking
habits are possibly correlated with the average local temperatures and
total precipitations. In other words, do people drink more when it rains
and pours?

The website of the National Climatic Data Center9 is a good starting point
of your historical weather data quest.

6. vincentarelbundock.github.io/Rdatasets/csv/datasets/lynx.csv
7. en.wikipedia.org/wiki/List_of_countries_by_alcohol_consumption_per_capita
8. en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita
9. www.ncdc.noaa.gov/cdo-web/
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CHAPTER 7

Looking down, he surveyed the rest of his clothes,
which in parts resembled the child’s definition of a net
as a lot of holes tied together with string...

➤ Morley Roberts, English novelist and short story writer

Working with Network Data
Network analysis is a recently new area of data analysis. Network science
borrowed network theoretical methods partly from mathematics (graph theory),
partly from social sciences, and a lot from sociology. Some people still refer to
network analysis as “social network analysis,” and who are we to judge them?

From a data science point of view, a network is a collection of interconnected
objects. We can actually treat all kinds of numeric and non-numeric (text)
objects as networks, as long as there is a way to interconnect them.
Depending on our background and the field of study, we may call the network
objects “nodes,” “vertexes,” or “actors,” and call the connections between them
“arcs,” “edges,” “links,” or “ties.” We may represent networks graphically and
mathematically as graphs.

In this chapter, you’ll learn how to create networks from network and non-
network data, understand network measures, and analyze networks—in
particular, how to calculate and interpret network node centralities and
community structure. Our friendly assistants in this chapter are going to be
the standard Anaconda module networkx and the community module that you
should have installed before attempting community detection.1

1. pypi.python.org/pypi/python-louvain/0.3
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Unit 38

Dissecting Graphs

Mathematically speaking, a graph is a set of nodes connected with edges.
There are different kinds of edges, nodes, and graphs, and they are connected
and interpreted in different ways. So, before we start dissecting graphs, let’s
start with some important definitions.

Graph Elements, Types, and Density
If at least one graph edge is directed (say, it connects node A to node B but
not the other way around), the graph itself is directed and is called a digraph.
If there are parallel edges in a graph (that is, node A may be connected to
node B by more than one edge), the graph is called a multigraph. The edge
from node A to itself is called a loop. A graph without loops and parallel edges
is called a simple graph.

Weights can be assigned to graph edges. A weight is usually (but not neces-
sarily) a number between 0 and 1, inclusive. The larger the weight, the stronger
the connection between the nodes. A graph with weighted edges is called a
weighted graph.

Edge weight is an example of an edge attribute. Edges may have other
attributes, including numeric, Boolean, and string. Graph nodes can have
attributes, too.

The degree of a graph node is defined as the number of edges connected
(incident) to the node. For a directed graph, indegree (the number of edges
coming into the node) and outdegree (the number of edges going out of the
node) are distinguished.

Graph density d (0≤d≤1) tells how close the graph is to a complete graph—a
cobweb of all possible edges. For example, for a directed graph with e edges
and n nodes:

d = e

n(n − 1)

For an undirected graph:

d = 2e

n(n − 1)
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Graph Structure
Graphs and the networks that they induce are exciting, diverse, and multi-
faceted objects. To understand them better, it’s important to understand the
terminology.

The concept of inter-node connectivity can be expanded by looking at graph
walks. A walk is any sequence of edges such that the end of one edge is the
beginning of another edge. When we take a bus from node “home” to node
“subway station A,” then take a train from node “subway station A” to node
“subway station B,” and then walk from node “subway station B” to node “our
office,” we complete a graph walk (even though only part of the walk involves
actual walking). We call a walk that doesn’t intersect itself (in other words, it
doesn’t include the same node twice, except perhaps for the first-last node)
a path. We call a closed path a loop. It’s a loop that takes us back home at
the end of a hard day.

Just like we can measure the distance between two objects in real life, we
can measure the distance between any two graph nodes: it is simply the
smallest number of edges (sometimes called “hops”) in any path connecting
the nodes. This definition doesn’t work in the case of weighted graphs, but
sometimes you can pretend that the graph is really not weighted, and still
count the edges. In a directed graph, the distance from A to B is not always
equal to the distance from B to A. In fact, we may be able to get from A to B,
but not back! Living your life from birth to death is a sad but sobering
example.

The largest distance between any two nodes in a graph is called the diameter
(D) of the graph. Unlike circles, graphs don’t have area.

A connected component, or simply a component, is a set of all nodes in a
graph such that there is a path from each node in the set to each other node
in the set. For a directed graph, strongly connected components (connected
by actual paths) and weakly connected components (connected by the paths
where the edges were converted to undirected) are distinguished.

If a graph has several components, the largest component is called the giant
connected component (GCC). Quite often the size of the GCC is huge. When
this is the case, it’s often best to work with the GCC rather than with the
entire graph to avoid non-connectivity issues.

Sometimes two parts of a graph are connected, but the connection is so
subtle that the removal of a single edge breaks the graph apart. Such an edge
is called a bridge.
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A clique is a set of nodes such that each node is directly connected to each
other node in the set. D’Artagnan and Three Musketeers formed a clique, and
so does any other band that operates under the “all for one and one for all”
principle. We call the largest clique in a graph the maximum clique. If a clique
cannot be enlarged by adding another node to it, it is called a maximal clique.
A maximum clique is always a maximal clique, but the converse is not always
true. A complete graph is a maximal clique.

A star is a set of nodes such that one node is connected to all other nodes in
the set, but the other nodes are not connected to each other. Stars are com-
monly found in hierarchical multilevel systems (for example, corporations,
military institutions, and the Internet).

A set of nodes directly connected to a node A is called the neighborhood (G(A)
of A). Neighborhoods are a key part in snowballing, which is a data acquisition
technique whereby the edges of a randomly selected seed node are followed
to its neighbors, then to the neighbors of the neighbors (a second-degree
neighborhood), and so on.

The local clustering coefficient of a node A (also known as simply the clustering
coefficient) is the number CC(A) of edges in A’s neighborhood (excluding the
edges directly connected to A), divided by the maximum possible number of
edges. In other words, it’s the density of the neighborhood of A without the
node A itself. The clustering coefficient of any node in a star is 0. The clustering
coefficient of any node in a complete graph is 1. CC(A) can be used as a measure
of star likeness or completeness of G(A).

A network community is a set of nodes such that the number of edges inter-
connecting these nodes is much larger than the number of edges crossing
the community boundary. Modularity (m∈[-1/2, 1]) is a measure of quality of
community structure. It’s defined as the fraction of the edges that fall within
the community minus the expected such fraction if edges were distributed
at random. High modularity (m≈1) characterizes a network with dense and
clearly visible communities. Identifying such communities is perhaps the
most important outcome of network data analysis (and we take a look at that
next in Unit 39, Network Analysis Sequence, on page 126).
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Centralities
Centrality is a measure of the importance of a node in a network. There are
several types of centrality measures that measure different aspects of impor-
tance. For convenience, centralities are often scaled to the range between 0
(an unimportant, peripheral node) and 1 (an important, central node).

Degree
Degree centrality of A is the number of neighbors of A, which is the same
as the degree of A or the size of G(A). You can scale it by dividing by the
maximum possible number of neighbors of A, n-1.

Closeness
Closeness centrality of A is the reciprocal of the average shortest path
length LBA from all other nodes to A:

cc
A
= n − 1

∑B≠A
L
BA

Betweenness
Betweenness centrality of A is the fraction of all shortest paths between
all pairs of nodes in the network, excluding A, that contain A.

Eigenvector
Eigenvector centrality of A is defined recursively as the scaled sum of the
eigenvector centralities of all neighbors of A:

ec
A
= 1
λ∑B∈G(A)

ec
B

The last two centrality measures are computationally expensive, and it may
not be practical to calculate them for large networks.
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Unit 39

Network Analysis Sequence

Now that you’re armed with proper definitions and formulas, let’s have a look
at the big picture of network data analysis.

A typical network analysis sequence consists of the following steps:

1. It starts with identifying discrete entities and the relations between them.
The entities become the network nodes, and the relations become edges.
If the relations are binary (present vs. absent), they directly define the
network edges. If the relations are continuous or discrete, but not binary,
you can either treat them as weighted edges or convert them into
unweighted edges, but only if the value of the relation is at or above a
threshold. The latter transformation is called sampling. The sampling
threshold is chosen based on empirical and pragmatic considerations. If
the threshold is too high, the network is too sparse and falls apart into
many small components; if the threshold is too low, the network loses
any community structure and becomes a tangle.

2. Various network measures are calculated: density, number of components,
GCC size, diameter, centralities, clustering coefficients, and so on.

3. Network communities are identified. If the network ends up being modular,
you can assign labels to the communities, replace the communities with
“supernodes,” and study the new induced network.

4. Finally, just like in any other data science experiment, results are inter-
preted, and a report with a lot of appealing pictures is produced.

The module networkx supplies almost everything you need for a typical network
study, with one major exception: the pictures it produces are not only not
appealing, but, frankly, quite pathetic. For a better visualization, turn to Gephi
(see the sidebar on page 131).
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Unit 40

Harnessing Networkx

The networkx module contains essential tools for creating, modifying, exploring,
plotting, exporting, and importing networks. It supports simple and directed
graphs and multigraphs. You will learn how to construct and modify a network
by adding and removing nodes, edges, and attributes; how to calculate various
network measures (such as centralities); and how to explore network commu-
nity structure.

Building and Fixing a Network
Let’s use Wikipedia data2 to construct and explore a network of nation states,
based on the presence (and length) of international land borders. The network
graph is undirected; it contains no loops and no parallel edges.

import networkx as nx

borders = nx.Graph()
not_borders1 = nx.DiGraph() # Just for our reference
not_borders2 = nx.MultiGraph() # Just for our reference

You can modify an existing network graph by adding or removing individual
nodes or edges, or groups of nodes or edges. When you remove a node, all
incident edges are removed, too. When you add an edge, its end nodes are
added, too, unless they already existed in the graph. You can label nodes
with either numbers or strings:

borders.add_node("Zimbabwe")
borders.add_nodes_from(["Lugandon", "Zambia", "Portugal", "Kuwait",

"Colombia"])
borders.remove_node("Lugandon")
borders.add_edge("Zambia", "Zimbabwe")
borders.add_edges_from([("Uganda", "Rwanda"), ("Uganda", "Kenya"),

("Uganda", "South Sudan"), ("Uganda", "Tanzania"),
("Uganda", "Democratic Republic of the Congo")])

After all of the territories and the connections between them are added, you
get an easy-to-read graph, as shown in the figure on page 128.

2. en.wikipedia.org/wiki/List_of_countries_and_territories_by_land_borders
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SomaliaSomalia

ThailandThailand

MozambiqueMozambique

LiechtensteinLiechtenstein

LaosLaos

Australian Antarctic TerritoryAustralian Antarctic Territory

TransnistriaTransnistria

IranIran

IndonesiaIndonesia

AngolaAngola

BrazilBrazil

AustraliaAustralia

BelizeBelize

PeruPeru

GuineaGuinea

DjiboutiDjibouti

MoroccoMorocco

IsraelIsrael

United KingdomUnited Kingdom

RwandaRwanda

FranceFrance

Akrotiri and DhekeliaAkrotiri and Dhekelia

ItalyItaly

Saudi ArabiaSaudi Arabia

SlovakiaSlovakiaParaguayParaguay

Burkina FasoBurkina Faso

Dominican RepublicDominican Republic

KuwaitKuwait

ChadChad

AustriaAustria

United StatesUnited States

VenezuelaVenezuela

KazakhstanKazakhstan

GuatemalaGuatemala

KosovoKosovo

Queen Maud LandQueen Maud Land

MongoliaMongolia

KenyaKenya

ColombiaColombia

SwitzerlandSwitzerland

Central African RepublicCentral African Republic

CyprusCyprus

RussiaRussia

NigerNiger

CameroonCameroon

TunisiaTunisia

HungaryHungary

People's Republic of ChinaPeople's Republic of China

Democratic Republic of the CongoDemocratic Republic of the Congo

Costa RicaCosta Rica

NepalNepal

PortugalPortugal

BhutanBhutan

LiberiaLiberia

NigeriaNigeria

ZimbabweZimbabwe

IrelandIreland

HaitiHaiti

AlgeriaAlgeria

MacedoniaMacedonia

BelarusBelarus

MaliMali

Hong KongHong Kong

LebanonLebanon

NicaraguaNicaragua

AzerbaijanAzerbaijan

Equatorial GuineaEquatorial Guinea

MalawiMalawi

GabonGabon

NetherlandsNetherlands

TogoTogo

VietnamVietnam

BangladeshBangladesh

MacauMacau

SwazilandSwaziland

GermanyGermany

TurkmenistanTurkmenistan

SloveniaSlovenia
SurinameSuriname QatarQatar

BurundiBurundi

DenmarkDenmark

ZambiaZambia

Sri LankaSri Lanka

Argentine AntarcticaArgentine Antarctica

South KoreaSouth Korea

Bosnia and HerzegovinaBosnia and Herzegovina

ArgentinaArgentina
PolandPoland

BruneiBrunei

BulgariaBulgaria

Ross DependencyRoss Dependency

PR ChinaPR China

CambodiaCambodia

Adélie LandAdélie Land

East TimorEast Timor

ArmeniaArmenia

BoliviaBolivia

Côte d'IvoireCôte d'Ivoire

HondurasHonduras

PakistanPakistan

Sint MaartenSint Maarten

Vatican CityVatican City

BelgiumBelgium
JordanJordan

EritreaEritrea

ChileChile

AlbaniaAlbania

MoldovaMoldova

KyrgyzstanKyrgyzstan

OmanOman

LesothoLesotho

Papua New GuineaPapua New Guinea

UkraineUkraineUruguayUruguay
IraqIraq

TurkeyTurkey

SwedenSweden

GhanaGhana

Czech RepublicCzech Republic

TanzaniaTanzania

MalaysiaMalaysia

UzbekistanUzbekistan

Saint MartinSaint Martin

LibyaLibya

GibraltarGibraltar

EgyptEgypt

AfghanistanAfghanistan

LuxembourgLuxembourg

NamibiaNamibia

MauritaniaMauritania

New ZealandNew Zealand

SomalilandSomaliland

UgandaUganda

BotswanaBotswana

El SalvadorEl Salvador

CroatiaCroatia

SudanSudan

GeorgiaGeorgia

GuyanaGuyana

MonacoMonaco

Northern CyprusNorthern Cyprus

LatviaLatvia

Guinea-BissauGuinea-Bissau

EstoniaEstonia

YemenYemen

SenegalSenegal

RomaniaRomania

SpainSpain
GreeceGreece SyriaSyria

South SudanSouth Sudan

MontenegroMontenegro

British Antarctic TerritoryBritish Antarctic Territory

NorwayNorway

North KoreaNorth Korea

South AfricaSouth Africa

Sierra LeoneSierra Leone

Netherlands, Kingdom of theNetherlands, Kingdom of the

Republic of the CongoRepublic of the Congo

San MarinoSan Marino

The GambiaThe Gambia

LithuaniaLithuania

AndorraAndorraFrench GuianaFrench Guiana

Nagorno-Karabakh RepublicNagorno-Karabakh Republic

Western SaharaWestern Sahara

MexicoMexico

FinlandFinland

CanadaCanada

BeninBenin

Palestinian territoriesPalestinian territories

United Arab EmiratesUnited Arab EmiratesSerbiaSerbia

IndiaIndia

MyanmarMyanmar

EthiopiaEthiopia

EcuadorEcuador

PanamaPanama

TajikistanTajikistan

Node size in the graph represents total land border length, and the different colors
correspond to network communities (which will be introduced on page 132).

Finally, the clear() function removes all nodes and edges from a graph. You
are unlikely to use it very often.
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Exploring and Analyzing a Network
Network analysis and exploration with networkx is as simple as calling a number
of functions and looking into the values of few attributes. Given the abundance
of references to the built-in len() function in this book, you should not be even
remotely surprised that applying it to a graph returns the graph “length” (the
number of nodes):

len(borders)

181➾

The actual node lists are available through the function nodes() and the
attributes node and edge (the latter attribute also contains the edge dictionaries).
Both attributes are read-only; you cannot add edges or nodes by making
changes to them. (Even if you try to, networkx will not record the changes.) The
edge list is also available through the function edges():

borders.nodes()

['Iran', 'Palestinian territories', 'Chad', 'Bulgaria', 'France', «...»]➾

borders.node

{{'Iran': {'L': 5440.0}, 'Palestinian territories': {},➾

'Chad': {'L': 5968.0}, 'Bulgaria': {'L': 1808.0}, «...»}➾

The dictionaries show the node attributes (which in our case is the total length
of the land borders):

borders.edge

{'Iran': {'Nagorno-Karabakh Republic': {}, 'Turkey': {}, 'Pakistan': {},➾

'Afghanistan': {}, 'Iraq': {}, 'Turkmenistan': {}, 'Armenia': {},➾

'Azerbaijan': {}}, «...»}➾

The attribute edge is a dictionary of dictionaries with one entry per node. It
also contains edge attributes (such as “weight”), if any.

borders.edges()[:5]

[('Iran', 'Nagorno-Karabakh Republic'), ('Iran', 'Turkey'),➾

('Iran', 'Pakistan'), ('Iran', 'Afghanistan'), ('Iran', 'Iraq')]➾

You can obtain the list of neighbors of a node through the neighbors() function:

borders.neighbors("Germany")

['Czech Republic', 'France', 'Netherlands, Kingdom of the', 'Denmark',➾

'Switzerland', 'Belgium', 'Netherlands', 'Luxembourg', 'Poland', 'Austria']➾
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You can compute the degree, indegree, and outdegree of a node from the
length of its respective neighborhood or by calling the functions degree(), inde-
gree(), or outdegree(). When you call these functions with no parameters, they
return a dictionary of the degrees indexed by the node labels. When you call
them with a node label as the parameter, they return the degree of that node.

borders.degree("Poland")

7➾

borders.degree()

{'Iran': 8, 'Nigeria': 4, 'Chad': 6, 'Bulgaria': 5, 'France': 14,➾

'Lebanon': 2, 'Namibia': 4, «...»}➾

So, which country has the most neighbors?

degrees = pandas.DataFrame(list(borders.degree().items()),
columns=("country", "degree")).set_index("country")

degrees.sort("degree").tail(4)

Country➾

Brazil 11➾

Russia 14➾

France 14➾

People's Republic of China 17➾

A Big Kit for a Big Network

It’s not uncommon to work with Really Large Networks. (How about
the Facebook social graph with 1.59 billion nodes, for starters?)
Just like everything implemented in pure Python, networkx is not
known for its high performance. Enter NetworKit, a highly efficient
and parallelizable network analysis toolkit. NetworKit developers
claim that “community detection in a 3 billion edge web graph can
be performed on a 16-core server in a matter of minutes”3—
something the community module can only dream about. What’s
best, NetworKit is integrated with matplotlib, scipy, numpy, pandas, and
networkx, which makes it even more attractive.

The clustering coefficient is undefined for directed graphs, but you can
explicitly turn a directed graph into an undirected graph, if needed. The
function clustering() returns a dictionary of all clustering coefficients of the
clustering coefficient of a particular node:

3. networkit.iti.kit.edu
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nx.clustering(not_borders1) # Doesn't work for a directed network!
nx.clustering(nx.Graph(not_borders1)) # Would work!
nx.clustering(borders)

{'Iran': 0.2857142857142857, 'Nigeria': 0.5, 'Chad': 0.4, 'Bulgaria': 0.4,➾

'France': 0.12087912087912088, 'Lebanon': 1.0, 'Namibia': 0.5, «...»}➾

nx.clustering(borders, "Lithuania")

0.8333333333333334➾

The connected_components(), weakly_connected_components(), and strongly_connected_com-
ponents() functions return a list generator of respective connected components
(as node label lists) from the graph. You can use the generator in an iterator
expression (for loop or list comprehension) or convert it to a list with the built-
in list() function. If you need a subgraph defined by the node list n from the
graph G, you can extract it with the function subgraph(G, n). Alternatively, you
can use a family of functions connected_component_subgraphs(), and so on, to cal-
culate the connected components and get them as a graph list generator:

list(nx.weakly_connected_components(borders)) # Doesn't work!
list(nx.connected_components(borders)) # Works!

[{'Iran', 'Chad', 'Bulgaria', 'Latvia', 'France', 'Western Sahara', «...»}]➾

[len(x) for x in nx.connected_component_subgraphs(borders)]

[179, 2]➾

Gephi It!

Gephi is “an interactive visualization and exploration platform for
all kinds of networks and complex systems.”4 Some call it “the
Paintbrush of network analysis.” Despite networkx having its own
graph visualization support (via matplotlib, which is discussed in
Unit 41, Basic Plotting with PyPlot, on page 136), I prefer to use Gephi
because of its versatility and instant feedback.

All centrality functions return either a dictionary of centralities, indexed by
the node labels, or individual node centralities. These dictionaries are excellent
building blocks for pandas data frames and indexed series. The following
comments show which country has the highest centrality in the respective
category:

4. gephi.org
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nx.degree_centrality(borders) # People's Republic of China
nx.in_degree_centrality(borders)
nx.out_degree_centrality(borders)
nx.closeness_centrality(borders) # France
nx.betweenness_centrality(borders) # France
nx.eigenvector_centrality(borders) # Russia

Managing Attributes
A networkx graph, as well as its node and edge attributes, are implemented as
dictionaries. A graph has a dictionary interface to the nodes. A node has a
dictionary interface to its edges. An edge has a dictionary interface to its
attributes. You can pass attribute names and values as optional parameters
to the functions add_node(), add_nodes_from(), add_edge(), and add_edges_from():

# Edge attribute
borders["Germany"]["Poland"]["weight"] = 456.0
# Node attribute
borders.node["Germany"]["area"] = 357168
borders.add_node("Penguinia", area=14000000)

When the nodes() and edges() functions are called with the optional parameter
data=True, they return a list of all nodes or edges with all of their attributes:

borders.nodes(data=True)

[«...», ('Germany', {'area': 357168}), «...»]➾

borders.edges(data=True)

[('Uganda', 'Rwanda', {'weight': 169.0}),➾

('Uganda', 'Kenya', {'weight': 933.0}),➾

('Uganda', 'South Sudan', {'weight': 435.0}), «...»]➾

Cliques and Community Structure
The find_cliques() and isolates() functions detect maximal cliques and isolates
(zero-degree nodes). find_cliques() is not implemented for directed graphs (a
digraph is coerced to an undirected graph first); it returns a node list genera-
tor, as shown here:

nx.find_cliques(not_borders1) # Not implemented for digraphs!
nx.find_cliques(nx.Graph(not_borders1)) # Would work!
list(nx.find_cliques(borders))

[['Iran', 'Nagorno-Karabakh Republic', 'Armenia', 'Azerbaijan'],➾

['Iran', 'Afghanistan', 'Pakistan'], «...»]➾

nx.isolates(borders)

['Penguinia']➾
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The module for community detection, community, is not a part of Anaconda—
it must be installed separately. The module does not support digraphs.

The best_partition() function uses the Louvain method and returns a community
partition—a dictionary of numeric community labels indexed by the node
labels. The modularity() function reports the modularity of the partition:

import community
partition = community.best_partition(borders)

{'Uganda': 0, 'Zambia': 1, 'Portugal': 2, 'Bulgaria': 2, «...»}➾

community.modularity(partition, borders)

0.7462013020754683➾

If the modularity is too low (≪0.5), the network does not have a clear commu-
nity structure—at least one you shouldn’t rely on.

Input and Output
A family of read and write functions read network data from files and write
data to files. It is our responsibility to open and close the files (and create, if
necessary). Some functions require that the files are opened in binary mode.
Consult the following table to find out what some of these functions are.

File extensionWriteReadType

Not specifiedwrite_adjlist(G, f)read_adjlist(f)Adjacency list

Not specifiedwrite_edgelist(G, f)read_edgelist(f)Edge list

.gmlwrite_gml(G, f)read_gml(f)GML

.graphmlwrite_graphml(G, f)read_graphml(f)GraphML

.netwrite_pajek(G, f)read_pajek(f)Pajek

Table 4—Some networkx Input and Output Functions

with open("borders.graphml", "wb") as netfile:
nx.write_pajek(borders, netfile)

with open("file.net", "rb") as netfile:
borders = nx.read_pajek(netfile)

Not all file formats support all network features. You can read more about
different formats and features at the Gephi website5 to help you choose the
right output format for your graphs!

5. gephi.org/users/supported-graph-formats/
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Your Turn
Network analysis is extremely contagious. Once you learn it, you start seeing
networks everywhere, even in Shakespeare.6 Thinking in terms of networks,
centralities, and communities adds another layer of sophistication to your
data analysis skills, so don’t hesitate to strengthen them by practicing.

Centrality Correlations*

Download a social network graph of select Epinions.com users from the
Stanford Large Network Dataset Collection (prepared by J. Leskovec and
A. Krevl),7 and extract the tenth largest community. Write a program that
calculates and displays pairwise correlations between all network central-
ity measures mentioned in this chapter (you can also add a clustering
coefficient for more fun). I suggest that you store all centralities in a pandas
data frame. You may need to read about how to calculate correlations in
pandas in Calculating Statistical Measures, on page 153.

Are any pairs of centralities strongly correlated?

Shakespeare Works**

The complete works of William Shakespeare are available from MIT.8 Write
a program that creates a network of all the plays and the 100 top-most
frequently used non–stop word stems. A stem and a play are connected
if the stem is used in the play, and the weight of the edge equals the fre-
quency of use. The program then identifies network communities and
reports the modularity and the member nodes by community.

To the best of your knowledge of Shakespeare, does the reported partition
make sense?

Border Network**

Use Wikipedia data, networkx, and Gephi to reconstruct the network of states
and borders, including nodes sizes and communities (assign node
attributes that could later be used in Gephi for node sizing and coloring).

6. www.slideshare.net/DmitryZinoviev/desdemona-52994413
7. snap.stanford.edu/data/soc-Epinions1.html
8. shakespeare.mit.edu

Chapter 7. Working with Network Data • 134

report erratum  •  discuss

http://www.slideshare.net/DmitryZinoviev/desdemona-52994413
http://snap.stanford.edu/data/soc-Epinions1.html
http://shakespeare.mit.edu
http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


CHAPTER 8

“I am plotting for myself, and counterplotting the designs of others,”
replied Tresham, mysteriously.

➤ William Harrison Ainsworth, English historical novelist

Plotting
Plotting data is an essential part of any exploratory or predictive data analysis
—and probably the most essential part of report writing. Frankly speaking,
nobody wants to read reports without pictures, even if the pictures are irrel-
evant, like this elegant sine wave:

There are three principal approaches to programmable plotting. We start an
incremental plot with a blank plot canvas and then add graphs, axes, labels,
legends, and so on, incrementally using specialized functions. Finally, we
show the plot image and optionally save it into a file. Examples of incremental
plotting tools include the R language function plot(), the Python module pyplot,
and the gnuplot command-line plotting program.

Monolithic plotting systems pass all necessary parameters, describing the
graphs, charts, axes, labels, legends, and so on, to the plotting function. We
plot, decorate, and save the final plot at once. An example of a monolithic
plotting tool is the R language function xyplot().

Finally, layered tools represent what to plot, how to plot, and any additional
features as virtual “layers”; we add more layers as needed to the “plot” object.
An example of a layered plotting tool is the R language function ggplot(). (For
the sake of aesthetic compatibility, the Python module matplotlib provides the
ggplot plotting style.)

In this chapter, you’ll take a look at how to do incremental plotting with pyplot.
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Unit 41

Basic Plotting with PyPlot

Plotting for numpy and pandas is provided by the module matplotLib—namely, by
the sub-module pyplot.

Let’s start our experimentation with pyplot by invoking the spirit of the NIAAA
surveillance report you converted into a frame earlier on page 88, and proceed
to plotting alcohol consumption for different states and alcohol kinds over
time. Unfortunately, as is always the case with incremental plotting systems,
no single function does all of the plotting, so let’s have a look at a complete
example:

pyplot-images.py
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd

# The NIAAA frame has been pickled before
alco = pickle.load(open("alco.pickle", "rb"))
del alco["Total"]
columns, years = alco.unstack().columns.levels

# The state abbreviations come straight from the file
states = pd.read_csv(

"states.csv",
names=("State", "Standard", "Postal", "Capital"))

states.set_index("State", inplace=True)

# Alcohol consumption will be sorted by year 2009
frames = [pd.merge(alco[column].unstack(), states,

left_index=True, right_index=True).sort_values(2009)
for column in columns]

# How many years are covered?
span = max(years) - min(years) + 1

The first code fragment simply imports all necessary modules and frames. It
then combines NIAAA data and the state abbreviations into one frame and
splits it into three separate frames by beverage type. The next code fragment
is in charge of plotting.
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pyplot-images.py
# Select a good-looking style
matplotlib.style.use("ggplot")

STEP = 5
# Plot each frame in a subplot
for pos, (draw, style, column, frame) in enumerate(zip(

(plt.contourf, plt.contour, plt.imshow),❶
(plt.cm.autumn, plt.cm.cool, plt.cm.spring),
columns, frames)):

# Select the subplot with 2 rows and 2 columns
plt.subplot(2, 2, pos + 1)❷

# Plot the frame
draw(frame[frame.columns[:span]], cmap=style, aspect="auto")❸

# Add embellishments
plt.colorbar()❹
plt.title(column)
plt.xlabel("Year")
plt.xticks(range(0, span, STEP), frame.columns[:span:STEP])
plt.yticks(range(0, frame.shape[0], STEP), frame.Postal[::STEP])
plt.xticks(rotation=-17)

The functions imshow(), contour(), and contourf() (at ❶) display the matrix as an
image, a contour plot, and a filled contour plot, respectively. Don’t use these
three functions (or any other plotting functions) in the same subplot, because
they superimpose new plots on the previously drawn plots—unless that’s
your intention, of course. The optional parameter cmap (at ❸) specifies a pre-
built palette (color map) for the plot.

You can pack several subplots of the same or different types into one master
plot (at ❷). The function subplot(n, m, number) partitions the master plot into n
virtual rows and m virtual columns and selects the subplot number. The subplots
are numbered from 1, column-wise and then row-wise. (The upper-left subplot
is 1, the next subplot to the right of it is 2, and so on.) All plotting commands
affect only the most recently selected subplot.

Note that the origin of the image plot is in the upper-left corner, and the Y
axis goes down (that’s how plotting is done in computer graphics), but the
origin of all other plots is in the lower-left corner, and the Y axis goes up
(that’s how plotting is done in mathematics). Also, by default, an image plot
and a contour plot of the same data have different aspect ratios, but you can
make them look similar by passing the aspect="auto" option.
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The functions colorbar(), title(), xlabel(), ylabel(), grid(), xticks(), yticks(), and tick_params()
(at ❹) add the respective decorations to the plot. (We’ll revisit them in Unit
43, Mastering Embellishments, on page 140.) The function grid() actually toggles
the grid on and off, so whether you have a grid or not depends on whether
you had it in the first place, which, in turn, is controlled by the plotting style.

The function tight_layout() adjusts subplots and makes them look nice and tight.
Take a look at the following plots:

pyplot-images.py
plt.tight_layout()
plt.savefig("../images/pyplot-all.pdf")
#plt.show()
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The function savefig() saves the current plot in a file. The function takes either
a file name or an open file handle as the first parameter. If you pass the file
name, savefig() tries to guess the image format from the file extension. The
function supports many popular image file formats, but not GIF.

The function show() displays the plot on the screen. It also clears the canvas,
but if you simply want to clear the canvas, call clf().
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Unit 42

Getting to Know Other Plot Types

In addition to contour and image plots, pyplot supports a variety of more con-
ventional plot types: bar plots, box plots, histograms, pie charts, line plots,
log and log-log plots, scatter plots, polar plots, step plots, and so on. The
online pyplot gallery1 offers many examples, and the following table lists many
of the pyplot plotting functions.

FunctionPlot type

bar()Vertical bar plot

barh()Horizontal bar plot

boxplot()Box plot with “whiskers”

errorbar()Errorbar plot

hist()Histogram (can be vertical or horizontal)

loglog()Log-log plot

semilogx()Log plot in X

semilogy()Log plot in Y

pie()Pie chart

plot()Line plot

plot_dates()Date plot

polar()Polar plot

scatter()Scatter plot (size and color of dots can be controlled)

step()Step plot

Table 5—Some pyplot Plot Types

1. matplotlib.org/gallery.html
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Unit 43

Mastering Embellishments

With pyplot, you can control a lot of aspects of plotting.

You can set and change axes scales ("linear" vs. "log"—logarithmic) with the
xscale(scale) and yscale(scale) functions, and you can set and change axes limits
with the xlim(xmin, xmax) and ylim(ymin, ymax) functions.

You can set and change font, graph, and background colors, and font and
point sizes and styles.

You can also add notes with annotate(), arrows with arrow(), and a legend block
with legend(). In general, refer to the pyplot documentation for the complete list
of embellishment functions and their arguments, but let’s at least add some
arrows, notes, and a legend to an already familiar NIAAA graph:

pyplot-legend.py
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd

# The NIAAA frame has been pickled before
alco = pickle.load(open("alco.pickle", "rb"))

# Select the right data
BEVERAGE = "Beer"
years = alco.index.levels[1]
states = ("New Hampshire", "Colorado", "Utah")

# Select a good-looking style
plt.xkcd()
matplotlib.style.use("ggplot")

# Plot the charts
for state in states:

ydata = alco.ix[state][BEVERAGE]
plt.plot(years, ydata, "-o")
# Add annotations with arrows
plt.annotate(s="Peak", xy=(ydata.argmax(), ydata.max()),

xytext=(ydata.argmax() + 0.5, ydata.max() + 0.1),
arrowprops={"facecolor": "black", "shrink": 0.2})

# Add labels and legends
plt.ylabel(BEVERAGE + " consumption")
plt.title("And now in xkcd...")
plt.legend(states)

plt.savefig("../images/pyplot-legend-xkcd.pdf")
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The triple-line plot shown here illustrates the dynamics of beer consumption
in three states (in fact, in the most, least, and median beer-drinking states):
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A Note on Unicode

If your plot contains Unicode (meaning non-Latin) characters, you
may need to change the default font before plotting any text by
adding a call to matplotlib.rc("font", family="Arial") as the first line of your
plotting script.

Finally, you can change the style of a pyplot plot to resemble the popular xkcd2

web comic with the function xkcd(). (The function affects only the plot elements
added after the call to it.) For some reason, we can’t save the plots as
PostScript files, but everything else works. Nonetheless, you probably should
avoid including xkcd-style plots in official presentations because they look
as if drawn by a drunk (see the plot on page 142)—unless, of course, the pre-
sentation itself is about alcohol consumption.

2. xkcd.com
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The module pyplot is great on its own. But it’s even better when combined with
pandas, which we’ll look at next.
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Unit 44

Plotting with Pandas

Both pandas frames and series support plotting through pyplot. When the plot()
function is called without any parameters, it line-plots either the series or all
frame columns with labels. If you specify the optional parameters x and y, the
function plots column x against column y.

pandas also supports other types of plots via the optional parameter kind. The
admissible values of the parameter are "bar" and "barh" for bar plots, "hist" for
histograms, "box" for boxplots, "kde" for density plots, "area" for area plots,
"scatter" for scatter plots, "hexbin" for hexagonal bin plots, and "pie" for pie charts.
All plots allow a variety of embellishments, such as legends, color bars, con-
trollable dot sizes (option s), and colors (option c).

As an example, let’s plot wine consumption vs. beer consumption in the state
of New Hampshire over the whole NIAAA observation period. We’ll color each
data point according to the observation year:

scatter-plot.py
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd

# The NIAAA frame has been pickled before
alco = pickle.load(open("alco.pickle", "rb"))

# Select a good-locking style
matplotlib.style.use("ggplot")

# Do the scatter plot
STATE = "New Hampshire"
statedata = alco.ix[STATE].reset_index()
statedata.plot.scatter("Beer", "Wine", c="Year", s=100, cmap=plt.cm.autumn)

plt.title("%s: From Beer to Wine in 32 Years" % STATE)
plt.savefig("../images/scatter-plot.pdf")

It’s not hard to see in the resulting plot on page 144 that in the thirty-two years
of observations, the state went through the process of de-beering and en-wineing.
Hopefully, the process was not painful and did not also cause de-population.

We’ll conclude our plotting tour with the sub-module pandas.tools.plotting. The
module has tools for drawing Andrews curves andrews_curves(), lag plots lag_plot(),
and autocorrelations autocorrelation_plot()—but, what’s more important, pan-
das.tools.plotting has tools for scatter matrices. A scatter matrix is an excellent
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exploratory instrument. It’s implemented as the function scatter_matrix(), which
displays data histograms for each column in the main diagonal and two-variable
scatter plots for each combination of two columns in all other matrix cells.

scatter-matrix.py
from pandas.tools.plotting import scatter_matrix
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd

# The NIAAA frame has been pickled before
alco = pickle.load(open("alco.pickle", "rb"))

# Select a good-locking style
matplotlib.style.use("ggplot")

# Plot the scatter matrix
STATE = "New Hampshire"
statedata = alco.ix[STATE].reset_index()
scatter_matrix(statedata[["Wine", "Beer", "Spirits"]],

s=120, c=statedata["Year"], cmap=plt.cm.autumn)

plt.tight_layout()
plt.savefig("../images/scatter-matrix.pdf")
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We are again in New Hampshire, exploring the locals’ drinking habits, but
now all three types and six pairs of beverages in each of the thirty-two
recorded years are in the same chart:
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Your Turn
Data plotting (and, in general, data visualization) is not an exercise in futility.
They don’t say that a picture is worth a thousand words for nothing. In data
science, it may be worth millions and perhaps billions of numerical observa-
tions. Data visualization furnishes you with powerful tools, both exploratory
(for your own eyes) and presentational (for the eyes of your colleagues and
data sponsors).

American Pie*

Write a program that either displays or saves as a PDF file a pie chart of
the U.S. states grouped by the first initial. You’ll need a list of state names
or abbreviations to work on this problem, which you can get from the
namesake website.3

Population of California**

Write a program that uses U.S. Census Bureau data4 to display how the
population of California (relative to the total population of the United
States) changed between 2001 and 2009.

3. www.stateabbreviations.us
4. www.census.gov/popest/data/historical/2000s/vintage_2009/state.html
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CHAPTER 9

I shall have to just reduce all that mass of statistics to a few salient
facts. There are too many statistics and figures for me.

➤ Mark Twain, American author and humorist

Probability and Statistics
Probability theory and statistics study random phenomena, mostly in the
form of random samples such as random numbers and random categorical
variables.

Probability theory concerns itself with the origin and production of random
samples. We draw random samples from appropriate probability distributions
and use them to:

• Simulate synthetic raw data for model testing purposes (like we did in
Unit 30, Generating a Synthetic Sine Wave, on page 80)

• Split raw data into testing and training sets, as explained in Unit 48,
Designing a Predictive Experiment, on page 158

• Support randomized machine learning algorithms (such as random deci-
sion forests, which are covered in Unit 51, Surviving in Random Decision
Forests, on page 169)

On the other hand, statistics is more about studying properties of already
collected random samples. Experimental raw data almost always has an ele-
ment of uncertainty and unpredictability. We’ll use various statistical measures
to describe the observations of a dependent variable and possible interactions
between dependent and independent variables.

Probability and statistics are great and extensive areas of mathematics. They
can’t be learned by reading just one chapter in a reference book. In fact, you
probably already know some probability and statistics; this unit simply
refreshes and summarizes the key concepts. Let’s start with some probability
theory, continue to mathematical definitions of various statistical measures,
and conclude by calculating them in Python.
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Unit 45

Reviewing Probability Distributions

A probability distribution assigns a probability to each possible random
number (a discrete distribution) or range of random numbers (a continuous
distribution). In other words, it tells us if some outcomes are more probable
than other outcomes. Commonly encountered probability distributions include
the uniform distribution (continuous and discrete), the normal distribution
(continuous), and the binomial distribution (discrete).

You can specify a probability distribution by supplying a probability mass
function (PMF, for discrete distributions) or probability density function (PDF,
for continuous distributions). A PDF describes the relative likelihood a random
variable takes on a given value, and a PMF gives the probability that a discrete
random variable is exactly equal to some value. The picture shows PDFs (top
row) and PMFs (bottom row) of some commonly encountered probability dis-
tributions. (Needless to say, the plots were produced with pyplot, as discussed
in Unit 41, Basic Plotting with PyPlot, on page 136.)
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Let’s look briefly at the most interesting types of distributions.
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Uniform Distribution
The uniform distribution is a distribution whereby all outcomes are equally
possible. Uniform distributions are often used to represent numeric random
variables when all that is known is the range of possible values.

Normal Distribution
The normal distribution, also known as a Gaussian distribution or a bell curve,
is used to represent real-valued random variables if the mean and standard
deviation of their real distribution are known, but not the distribution itself.

Binomial Distribution
The binomial distribution is the probability distribution of the number of
successes in a sequence of n>0 independent binary trials (“coin flips”), each
of which yields success (“heads”) with probability 0≤p≤1. The expected number
of successful outcomes is n×p. When n=1, the binomial distribution becomes
a Bernoulli distribution.

A normally distributed random variable is a binomially distributed variable
with infinitely many trials and the probability of success of 0.5. In other words,
a normally distributed random variable is the cumulative effect on infinitely
many equiprobable binary causes.

Long Tails

Some probability distributions (such as Pareto, also known as Zipf
or power law) have a “long tail,” which is the distribution’s PDF
that goes far to the right or to the left, resembling a bumpy, long-
tailed creature. A long tail means that even the samples that are
far from the mean have a non-zero probability and are likely to
appear in our data.

Real raw data may or may not fit into any of the theoretical distributions. But
even if it doesn’t, you can still make important conclusions about it by calcu-
lating various statistical measures, which we’ll take a look at in the next unit.

report erratum  •  discuss

Reviewing Probability Distributions • 149

http://pragprog.com/titles/dzpyds/errata/add
http://forums.pragprog.com/forums/dzpyds


Unit 46

Recollecting Statistical Measures

From the point of view of exploratory (non–inference-based) data science,
statistics answers four important questions:

Where is the data?
The sample mean is the average of all observations:

x‾ = ∑ x
i /N

You can use the sample mean to represent the whole sample when the
distribution of data is close to normal (“bell-shaped”) and the standard
deviation is low.

How broad is the data?
The sample standard deviation is the measure of spread and is calculated
as the square root of the average square deviation from the sample mean:

sx =
∑ (xi− x‾)2

N − 1

High sx means that the data is widely spread.

How skewed is the data?
Sample skewness is a measure of the asymmetry of the probability distri-
bution. Zero skewness means a symmetric distribution. For a unimodal
distribution (a distribution with one mode), negative skewness indicates
that the tail on the left side of the probability density function is longer
than on the right side.

Are two variables (cor)related?
Sample covariance is a measure of how closely two random variables vary
(change) together. The covariance of X with itself is called variance, which
is simply s2 (the square of the standard deviation).

qxy =
∑ (xi− x‾)(yi− y‾)

N − 1

The Pearson correlation coefficient, also known as the correlation coeffi-
cient or simply correlation, is a normalized measure of covariance:
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rxy =
∑ (xiyi−N x

‾
y
‾)

(N − 1)sxsy

The correlation is always in the range [-1...1]. Take a look at the following
table. High correlation means that the variables are correlated. Low cor-
relation means the variables are anti-correlated. Zero correlation means
the variables are not linearly related.

r≫0r=0r≪0

Significant correlationNo linear relationSignificant anti-
correlation

p≤.01

No linear relationp>.01

Table 6—Types of Linear Relations Between Two Variables

A significant correlation doesn’t imply causation. Two variables may be
highly correlated or anti-correlated because they are consequences of a
common cause (the confounding variable) or just by coincidence. More people
drown when days are longer and nights are shorter—but they drown not
because days are longer, but because in summer, both days are longer and
more people go swimming!

Similarly, an insignificant linear correlation doesn’t imply a lack of relation
between two variables: the relation may be non-linear. When you don’t observe
a significant linear correlation, don’t get desperate. Instead look into other
relation models such as clustering, as described in Unit 50, Grouping Data
with K-Means Clustering, on page 166.

Population and Samples

Though you may not be interested in statistical inference (an art
of trying to infer from the sample data what the population might
look like), you still need to understand that most of the time data
scientists deal not with the entire population of observations, but
with a limited-sized sample. All statistical measures itemized in
this unit are not true values—they are estimators.

When the number of observations in the sample is low, the correlation between
two variables may be large—but not necessarily significant. The measure of
significance is called a p-value. The value of p≤.01 is considered good enough,
but the smaller, the better.

We can now move to the Python side and learn how to draw samples from
distributions and calculate statistical measures in a Python way.
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Unit 47

Doing Stats the Python Way

Python support for random numbers and statistics is scattered across several
modules: statistics, numpy.random, pandas, and scipy.stats.

Generating Random Numbers
The numpy.random module has random number generators for all major proba-
bility distributions.

Early in this book ( on page 6), you learned that data analysis code should
be reproducible: anyone should be able to run the same program with the
same input data and get the same results. You should always initialize the
pseudo random seed with the seed() function. Otherwise, the generators pro-
duce different pseudo random sequences with every program run, which may
make the results hard or impossible to reproduce.

import numpy.random as rnd
rnd.seed(z)

The following functions generate uniformly, normally, and binomially distribut-
ed integer and real random numbers. All of them return a numpy array of the
shape or size (where the shape is a list of dimensions), unless you set the size
parameter to None.

rnd.uniform(low=0.0, high=1.0, size=None)
rnd.rand(shape) # Same as uniform(0.0, 1.0, None)
rnd.randint(low, high=None, size=None)
rnd.normal(loc=0.0, scale=1.0, size=None)
rnd.randn(shape) # Same as normal(0.0, 1.0, shape)
rnd.binomial(n, p, size=None)

The binomial distribution is essential when you need to set up a predictive
experiment and split the data into a training set and a testing set (more on
predictive experiments in Unit 48, Designing a Predictive Experiment, on page
158). Let the relative size of the training set be p, and of the testing set, 1-p.
You can prepare a binomial sequence, convert it to a Boolean sequence of
True and False values, and select both sets from a pandas frame:

selection = rnd.binomial(1, p, size=len(data)).astype(bool)
training = df[selection]
testing = df[-selection]
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Calculating Statistical Measures
As a quick and dirty solution, the statistics module, which you first encountered
on page 35, provides the low-end functions mean() and stdev().

pandas frames and series have functions for calculating correlations and
covariances with other series and frames, as well as for calculating all pairwise
correlations and covariances between frame columns (but not the p-values)
and other statistical measures.

Let’s reuse the NIAAA surveillance report you converted into a frame earlier on
page 88 to explore the pandas statistics support. (We are not drunkards! We are
data scientists: once we’ve got a good data set, we’ll make the best use of it!)
Prepare two series and then calculate their correlation, covariance, and skewness:

beer_seriesNY = alco.ix['New York']['Beer']
beer_seriesCA = alco.ix['California']['Beer']

beer_seriesNY.corr(beer_seriesCA)

0.97097785391654789➾

beer_seriesCA.cov(beer_seriesNY)

0.017438162878787872➾

[x.skew() for x in (beer_seriesCA, beer_seriesNY)]

[0.16457291293004678, 0.32838100586347024]➾

We can apply the same functions to frames, too:

frameNY = alco.ix['New York']

frameNY.skew()

Beer 0.328381➾

Wine 0.127308➾

Spirits 0.656699➾

dtype: float64➾

frameNY.corr() # all pairwise correlations

Beer Wine Spirits➾

Beer 1.000000 0.470690 0.908969➾

Wine 0.470690 1.000000 0.611923➾

Spirits 0.908969 0.611923 1.000000➾

frameNY.cov() # all pairwise covariances

Beer Wine Spirits➾

Beer 0.016103 0.002872 0.026020➾

Wine 0.002872 0.002312 0.006638➾

Spirits 0.026020 0.006638 0.050888➾
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The latter two functions return a frame of all pairwise correlations or covariances.

We can also correlate a series and a frame, and a frame and another frame.
For example, let’s check if there is any correlation between alcohol consump-
tion and state population in New York state using the U.S. Census Bureau
data1 for the time period between 2000 to 2009:

# Remove the last two lines: they contain future estimates
pop_seriesNY = pop.ix["New York"][:-2]
# Convert the index from date to integer year
pop_seriesNY.index = pop_seriesNY.index.str.split().str[-1].astype(int)

frameNY.ix[2000:2009].corrwith(pop_seriesNY)

Beer -0.520878➾

Wine 0.936026➾

Spirits 0.957697➾

dtype: float64➾

Notice that the rows in the frame and in the series are arranged in the opposite
orders. pandas is smart enough to use the row indexes to match the right rows
—which is, of course, the data alignment mechanism in action. (There’s more
on data alignment on page 109.)

To estimate the significance of the correlation, use the pearsonr() function from
the scipy.stats module. This function returns both the correlation and the p-
value. However, it is not integrated with pandas frames, and it doesn’t support
indexing, so it’s your job to align the indexes and convert the result back to
a frame.

from scipy.stats import pearsonr
# Manually align the indexes
pop_sorted = pop_seriesNY.sort_index()
alco_10 = alco.ix['New York'][-10:]
# List comprehension to calculate all correlations and p-values
corrs = [(bev,) + pearsonr(alco_10[bev], pop_sorted)

for bev in alco_10.columns]
# Convert the list to a frame
pd.DataFrame(corrs, columns=("bev", "r", "p-value")).set_index("bev")

r p-value➾

bev➾

Beer -0.520878 0.122646➾

Wine 0.936026 0.000068➾

Spirits 0.957697 0.000013➾

Note that the p-value for the “beer” correlation is ridiculously high. According
to Table 6, Types of Linear Relations Between Two Variables, on page 151, we

1. www.census.gov/popest/data/historical/2000s/vintage_2009/state.html
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must conclude that it’s unlikely that there is a linear relationship between
population and beer consumption.

We are now fully equipped to revisit the example from Cross-Tabulation, on
page 114. Based on the cross-table, we claimed that back in 2009, beer and
wine consumptions per capita were probably linearly independent. The
Pearson correlation fully confirms our claim:

alco2009.corr()

Beer Wine Spirits➾

Beer 1.000000 -0.031560 0.452279➾

Wine -0.031560 1.000000 0.599791➾

Spirits 0.452279 0.599791 1.000000➾

The absurdly high p-value of the correlation delivers a coup de grace to the
alternative hypothesis:

pearsonr(alco2009["Wine"], alco2009["Beer"])

(-0.031560488300856844, 0.82598481310787297)➾

And the following scatter plot explains why: the points are literally scattered
all around the plot in no particular order or pattern.
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Your Turn
Calling this chapter “Probability and Statistics” was nothing but an act of
reckless bravery. It takes a good volume—not mere pages!—to introduce
probability theory alone, and another volume for statistics. If this is your first
encounter with either discipline and you still want to be a data scientist,
you’ve got to do a lot of reading; An Introduction to Statistical Learning with
Applications in R [JWHT13] is a good starting point, though you may get con-
fused about the R language used in that book. But even if you’re a complete
statistical novice, you still can do some interesting projects. Let Python be
with you!

Twenty-First Century S&P 500*

Write a program that reports some basic statistical measures of the closing
values of the S&P 500 stock index: the mean, standard deviation, skew-
ness, and correlation between the closing values and trading volume in
the twenty-first century. Is the correlation reliable? You can download
the historical prices from Yahoo! Finance.2 Remember that the twenty-
first century began on January 1, 2001.

Network of Nutrients***

The United States Department of Agriculture (USDA) nutrient database3

contains information about approximately 9,000 food items and 150
constituent nutrients. Let’s say that two nutrients are similar if their
amounts in all food items are strongly and reliably correlated: the corre-
lation is greater than 0.7 and the p-value is less than 0.01. Write a pro-
gram that uses the nutrition data in the file NUT_DATA.txt to construct a
network of similar nutrients (you may need to revisit Unit 40, Harnessing
Networkx, on page 127). Each nutrient in the network is a node, and two
nodes are connected if two nutrients are similar.

Does the network have any community structure? If it does, what nutrients
go together?

2. finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices
3. www.ars.usda.gov/Services/docs.htm?docid=25700 (document SR28)
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CHAPTER 10

On my own farm at Dearborn we do everything by machinery.

➤ Henry Ford, American industrialist

Machine Learning
Machine learning is a field of study that looks at and constructs algorithms
that can learn from and make predictions on experimental data. There are
two major classes of machine learning: supervised and unsupervised.

Supervised learning attempts to infer a predictive function from a labeled
training data set—a data set where each observation is known to belong to a
certain class (the classification is in fact a part of the data set). We’ll take a
look at linear regression, including logistic regression in Unit 49, Fitting a
Linear Regression, on page 160, and at random decision forests in Unit 51,
Surviving in Random Decision Forests, on page 169. (Due to the limited scope
of this book, we will sadly ignore naive Bayes classification, support vector
machines, linear discriminant analysis, and neural networks.)

Unsupervised learning tries to find hidden structure in unlabeled data. Some
of the most popular unsupervised techniques are k-means clustering (dis-
cussed in Unit 50, Grouping Data with K-Means Clustering, on page 166) and
community detection (previously discussed on page 132). Hierarchical cluster-
ing and principal component analysis are also unsupervised algorithms—but
we have no time and space to talk about them here.

Both types of machine learning tools can be used for exploratory and predictive
data analysis. You’ll find the Python implementations of the tools in the SciKit-
Learn module and its sub-modules. If your goal is to predict something that
you haven’t seen rather than to explain something you see, you first must
set up a predictive experiment.
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Unit 48

Designing a Predictive Experiment

Predictive data analysis is a real scientific experiment, and it must be orga-
nized as such. You cannot just claim that your data mode predicts something
—an important part of an experiment is the assessment and validation of its
predictive power.

To build, assess, and validate a model, follow these four steps:

1. Split the input data into training and testing sets (the recommended split
ratio is 70:30). Then set the testing data aside and never use it for
preparing the data model.

2. Build a data model using only the training data.

3. Apply the new model to the testing data.

4. Evaluate the model quality with the confusion matrix or some other
quality assurance tool. If the model passes the test, it is adequate. Other-
wise, repeat the last three steps.

A binary confusion matrix is a table with two rows and two columns that
allows someone to assess the accuracy of a binary predictive model (a model
that predicts whether some property holds or does not hold), as illustrated
by the following table:

Classified as

Really isNegativePositive

PositiveFalse negative (FN)True positive (TP)

NegativeTrue negative (TN)False positive (FP)

Table 7—Binary Confusion Matrix

We assume that we know whether or not any item in the testing set has the
predicted property, and we used the model to predict the property for each
item, too. (Clearly, this assumption holds only for supervised learning models!)
TP refers to the number of items for which the model correctly predicted the
property as present (true positive); TN refers to the number of items for which
the model correctly predicted the property as absent (true negative); FP refers
to the number of items for which the model incorrectly predicted the property
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as present (false positive); and FN refers to the number of items for which the
model incorrectly predicted the property as absent (false negative).

Other Machine Learning Techniques

Other supervised and unsupervised machine learning techniques
include naive Bayes classification, support vector machines (SVN),
linear discriminant analysis (LDA), and neural networks. Some of
them are provided by SciKit-Learn.

Quantitative measures are defined to summarize the content of the matrix:

• Accuracy is the proportion of correctly classified items:

accuracy = TP + TN
TP + TN + FP + FN

At the very least, your predictive model must have high accuracy. If it
doesn’t, it’s not even accurate!

• Precision is the proportion of true positives to all classified positives:

precision = TP
TP + FP

• Sensitivity (or recall) is the proportion of true positives to all real positives:

sensitivity = TP
TP + FN

Sensitivity explains how good the model is in recognizing the observed
property. If true positives are rare (say, cancer cases among the general
population), the model has to be sensitive to be useful.

• Specificity is the proportion of true negatives to all real negatives:

specificity = TN
TN + FP

High specificity means that the model is good in capturing the absence
of the property.

Many statistical models have either high sensitivity but low specificity, or low
sensitivity but high specificity, depending on the model parameters. Choose
the parameters based on which measure is more important to you. If a pre-
dictor has both poor specificity and sensitivity, you can invert it to become a
good predictor.

If the predicted value is not binary (say, categorical or continuous), you must
use other quality control tools, some of which you’ll learn in the rest of this
chapter.
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Unit 49

Fitting a Linear Regression

Linear regression is a form of predictive statistical modeling that aims at
explaining all or some of a variable’s variance using a linear model. It’s a
supervised modeling technique: you must train (“fit”) the model before using
it for prediction.

Ordinary Least Square Regression
Ordinary least squares (OLS) regression relates independent variables (predic-
tors) and dependent variables (predicted value). The model treats the predicted
value reg(xi) as a linear combination of predictors xi. The differences between
the real yi and predicted values are called residuals. In the case of a perfect
fit, all residuals are zero. The sum of possibly weighted (with weights wi>0)
squared residuals, SSR, determines the quality of fit. Training the model
means minimizing the SSR:

SSR =∑
i

N(y
i
−reg(x

i
))2w

i
2→min

Another measure of quality of fit is the model score, also known as R2. The
score 0≤R2≤1 shows how much variance the fitted model explains. In the case
of a perfect fit, R2=1. In the case of a very bad fit, R2≈0.

The constructor LinearRegression() from the sklearn.linear_model module creates an
OLS regression object.

The fit() function takes a 1×n matrix of predictors. If the model has one inde-
pendent variable and the predictors form a vector, slicing with the
numpy.newaxis object is used to create another dimension. The true values of
the dependent variable are passed as a one-dimensional vector. (If you want
to predict more than one property, you must build and fit more than one
model.)

After fitting, you can use the regression object for calculating the predicted
values (the function predict()) and checking the fit score (the function score()).
The attributes coef_ and intercept_ contain the values of the regression coefficients
and the intercept after the fit.
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The following example uses the historical S&P 500 closing prices from Yahoo!
Finance1 to build, fit, and evaluate a linear regression model. It assumes that
the data has been previously saved as sapXXI.csv.

Begin by importing all necessary modules and loading the S&P 500 data:

sap-linregr.py
import numpy, pandas as pd
import matplotlib, matplotlib.pyplot as plt
import sklearn.linear_model as lm

# Get the data
sap = pd.read_csv("sapXXI.csv").set_index("Date")

You can see by visually exploring the closing prices that their behavior in
general is far from linear, but there is a nice, almost linear, fragment that
starts on January 1, 2009 and extends to the end of the data set. You’ll use
only this fragment for model fitting. Unfortunately, SciKit-Learn does not support
dates directly. Therefore, you must convert them to ordinal numbers—days
—and then create, fit, and evaluate the linear regression model, and calculate
the predicted S&P 500 values. The model score is 0.95, which is not so bad!

sap-linregr.py
# Select a "linearly looking" part
sap.index = pd.to_datetime(sap.index)
sap_linear = sap.ix[sap.index > pd.to_datetime('2009-01-01')]

# Prepare the model and fit it
olm = lm.LinearRegression()
X = numpy.array([x.toordinal() for x in sap_linear.index])[:, numpy.newaxis]
y = sap_linear['Close']
olm.fit(X, y)

# Predict values
yp = [olm.predict(x.toordinal())[0] for x in sap_linear.index]

# Evaluate the model
olm_score = olm.score(X, y)

Finally, the code draws the original data set, the predicted line, and even the
model score. The result is shown in the image on page 162.

1. finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices
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sap-linregr.py
# Select a nice plotting style
matplotlib.style.use("ggplot")

# Plot both data sets
plt.plot(sap_linear.index, y)
plt.plot(sap_linear.index, yp)

# Add decorations
plt.title("OLS Regression")
plt.xlabel("Year")
plt.ylabel("S&P 500 (closing)")
plt.legend(["Actual", "Predicted"], loc="lower right")
plt.annotate("Score=%.3f" % olm_score,

xy=(pd.to_datetime('2010-06-01'), 1900))

plt.savefig("../images/sap-linregr.pdf")
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Unfortunately, SciKit-Learn does not calculate the p-value of the fit. It is not
possible to tell if the fit is significant or not.

If you want to add some non-linear predictors (for example, squares, square
roots, and logarithms) or even combinations of the original predictors to the
model, simply treat these functions and combinations as new independent
variables.
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Ridge Regression
If two or more predictors are highly correlated (the case of so-called
collinearity), fitting an OLS regression may produce very large coefficients.
You can impose a penalty to restrict the uncontrollable growth of the regres-
sion coefficients. Ridge regression, a generalized linear model, uses α, a
complexity parameter, to suppress the coefficients. This procedure is called
model regularization:

SSRgen =∑
i

N(y
i
−reg(x

i
))2w

i
2 + α∑

i

Ncoeff
i
2→min

When α=0, ridge regression becomes OLS regression. When α is high, the
penalty is high; the model fitting results in lower coefficients, but the fitted
model potentially gets worse.

The function Ridge() creates a ridge regression object. It takes α as the
parameter. Once you create the object, you can use it just like you used the
OLS regression:

regr = lm.Ridge(alpha=.5)
regr.fit(X, y)
«...»

Logistic (Logit) Regression
Despite its name, logistic, or logit, regression is not a regression—it is a tool
for binary classification. It uses a generalized logistic function (the extension
of a logistic function, which is also known as an s-curve or a sigmoid, as
shown in the figure on page 164). The generalized logistic function is charac-
terized by the lower and upper asymptotes, the x value of the sigmoid’s mid-
point, and the steepness of the curve.

The function LogisticRegression() creates an instance of a logistic regression object.
It takes several optional parameters, of which the most important is C.

The parameter C is the inverse regularization (the inverse of α for ridge
regression). For the results of the classification to make sense, it’s often best
to make it at least 20. The default value of C=1.0 is unacceptable for many
practical purposes.

The dependent variable y can be either integer, Boolean, or string.

sklearn.linear_model implements the classification through the predict() function.
Unlike the linear regression models (OLS and ridge), the prediction results of
the logit regression model are usually more valuable than the model coeffi-
cients coef_ and the intercept intercept_.
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In the next example, you’ll use anonymized quiz grades from an introductory
computer science class of forty-three students (available in the file grades.csv)
to illustrate logistic regression. Let’s see if the results of the first two quizzes
(out of ten) can predict the final letter grade of a student or at least whether
the grade will be satisfactory (a “C” or above) or unsatisfactory:

logit-example.py
import pandas as pd
from sklearn.metrics import confusion_matrix
import sklearn.linear_model as lm

# Initialize the regression tool
clf = lm.LogisticRegression(C=10.0)

# Read the data sheet, quantize letter grades
grades = pd.read_table("grades.csv")
labels = ('F', 'D', 'C', 'B', 'A')
grades["Letter"] = pd.cut(grades["Final score"], [0, 60, 70, 80, 90, 100],

labels=labels)
X = grades[["Quiz 1", "Quiz 2"]]

# Fit the model, display the score and the confusion matrix
clf.fit(X, grades["Letter"])
print("Score=%.3f" % clf.score(X, grades["Letter"]))
cm = confusion_matrix(clf.predict(X), grades["Letter"])
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print(pd.DataFrame(cm, columns=labels, index=labels))

Score=0.535➾

F D C B A➾

F 0 0 0 0 0➾

D 2 16 6 4 1➾

C 0 1 6 2 2➾

B 0 0 0 1 2➾

A 0 0 0 0 0➾

We used the confusion_matrix() function from the module sklearn.metrics to calculate
the confusion matrix (refer to Table 7, Binary Confusion Matrix, on page 158).
The model score doesn’t look excitingly accurate: the model was able to predict
only ≈54% of all grades correctly. However, the confusion matrix has almost
all non-zero entries either on the main diagonal (where they belong) or on its
neighbors. This means that the model is either accurate or makes a mistake
of ±1 letter step. For most practical applications, this “extended” accuracy
(84%) is quite sufficient.
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Unit 50

Grouping Data with K-Means Clustering

Clustering is an unsupervised machine learning technique. You do not need
to (and cannot!) train the model.

The goal of clustering is to collect samples (represented as n-dimensional
vectors of real numbers) into disjoint compact groups with good internal
proximity. For clustering to work, the vector dimensions must have reasonably
compatible ranges. If the range of one dimension is much higher or much
lower than the ranges of the other dimensions, you should scale the variables
that are “too tall” or “too short” before clustering.

The k-means clustering aggregates samples into k clusters (hence the name)
according to the following algorithm:

1. Randomly choose k vectors as the initial centroids (the vectors don’t have
to be samples from the data set).

2. Assign each sample to the closest centroid.

3. Recalculate centroid positions.

4. Repeat steps 2–3 until the centroids don’t move.

The module sklearn.cluster implements the algorithm through the object KMeans,
which has the functions fit() for actual clustering, predict() for assigning new
samples to pre-computed clusters, and fit_predict() for clustering and labeling
at the same time.

The module sklearn.preprocessing has the function scale() for scaling the variables.
The function subtracts the minimum value from each dimensional variable
and divides the variable by the range, thus mapping it to the [0...1] segment.

The attributes cluster_centers_ and labels_ contain the vectors describing the final
centroids, and numeric labels assigned to each sample cluster. The latter
labels don’t reflect the purpose and composition of the clusters. To assign
meaningful labels to clusters, you can do one of the following:

• Use human intelligence (look into the samples and come up with a gener-
alized label).

• Use crowdsourcing (for example, Amazon MTurk workers).
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• Generate labels from the data (for example, designate one of the attributes
of the most prominent sample as the cluster label).

In Calculating Statistical Measures, on page 153, we tried to make sense out
of wine and beer consumption in the United States in 2009, and we came to
a counterproductive conclusion that the two were not linearly related. Let’s
give the noble drinks another chance—now through clustering. The process
and its results are shown in the following listing:

clusters.py
import matplotlib, matplotlib.pyplot as plt
import pickle, pandas as pd
import sklearn.cluster, sklearn.preprocessing

# The NIAAA frame has been pickled before
alco2009 = pickle.load(open("alco2009.pickle", "rb"))
# States" abbreviations
states = pd.read_csv("states.csv",

names=("State", "Standard", "Postal", "Capital"))
columns = ["Wine", "Beer"]
# Initialize the clustering object, fit the model
kmeans = sklearn.cluster.KMeans(n_clusters=9)
kmeans.fit(alco2009[columns])
alco2009["Clusters"] = kmeans.labels_
centers = pd.DataFrame(kmeans.cluster_centers_, columns=columns)

# Select a good-looking style
matplotlib.style.use("ggplot")

# Plot the states and cluster centroids
ax = alco2009.plot.scatter(columns[0], columns[1], c="Clusters",

cmap=plt.cm.Accent, s=100)
centers.plot.scatter(columns[0], columns[1], color="red", marker="+",

s=200, ax=ax)

# Add state abbreviations as annotations
def add_abbr(state):

_ = ax.annotate(state["Postal"], state[columns], xytext=(1, 5),
textcoords="offset points", size=8,
color="darkslategrey")

alco2009withStates = pd.concat([alco2009, states.set_index("State")],
axis=1)

alco2009withStates.apply(add_abbr, axis=1)

# Add the title, save the plot
plt.title("US States Clustered by Alcohol Consumption")
plt.savefig("../images/clusters.pdf")

Note that the KMeans() function always produces eight clusters, unless you
pass the n_clusters parameter. It’s up to you and your intuition to choose the
number of clusters.
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Let’s plot both the original data (filled circles, labeled by state name abbrevi-
ations) and the cluster centroids (crosses) in the same chart, as shown here:
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KMeans() did a good job recognizing the clusters (such as the moderately-
drinking-both-wine-and-beer Northeast). Label placement leaves much to be
desired, but this topic is outside of the scope of this book.

Voronoi Cells

The k-means clustering algorithm partitions the independent
variables space into Voronoi cells—regions of points that are
closer to one seed (data point) than to any other seed.
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Unit 51

Surviving in Random Decision Forests

A decision tree is a supervised machine learning tool. It uses a tree-style graph
where each node contains a test on a certain data set attribute, and the
branches incident to the node correspond to the outcomes of the test. If you
use trees, you have to train them before use. Training consists of presenting
various predictors and corresponding labels (features) to the tree and adjusting
the node test conditions accordingly. (Surely, you don’t do training by hand!)

A random decision forest regressor uses a number (an ensemble) of classifying
decision trees on various sub-samples of the data set and averages the pre-
dictions to improve accuracy. The module sklearn.ensemble provides the construc-
tor RandomForestRegressor(). The regressor object has the functions fit(), predict(),
and so on, which have consistent syntax and semantics with the other
regressors that you’ve seen in this chapter so far.

We’ll use the data set of Hedonic Prices of Census Tracts in the Boston Area,2

first published by D. Harrison and D. Rubinfeld in 1978, to practice random
decision forests. The data set provides 506 observations of median values of
residential houses (mv, the label in your experiment) and fourteen other vari-
ables (predictors).

rfr.py
from sklearn.ensemble import RandomForestRegressor
import pandas as pd, numpy.random as rnd
import matplotlib, matplotlib.pyplot as plt

# Read the data, prepare two random complementary data sets
hed = pd.read_csv('Hedonic.csv')
selection = rnd.binomial(1, 0.7, size=len(hed)).astype(bool)
training = hed[selection]
testing = hed[-selection]

# Create a regressor and predictor sets
rfr = RandomForestRegressor()
predictors_tra = training.ix[:, "crim" : "lstat"]
predictors_tst = testing.ix[:, "crim" : "lstat"]

# Fit the model
feature = "mv"
rfr.fit(predictors_tra, training[feature])❶

2. rcom.univie.ac.at/mirrors/lib.stat.cmu.edu/datasets/boston
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# Select a good-locking style
matplotlib.style.use("ggplot")

# Plot the prediction results
plt.scatter(training[feature], rfr.predict(predictors_tra), c="green",

s=50)❷
plt.scatter(testing[feature], rfr.predict(predictors_tst), c="red")❸
plt.legend(["Training data", "Testing data"], loc="upper left")
plt.plot(training[feature], training[feature], c="blue")
plt.title("Hedonic Prices of Census Tracts in the Boston Area")
plt.xlabel("Actual value")
plt.ylabel("Predicted value")
plt.savefig("../images/rfr.pdf")

We fit the predictor using the training data set (randomly chosen from the
complete data set) at ❶ and then test both on the training set (at ❷) and the
testing set that was not used for fitting (at ❸). The predicted feature mv is not
discrete, which precludes us from using a confusion matrix to assess the
model quality. Instead, we resort to visual inspection, which suggests that
the quality of prediction on both sets is at least fair. Looks like the model is
reasonably accurate and not over-fitted:
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Your Turn
In this chapter, you’ve only touched the tip of the machine learning iceberg.
(If “traditional” science is to be trusted, two-thirds of a typical iceberg is hidden
underwater.) However, you have sufficiently powerful tools and knowledge
for supervised and unsupervised data processing. You can set up both
descriptive (regression and classification) and predictive data science experi-
ments, somewhat assess their validity, and make non-trivial conclusions.

Congratulations! You are almost a data scientist now. (But you still need to
complete the remaining projects.)

MOSN Clusters*

Write a program that clusters massive online social networking sites by
the number of registered users and global Alexa page ranking.3 Because
site ranks and sizes vary in a broad range, use logarithmic scale both for
clustering and for presentation.

Piecewise-Linear S&P 500**

Write a program that takes the historical S&P 500 closing prices in the
twenty-first century from Yahoo! Finance4 and represent each year’s worth
of observations as an OLS regression model. If a model score is not ade-
quate (0.95 or below), the program should split the time interval in two
halves and proceed recursively until either the OLS model score exceeds
0.95 or the interval is shorter than one week. The program should then
plot the original S&P 500 prices and the predicted values from the OLS
models in one chart.

Subway Predictor***

Develop a program that predicts whether a city has a subway system.
Your program may need to look at the population, population density,
budget size, weather conditions, income tax levels, and other variables.
Some of them may be easily available online, some not. Use logistic
regression and random decision forest and choose the method that per-
forms best.

3. en.wikipedia.org/wiki/List_of_social_networking_websites
4. finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices
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APPENDIX 1

When you have chosen a section of the book which particularly
appeals to you, begin your actual study by reading the phrases aloud.

➤ Grenville Kleiser, North American author

Further Reading
If you get to this page, you already know that this book doesn’t provide any
in-depth coverage of the material and assumes that you mostly know what
to do but are not sure how. Here I refer you to several excellent and somewhat
overlapping books that provide more details on specific topics.

If you’re not familiar with data science at all and either already know the R
language or at least don’t mind learning it, look at An Introduction to Statistical
Learning with Applications in R [JWHT13] and Practical Data Science with R
[ZM14]. The former book is statistical with elements of practical programming,
and the latter is practical with elements of statistics, which makes them a
good bundle. Another book, The Elements of Data Analytic Style [Lee15], goes
over different data model types, writing reports, creating support figures, and
writing reproducible code.

Python for Data Analysis [McK12], the classical pandas book by Wes McKinney,
the pandas creator himself, contains everything you want to know about pandas
and numpy, including financial time series analysis. The book goes over a lot
of case studies in great detail.

Natural Language Processing with Python [BKL09] doubles as a Python tutorial
and a complete NLP solution. It goes far beyond the modest text normalization
and word counting toward text classification, sentence structure analysis,
and semantic analysis—and assumes you know no Python and are willing to
grab an official free copy online!1

The social web is an enormous and exponentially expanding repository of raw
data. Mining the Social Web [Rus11] scrutinizes application programming
interfaces (APIs) that allow you to use Unix-style mailboxes, Twitter, LinkedIn,
Google Buzz, and Facebook. It has a decent overview of most vital natural

1. www.nltk.org/book
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language processing tasks. Unfortunately, despite having been published
only a few years ago, the book is already mostly obsolete: some APIs have
changed, and some social network projects (such as Google Buzz) have been
terminated for good.

MySQL Crash Course [For05] is exactly what it claims to be: a comprehensive
crash course on how to set up, maintain, and operate relational databases.
The book doesn’t address any APIs, either in Python or in any other language.

As of the time of this writing, there is no Python-related book on network
analysis. Network Analysis: Methodological Foundations [BE05] is not
intended for computer programmers and, in fact, is quite theoretical. Social
Network Analysis [KY07] is much more accessible to the practitioners who
prefer to stay away from theorems, proofs, and skyscraper-tall formulas.
Despite the name, the book is a good introduction to networks in general,
not just social networks.

Finally, Data Science from Scratch [Gru15] is a somewhat expanded version
of this book. It features expanded coverage of statistics and machine learning
and would be the most natural next book to read.
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APPENDIX 2

In many cases we should never reason out the right solution of
a problem; we lack the data.

➤ Durant Drake, North American ethics researcher

Solutions to Single-Star Projects
This appendix provides sample solutions to select (single-star) projects. The
suggested solutions are implemented in the most “Pythonic” way. If your own
solutions are different, don’t get desperate! Just like there is always more
than one way to write about love and death, there is always more than one
way to solve a programming problem.

Hello, World!
Write a program that outputs “Hello, World!” (less the quotes) on the
Python command line (original problem on page 8).

solution-hello.py
# Honor the tradition
print("Hello, World!")

Word Frequency Counter
Write a program that downloads a web page requested by the user, and
reports up to ten most frequently used words. The program should treat
all words as case-insensitive. For the purpose of this exercise, assume
that a word is described by the regular expression r"\w+" (original problem
on page 28).

solution-counter.py
import urllib.request, re
from collections import Counter

# Talk to the user and the Internet
url = input("Enter the URL: ")
try:

page = urllib.request.urlopen(url)
except:

print("Cannot open %s" % url)
quit()

# Read and partially normalize the page
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doc = page.read().decode().lower()

# Split the text into words
words = re.findall(r"\w+", doc)

# Build a counter and report the answer
print(Counter(words).most_common(10))

Broken Link Detector
Write a program that, given a URL of a web page, reports the names and
destinations of broken links in the page. For the purpose of this exercise,
a link is broken if an attempt to open it with urllib.request.urlopen() fails
(original problem on page 44).

solution-broken_link.py
import urllib.request, urllib.parse
import bs4 as BeautifulSoup

# Talk to the user and the Internet
base = input("Enter the URL: ")
try:

page = urllib.request.urlopen(base)
except:

print("Cannot open %s" % base)
quit()

# Cook the soup
soup = BeautifulSoup.BeautifulSoup(page)

# Extract the links as (name, url) tuples
links = [(link.string, link["href"])

for link in soup.find_all("a")
if link.has_attr("href")]

# Try to open each link
broken = False
for name, url in links:

# Combine the base and the link destinatuon
dest = urllib.parse.urljoin(base, url)
try:

page = urllib.request.urlopen(dest)
page.close()

except:
print("Link \"%s\" to \"%s\" is probably broken." % (name, dest))
broken = True

# Good news!
if not broken:

print("Page %s does not seem to have broken links." % base)

MySQL File Indexer
Write a Python program that, for each word in a given file, records the word
itself (not the stem!), its ordinal number in the file (starting from 1), and
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the part-of-speech marker in a MySQL database. Use NLTK WordPunctTokenizer
(introduced on page 41) to recognize words. Assume that words are short
enough to fit in the TINYTEXT MySQL data type. Design the database schema,
create all necessary tables, and play with them via the command-line
interface before starting any Python coding (original problem on page 61).

The solution consists of two files: a MySQL script that sets up the table,
and a Python program that performs the actual indexing.

solution-mysql_indexer.sql
CREATE TABLE IF NOT EXISTS indexer(id INT PRIMARY KEY AUTO_INCREMENT,

ts TIMESTAMP,
word TINYTEXT,
position INT,
pos VARCHAR(8));

solution-mysql_indexer.py
import nltk, pymysql

infilename = input("Enter the name of the file to index: ")

# Change this line to match your MySQL server settings
conn = pymysql.connect(user="dsuser", passwd="badpassw0rd", db="dsbd")
cur = conn.cursor()

QUERY = "INSERT INTO indexer (word,position,pos) VALUES "
wpt = nltk.WordPunctTokenizer()

offset = 1
with open(infilename) as infile:

# Process the text incrementally, one line at a time
# A word cannot span across lines, anyway!
for text in infile:

# Tokenize and add POS tags
pieces = enumerate(nltk.pos_tag(wpt.tokenize(text)))

# Create a query; do not forget to escape the words!
words = ["(\"%s\",%d,\"%s\")" % (conn.escape_string(w),

i + offset,
conn.escape_string(pos))

for (i, (w, pos)) in pieces]

# Execute the query
if words:

cur.execute(QUERY + ','.join(words))

# Advance the word pointer
offset += len(words)

# Commit the changes
conn.commit()
conn.close()
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Array Differentiator
Partial sums are a rough equivalent of an integral. In fact, calculus defines
an integral as an infinite sum of infinitesimal elements. Partial differences
arri+1-arri are a rough equivalent of a derivative. numpy doesn’t provide a
tool for calculating partial array differences. Write a program that, given
an array arr, calculates the partial differences of the array items. Assume
that the array is numerical (original problem on page 82).

solution-difference.py
import numpy as np

# Some synthetic data for testing
array = np.random.binomial(5, 0.5, size=100)

# The partial differences: slicing & broadcasting!
diff = array[1:] - array[:-1]

Lynx Trappings
Write a program that uses the annual Canadian lynx trappings data1 and
reports total lynx trappings by decade (ten years), sorted in the reverse
order (most “productive” decade first). The program should download the
data file into the cache directory—but only if the file is not in the cache
yet. If the directory does not exist, it will be created. The program should
save the results into a CSV file in the directory doc. If the directory doesn’t
exist, it will be created (original problem on page 119).

solution-lynx.py
import os, pandas as pd
import urllib.request

# Some "constants"
SRC_HOST = "https://vincentarelbundock.github.io"
FILE = "/lynx.csv"
SRC_NAME = SRC_HOST + "/Rdatasets/csv/datasets" + FILE
CACHE = "cache"
DOC = "doc"

# Prepare the directories, if needed
if not os.path.isdir(CACHE):

os.mkdir(CACHE)
if not os.path.isdir(DOC):

os.mkdir(DOC)

# Check if the file is cached; cache it if it's not
if not os.path.isfile(CACHE + FILE):

try:
src = urllib.request.urlopen(SRC_NAME)
lynx = pd.read_csv(src)

1. vincentarelbundock.github.io/Rdatasets/csv/datasets/lynx.csv
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except:
print("Cannot access %f." % SRC_NAME)
quit()

# Create a data frame
lynx.to_csv(CACHE + FILE)

else:
lynx = pd.read_csv(CACHE + FILE)

# Add the "decade" column
lynx["decade"] = (lynx['time'] / 10).round() * 10

# Aggregate and sort
by_decade = lynx.groupby("decade").sum()
by_decade = by_decade.sort_values(by="lynx", ascending=False)

# Save the results
by_decade["lynx"].to_csv(DOC + FILE)

Centrality Correlations
Download a social network graph of select Epinions.com users from the
Stanford Large Network Dataset Collection,2 and extract the tenth largest
community. Write a program that calculates and displays pairwise correlations
between all network centrality measures mentioned in Chapter 7, Working
with Network Data, on page 121; you can also add a clustering coefficient for
more fun (original problem on page 134). I suggest that you store all centralities
in a pandas data frame. You may need to read about how to calculate correla-
tions in pandas in Calculating Statistical Measures, on page 153.

Are any pairs of centralities really strongly correlated?

solution-centrality.py
import networkx as nx, community
import pandas as pd

# Import the network
G = nx.read_adjlist(open("soc-Epinions1.txt", "rb"))

# Extract community structure and save it as a data series
partition = pd.Series(community.best_partition(G))

# Find the index of the 10th largest community
top10 = partition.value_counts().index[9]

# Extract the 10th largest community
# Remember that node labels are strings!
subgraph = partition[partition == top10].index.values.astype('str')
F = G.subgraph(subgraph)

# Calculate the network measures
df = pd.DataFrame()
df["degree"] = pd.Series(nx.degree_centrality(F))

2. snap.stanford.edu/data/soc-Epinions1.html
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df["closeness"] = pd.Series(nx.closeness_centrality(F))
df["betweenness"] = pd.Series(nx.betweenness_centrality(F))
df["eigenvector"] = pd.Series(nx.eigenvector_centrality(F))
df["clustering"] = pd.Series(nx.clustering(F))

# Calculate the correlations
print(df.corr())

degree closeness betweenness eigenvector clustering➾

degree 1.000000 0.247377 0.871812 0.738836 0.100259➾

closeness 0.247377 1.000000 0.169449 0.547228 0.024052➾

betweenness 0.871812 0.169449 1.000000 0.527290 -0.015759➾

eigenvector 0.738836 0.547228 0.527290 1.000000 0.143070➾

clustering 0.100259 0.024052 -0.015759 0.143070 1.000000➾

The degree centrality is strongly linearly correlated with the betweenness
and eigenvector centralities.

American Pie
Write a program that either displays or saves as a PDF file a pie chart of
the U.S. states grouped by the first initial. You’ll need a list of state names
or abbreviations to work on this problem. You can get it from the namesake
website3 (original problem on page 146).

solution-states_pie.py
import pandas as pd
import matplotlib, matplotlib.pyplot as plt

def initial(word):
return word[0]

# Read the state names (use whatever source you like!)
states = pd.read_csv("states.csv",

names=("State", "Standard", "Postal", "Capital"))

# Select a good-locking style
matplotlib.style.use("ggplot")

# Plotting
plt.axes(aspect=1)
states.set_index('Postal').groupby(initial).count()['Standard'].plot.pie()
plt.title("States by the First Initial")
plt.ylabel("")

plt.savefig("../images/states-pie.pdf")

The resulting pie chart is shown here:

3. www.stateabbreviations.us
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Twenty-First Century S&P 500
Write a program that reports some basic statistical measures of the closing
values of the S&P 500 stock index: the mean, standard deviation, skew-
ness, and correlation between the closing values and trading volume in
the twenty-first century. Is the correlation reliable? You can download
the historical prices from Yahoo! Finance.4 Remember that the twenty-
first century began on January 1, 2001 (original problem on page 156).

Your new downloaded data will be different from the data I used in this
example, and your answers may differ from mine.

solution-sap.py
import pandas as pd
from scipy.stats import pearsonr

# Read the data
sap = pd.read_csv("sapXXI.csv").set_index("Date")

# Calculate and report all stats
print("Mean:", sap["Close"].mean())
print("Standard deviation:", sap["Close"].std())
print("Skewness:", sap["Close"].skew())
print("Correlation:\n", sap[["Close", "Volume"]].corr())
_, p = pearsonr(sap["Close"], sap["Volume"])

4. finance.yahoo.com/q/hp?s=^GSPC+Historical+Prices
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print("p-value:", p)

Mean: 1326.35890044➾

Standard deviation: 332.784759688➾

Skewness: 0.858098114571➾

Correlation:➾

Close Volume➾

Close 1.000000 0.103846➾

Volume 0.103846 1.000000➾

p-value: 1.5301705092e-10➾

The correlation is very reliable—but very insignificant.

MOSN Clusters
Write a program that clusters massive online social networking (MOSN)
sites by the number of registered users and global Alexa page ranking.5

Because site ranks and sizes vary in a broad range, use logarithmic scale
both for clustering and for presentation (original problem on page 171).

solution-mosn.py
import pandas as pd, numpy as np
import sklearn.cluster, sklearn.preprocessing
import matplotlib, matplotlib.pyplot as plt

# Read the data
mosn = pd.read_csv('mosn.csv', thousands=',',

names=('Name', 'Description', 'Date', 'Registered Users',
'Registration', 'Alexa Rank'))

columns = ['Registered Users', 'Alexa Rank']

# Eliminate rows with missing data and zeros
good = mosn[np.log(mosn[columns]).notnull().all(axis=1)].copy()

# Do clustering
kmeans = sklearn.cluster.KMeans()
kmeans.fit(np.log(good[columns]))
good["Clusters"] = kmeans.labels_

# Which one is the Facebook?
fb = good.set_index('Name').ix['Facebook']['Clusters']

# Select a good-locking style
matplotlib.style.use("ggplot")

# Display the results
ax = good.plot.scatter(columns[0], columns[1], c="Clusters",

cmap=plt.cm.Accent, s=100)
plt.title("Massive online social networking sites")
plt.xscale("log")
plt.yscale("log")

# Annotate the most prominent sites

5. en.wikipedia.org/wiki/List_of_social_networking_websites
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def add_abbr(site):
if site['Clusters'] == fb:

_ = ax.annotate(site["Name"], site[columns], xytext=(1, 5),
textcoords="offset points", size=8,
color="darkslategrey")

good.apply(add_abbr, axis=1)

plt.savefig("../images/mosn.png")
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a, regular expressions, 21

[a-d], regular expressions, 21

ab, regular expressions, 21

accumulator, chunking, 118

accuracy of predictive experi-
ments, 159, 165

add(), 73

add_edge(), 127, 132

add_edges_from(), 127

add_node(), 127, 132

add_nodes_from(), 127, 132

addition
numpy, 71
pandas, 109

adjacency lists, reading/writ-
ing from, 133

aggregating
arrays, 76
databases, 85
MongoDB documents, 59
pandas, 85, 110–112
selections in MySQL, 53

Alexa page ranking, 171, 182

all(), 75

alphabetic characters
checking for, 10
regular expressions, 21

ALTER TABLE, 50

American Pie project, 146, 
180

Anaconda distribution
modules, xv
size, 9

analysis sequence, data, 3–4

analysis types, data, 3

and operator (&), 69, 78

Andrews curves, 143

andrews_curves(), 143

annotate(), 140

any(), 75

APIs
JSON use, 36
resources, 173

area parameter value, 143

area plots, 143

argmax(), 107

arithmetic
numpy arrays, 71
pandas, 85, 109
universal functions, 73

arrange(), 66

array(), 64

arrays
aggregating and ordering

arrays, 76
broadcasting, 71, 76
conditional functions, 75
converting binary arrays

to strings, 10
copying, 64, 66
creating, 64–66
frames, 88
indexing, 69
JSON, 36
lists as, 13, 64
projects, 82, 178
reading, 79



reshaping, 67
saving, 79
series, 87
slicing, 69
synthetic sine wave, 80
transposing, 66–67
treating as sets, 78
universal functions, 72–

73, 76

arrow(), 140

ascending parameter, 105

aspect ratio, plotting, 137

aspect="auto" option, 137

assertions, regular expres-
sions, 21

asterisk (*)
globbing, 26
multiplication in numpy,

71
regular expressions, 21
replication in Python, 71

asymmetric distribution, 150

asymptotes, 163

atomic data types, JSON, 36

attributes
edges, 122, 132
HTML, 30, 33
network analysis, 122, 

132
nodes, 122, 132

authentication, getting data
from web, 19

auto option value, 137

autocorrelation_plot(), 143

autocorrelations, 143

automating, pipeline, 6

AVG() (MySQL function), 53

axes
descriptive statistics, 106
plotting, 137, 140
swapping in arrays, 68

axis, 106

B
\b, regular expressions, 21

b notation, 10

backslash (\), regular expres-
sions, 22

backward fills, 94, 100

bar(), 139

bar parameter value, 143

bar plots, 139, 143

barh(), 139

barh parameter value, 143

BeautifulSoup, 31
normalization example,

42
using, 31–33
version, xv

bell curve, see normal distri-
bution

Bernoulli distribution, 149

best_partition(), 133

betweenness centrality, 125, 
131

betweenness_centrality(), 131

bfill option value, 94, 100

big data analysis, 2

binary arrays, strings as, 10

binary confusion matrix,
158, 165

binary mode
files, 18, 27
network analysis, 133
pickling, 27

binary predictive model, 158

binomial(), 152

binomial distribution, 148–
149, 152

bins, discretization, 112

bit-wise operators
order of operations, 70
universal functions, 73

bitwise_and(), 73

bolding, finding tags, 33

Boolean attributes, graph
edges and nodes, 122

Boolean operators
indexing and slicing, 69
order of operations, 70
pandas, 85

Boolean values
indexing, 69, 73, 76
sorting by, 105

Boston, Hedonic Prices of
Census Tracts, 169

bottom na_option, 106

box parameter value, 143

box plots, 139, 143

boxplot(), 139

brackets, JSON arrays and
objects, 36

bridges, graphs, 123

broadcasting
arrays, 71, 76
frames and series, 91

broken link detector project,
44, 176

C
C, logistic (logit) regression,

163

c dot color option, 143

cache directory, 119

California population plotting
project, 146

canvas, clearing plot, 138

capitalize(), 10

capturing groups, regular ex-
pressions, 21, 25

caret (^), regular expressions,
21–22

Cascading Style Sheets (CSS),
31

case
checking for, 10
converting, 10
converting in normaliza-

tion, 41
ignoring in regular expres-

sions, 21
searching regular expres-

sions, 24
stop words, 41

categories, discretization, 112

causal data analysis, 3

causation, 151

CC(A), 124

centrality, 125, 131, 134, 179

centroids, 166

CHAR data type, 49

character classes, regular ex-
pressions, 21

checks, predicate functions,
10

child tags, BeautifulSoup, 32

chunking, 116, 118

chunksize, 118

cleaning data
about, 3
Boolean indexing, 69
handling missing data,

98–100
imputation, 94, 99
replacing values, 100
skipping data, 116

clear(), 128
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clearing
nodes and edges, 128
plot canvas, 138

clf(), 138

clipboard, reading with pandas,
118

cliques, 124, 132

close(), 18

closeness centrality, 125, 131

closeness_centrality(), 131

cluster, 166

cluster_centers_, 166

clustering
coefficients, 124, 130
hierarchical, 157
k-means, 157, 166–168
projects, 171, 182

clustering coefficient, node,
124, 130

clustering() function, 130

cmap parameter, 137

cmudict corpus, 39

code
project reports, 7
reproducible, 6
solutions to projects,

175–182

coef_, 160

coefficients
clustering, 124, 130
fitting linear regressions,

160, 163

collections
counting, 17
membership, 108
MongoDB, 57–60

collections module, 17

collinearity, 163

color, plotting, 137, 140, 143

colorbar(), 138

colspecs, 118

columns
aggregating data, 110
chunking, 118
concatenating, 103
cross-tabulation, 114
CSV files, 34
data labeling, 83, 92–97
deleting duplicates, 104
discretization, 113
frames, 88
indexing, 92, 94–97, 103
mapping, 114

merging frames and se-
ries, 101–103

mutation, 52
MySQL databases, 50
name extraction, 116
reading fixed-width data

with pandas, 118
reading tabular files with
pandas, 116

selection, 52
stacking and pivoting,

96–97
transposing arrays, 67
UNIQUE constraint, 50

combine_first(), 100

comma separated values,
see CSV files

command line, MySQL, 51–54

commented lines, saving and
reading arrays, 79

commit(), MySQL queries, 56

communities, network
defined, 124
finding, 133
partitioning, 133
projects, 134, 156, 179

community forums, xvi

community module
about, 121
installing, xv, 133
projects, 134, 179
understanding, 124
using, 133
version, xv

compile(), 21

complete graphs, 122

complex network analysis,
see network analysis

components, graphs, 123, 
131

concat(), 103–104

concatenating, frames, 83, 
103–104

conditional functions, 75

confusion matrix, 158, 165

confusion_matrix(), 165

connect(), MySQL databases,
55

connected components,
graphs, 123, 131

connected_component_subgraphs(),
131

connected_components(), 131

constants, imputing, 100

continuous distribution, 148

continuous variables, convert-
ing to discrete, 112–114

Continuum Analytics, xv

contour(), 137

contour plot, 137

contourf(), 137

converting
binary arrays and

strings, 10
case, 10, 41
continuous variables to

discrete, 112–114
dates to numbers for SciK-
it-Learn, 161

dictionaries to series, 117
directed graphs into

undirected graphs, 130
lists to sets, 13
markup to plain text with
BeautifulSoup, 32

MySQL to MongoDB
project, 61

Python data structures to
JSON, 36

copy(), 66

copying
with asterisk (*), 71
numpy arrays, 64, 66

corpora, 38–40

corpus, 38–40

correlation, 150, 153–156, 
181

cos(), 73

CouchDB, 57, 60

count()
aggregating data, 110
MongoDB documents, 59
pandas, 106
strings, 12

COUNT() (MySQL function), 53

count parameter in regular ex-
pressions, 25

Counter, 17, 40, 78

counters
using, 17
word frequency, 28, 40, 

175

counting
aggregating data, 53, 110
with counters, 17
MongoDB documents, 59
pandas, 106, 110
substrings, 12
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values, 108
word frequency, 28, 40, 

175

covariance, 150, 153

CREATE, 48

cross-tabulation
correlation example, 155
pandas, 114
projects, 119

crowdsourcing, 166

CSS (Cascading Style Sheets),
31

CSV files
about, 5, 34
chunking, 118
HEI locator project, 82
reading with pandas, 116
using, 34

csv module, 34

cummax(), 107

cummin(), 107

cumprod(), 76, 107

cumsum(), 76, 107

cumulative maximum, 107

cumulative minimum, 107

cumulative product, 76, 107

cumulative sum, 76, 107

curly brackets ({}), JSON ob-
jects, 36

cut(), discretization, 112

D
\D, regular expressions, 21

\d, regular expressions, 21

D of graphs, 123

dash (-)
not operator, 69
regular expressions, 22

data, see also cleaning data;
missing data; network data;
numerical tabular data;
plain text data; tabular da-
ta; test data; text data;
training data

acquisition, 5
in data analysis se-

quence, 3
extraction projects, 28, 

175
formats, 5
raw data in project re-

ports, 7
sources, 5

data alignment, 110, 154

data analysis, see al-
so frames; machine learn-
ing; network analysis; nu-
merical tabular data; plot-
ting; statistics

about, 1
big data analysis, 2
sequence, 3–4
types, 3

data frames, see frames

data mining, see frames; se-
ries

data model
data analysis sequence,

4
predictive experiments,

158

data science
analysis sequence, 3
overview, 1–8
report structure, 7
resources, xvi, 173

Data Science from Scratch,
174

Data Science Stack Exchange
forum, xvi

data series, see series

data structures
choosing, 13
converting to JSON, 36
pandas, 85–91
types, 13

data types
JSON, 36
MySQL, 49
numpy arrays, 64, 66
pandas, 108
type narrowing, 66

data visualization, see al-
so graphs; plotting; visual-
ization

about, 1
Gephi, 126, 131, 133–134
projects, 146, 180

Data.gov, 34

database cursor, 55

database driver module, 55

database schemas, 49

databases, 47–61, see al-
so MySQL

about, 1, 47
aggregating, 85
as data source, 5
connecting to, 55
CouchDB, 57, 60
creating, 48

creating tables, 48
deleting records, 50, 52
dropping tables, 49
indexing and perfor-

mance, 50
inserting records, 50–51
MongoDB, xv, 47, 57–61
projects, 61, 176
resources, 174
schemas, 49

DataFrame(), 92, 95

DATE data type, 49

date plots, 139

dates
converting to numbers for
SciKit-Learn, 161

databases, 49, 51
datetime parsing, 116

DATETIME data type, 49

decision forests, random,
169, 171

decision trees, 169

decode(), 10

decoding functions, 10

definition(), synsets, 39

degree, graph nodes, 122, 
130

degree centrality, 125, 131

degree() function, 130

degree_centrality(), 131

DELETE FROM, 52

delete_many(), 60

delete_one(), 60

deleting
duplicates in pandas, 104
edges, 128
indexes and deleting

times, 50
missing data, 98
MongoDB documents, 60
new lines, 10
nodes, 127–128
records, 50, 52
rows, 93
tables, 49–50
tags, 32
whitespaces, 10–11, 34

delim, 11

delimiter, 116

delimiters
CSV files, 34
reading tabular files with
pandas, 116
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saving and reading ar-
rays, 79

string, 11

density, graphs, 122

density plots, 143

describing, data in pandas,
105–108

descriptive data analysis, 3

deserializing
JSON, 36
pickle module, 27

diameter, graphs, 123

dictionaries
aggregating data by map-

ping, 111
centralities, 131
cmudict corpus, 39
community partitioning,

133
converting to series, 117
creating, 13
defined, 13
edge, 129, 132
frames, 88
graphs, 132
JSON objects, 36
MongoDB documents as,

58
node, 132
series, 87

diff(), 107

differences
descriptive statistics, 107
partial, 82, 178
pseudo-differentiation,

107

digital signal processing, 2

digits
checking for, 10
regular expressions, 21

digraphs, see directed graphs

directed graphs, 122–123, 
130, 132

dirty data, defined, 3, see al-
so cleaning data

discrete distribution, 148

discretization, 112–114

distance, measuring between
graph nodes, 123

distributions, probability,
148–150, 152

division, pandas, 109

document stores
CouchDB, 57, 60
MongoDB, xv, 47, 57–61

documentation, series values
and index names, 87

dollar sign ($), regular expres-
sions, 21

dot sizes, plotting, 143

DOUBLE data type, 49

double quotes ("), xv

download(), nltk corpora, 40

downloading
from Internet, 19
nltk corpora, 40

DROP command, 49

drop() method, 93

drop_duplicates(), 104

dropna(), 98

dropping
duplicates in pandas, 104
missing data, 98
rows, 93
tables, 49

dtype parameter, 64, 66

dummy variables, 113

dump(), 37

dumps(), 37

duplicated(), 104

duplicates
deleting in pandas, 104
nested list comprehen-

sion, 15
removing with sets, 13

E
eXtensible Markup Language,

see XML

eXtensible Stylesheet Lan-
guage Transformation
(XSLT), 31

edge attribute, 129

edge lists, reading/writing
from, 133

edges
attributes, 122, 132
bridges, 123
clearing, 128
dictionaries, 129, 132
graph walks, 123
modifying graphs, 127
understanding graphs,

122
weight, 122–123

edges() function, 129, 132

Eigenvector centrality, 125, 
131

eigenvector_centrality(), 131

The Elements of Data Analytic
Style, 173

embellishments, plotting,
140–143

emoticons, 41

empty(), 65

encode(), 10

end(), pattern matching, 24

English stop words, 38

ensemble, 169

ensembles, 169

entities
aggregation, 112
extraction, 38, 43

enumerate(), 13

Epinions.com, 134, 179

equal(), 73

errorbar(), 139

escaping
backslash (\) character,

22
delimiter characters in

CSV files, 34
regular expressions, 21

exceptions
MySQL warnings, 51
opening URLs, 19

execute(), MySQL databases,
55

exp(), 73

exploratory data analysis, 3

eye(), 65

F
Facebook, 36

false negative (FN), 158

false positive (FP), 158

fetchall(), MySQL databases, 55

ffill option value, 94, 100

file indexer project, 61, 176

fileids(), creating copora, 40

files, see also reading; writing
as data source, 5
binary mode, 18, 27
creating copora, 40
defined, 18
fragments and markup

tags, 32
globbing file names, 26
opening, 18
pandas input/output, 116–

118
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projects, 28, 176
working with, 18

filled contour plot, 137

fillna(), 100

fills, 94, 100

filtering, selections in MySQL,
53

financial time series, 173

find()
BeautifulSoup, 32
MongoDB, 58
strings, 11

find_all(), BeautifulSoup, 32

find_cliques(), 132

find_one(), MongoDB, 58

findall(), substrings with regu-
lar expressions, 24–25

finding
cliques, 132
communities, 133
fragments, 11, 24
glob module, 23, 26
MongoDB documents, 58
selecting records, 52
strings, 11
strings with regular ex-

pressions, 24–25
substrings with regular

expressions, 24–25
tags with BeautifulSoup, 32

first(), aggregating data, 110

fit()
k-means clustering, 166
linear regressions, 160
random decision forests,

169

fit_predict(), 166

fitting, linear regressions,
160–165

fixed-width data, reading with
pandas, 118

flattening multiindexes, 96–
97

FLOAT data type, 49

floating-point numbers
FLOAT data type, 49
IEEE 754 standard, 74, 

99
synthetic sine wave, 80
universal functions, 73

floor(), 73

FN (false negative), 158

fonts, plotting, 140–141

forward fills, 94, 100

forward pointers, 64

FP (false positive), 158

fragments
file fragments and

markup tags, 32
finding, 11, 24
joining, 11

frames
about, 83
aggregating, 110–112
binomial distribution of

random numbers, 152
broadcasting, 91
centralities, 131
combining, 100–104
concatenating, 83, 103–

104
creating, 88
cross-tabulation, 114
defined, 85, 88
deleting duplicates, 104
descriptive statistics, 107
discretization, 112–114
hierarchical indexing, 94–

97, 103
indexing, 88, 92–97
merging, 83, 100–103
missing data, 98–100
ordering, 105–108
pivoting, 97
plotting, 143–145
projects, 119, 178
ranking, 106
reading tabular files with
pandas, 117

reindexing, 93
sorting, 105
stacking, 96
statistical measures, 153
transforming data, 109–

115
using, 88–91

from_tuples(), 95

functions, see conditional
functions; predicate func-
tions; universal functions

G
G(A), 124

Gaussian distribution,
see normal distribution

Gaussian noise, 80

GCC (giant connected compo-
nent), 123

GDP vs. alcohol consumption
project, 119

generators, list, 14, 16, 131

Gephi, 126, 131, 133–134

get(), BeautifulSoup, 33

get_dummies(), 113

get_text(), 32

ggplot(), 135–138

giant connected component
(GCC), 123

glob module, 23, 26, 40

globbing, 23, 26, 40

GML, 133

gnuplot, 135

Graph(), 127

graph density, 122

graph walks, 123

graphs
building with networkx,

127
centrality, 125, 131
complete, 122
density, 122
dictionaries, 132
directed, 122–123, 130, 

132
elements, 122
Gephi, 126, 131, 133–134
modifying, 127
pie charts, 139, 143, 

146, 180
simple, 122
structure, 123
subgraphs, 131
types, 122
understanding, 122–125
undirected, 122, 130
walks, 123
weighted, 122–123

greater(), 73

grid(), 138

grids, toggling, 138

group(), pattern matching, 24

GROUP BY, 53

groupby(), 110–112

grouping
frames, 110–112
k-means clustering, 166–

168
MongoDB documents, 59
order of operations, 22
regular expressions, 21, 

24–25
selections in MySQL, 53

gutenberg corpus, 38

Gutenberg Project, 38

.gz extension, 79
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H
h5py, 63

has_attr(), 33

HAVING, 53

HDF5 binary data format, 63

head(), 88, 90

header, 116

headers, reading tabular files
with pandas, 116

Hedonic Prices of Census
Tracts in the Boston Area,
169

HEI locator project, 82

Hello, World! project, 8, 175

hexagonal bin plots, 143

hexbin parameter value, 143

hierarchical clustering, 157

hierarchical indexing, 94–97, 
103

hist(), 139

hist parameter value, 143

histograms, 139, 143

homophones, 39

hops, 123

how parameter, 103

HTML
as data format, 5
attributes, 30, 33
compared to XML, 31
hyperlink tags, 32
parsing with BeautifulSoup,

31
processing files, 30–33
tags, 30–31

html.parser, 31

html5lib, xv, 31

hyperlinks, tags, 32

hypernyms, 39

HyperText Markup Language,
see HTML

hyponyms, 39

hypot(), 73

I
I flag, regular expressions, 21

[i:j] slicing operation, 69

[i] indexing operation, 69

_id key, MongoDB documents,
58

identity matrix, 65

idxmax(), 107

IEEE 754 floating-point stan-
dard, 74, 99

IGNORE, 51

ignoring
case, 21
UNIQUE constraint, 51

image formats, plots, 138

imputation, 94, 99

imshow(), 137

in, 93

in1d(), 78

in_degree_centrality(), 131

incremental plotting, defined,
135, see also plotting

indegree, 122, 130

indegree() function, 130

index attribute, series, 86

index parameter, 92

index.values attribute, series, 86

index_col, 116

indexing
arithmetic operations,

110
arrays, 69
Boolean, 69, 73, 76
estimating correlation,

154
frames, 88, 92–97
hierarchical, 94–97, 103
latent semantic, 43
merging indexes, 102
MySQL databases, 50
pandas, 85–86, 88, 92–97, 

116
performance, 50
projects, 28, 61, 176
reading tabular files with
pandas, 116

reindexing, 93
series, 86, 92–97
smart, 70, 75, 93
sorting, 105
stacking and pivoting,

96–97

inf, 74

inferential data analysis, 3

infinity, positive, 73–74

inner joins
indexes, 103
MySQL, 54

inplace=True parameter, 92, 105

input/output
network analysis, 133
pandas, 116–118

INSERT INTO, 51

insert_many(), MongoDB, 58

insert_one(), MongoDB, 58

inserted_id, 58

inserted_ids, 58

inserting
indexes and inserting

times, 50
MongoDB documents, 58
records, 50–51
tables, 50

InsertManyResult, 58

InsertOneResult, 58

installing
community module, xv, 133
nltk, 40

INT data type, 49

intercept_, 160

intercepts, fitting linear regres-
sions, 160

Internet
as data source, 5
downloading from, 19

intersect1d(), 78

intersection, 78

An Introduction to Statistical
Learning with Applications
in R, 156, 173

inverse regularization, 163

isalpha(), 10

isdigit(), 10

isfinite(), 73

isin(), 108

isinf(), 73

islower(), 10

isnan(), 73

isnull(), 99

isolates(), 132

isspace(), 10

isupper(), 10

italics, finding tags, 33

ix attribute, 93

J
Jaccard similarity index, 44

JavaScript Object Notation,
see JSON

join()
indexes, 102
strings, 11

joining, see also merging
fragments, 11
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indexes, 102
strings, 11
tables, 54

JSON
about, 36
as data format, 5
converting Python data

structures to, 36
data types, 36
deserializing, 36
reading JSON files, 36
reading with pandas, 118
serializing, 36
Wikipedia project, 44

json module, xv, 36

K
k clusters, 166

k, positive, 65

k-means clustering, 157,
166–168

kde parameter value, 143

keep, 104

keep na_option, 106

keys
chunking, 118
concatenating frames,

103
creating dictionaries, 14
deleting records, 52
dictionary data structure,

13
frames, 88
JSON objects, 36
MongoDB documents as,

58
MySQL databases, 49
series, 87

keys parameter, 103

kind parameter, plots, 143

KMeans() function, 167

KMeans object, 166

kseq, 14

L
"_l" suffix, 102

labels
discretization, 112
k-means clustering, 166
nodes, 127
pandas, 83, 92–97
plotting, 138

labels parameter, 112

labels_, 166

lag plots, 143

lag_plot(), 143

Lancaster stemmer, 41

languages, see natural lan-
guage processing (NLP)

last(), aggregating data, 110

last modification timestamp,
49

latent semantic indexing, 43

layered plotting, 135

LDA (linear discriminant
analysis), 159

left joins
indexes, 103
MySQL, 54

"left" how parameter, 103

left_index=True, 102

left_shift(), 73

legend(), 140

legends, plotting, 140, 143

lemmatization, 42

lemmatize(), 42

len()
network analysis, 129
series, 86

less(), 73

line plots, 139, 143

linear discriminant analysis
(LDA), 159

linear regression, 160–165

linear search time and data
structures, 13

linear_model module, 160, 163

LinearRegression(), 160

links
broken link detector

project, 44, 176
hyperlink tags, 32

links variable in BeautifulSoup, 33

list(), 14, 131

list comprehension, 15, 33

lists
as arrays, 13, 64
comprehension, 15, 33
connected components,

131
converting to sets, 13
defined, 13
generators, 14, 16, 131
joining strings, 11
neighbors, 129
nodes, 129
replacing values, 100

load()
arrays, 79
JSON files, 37
pickling files, 27

loads(), JSON files, 37

loadtxt(), 79

local clustering coefficient,
node, 124, 130

log(), 73, 109

log plots, 139

log-log plots, 139

log10(), 109

logical universal functions, 73

logical_not(), 73

logistic (logit) regression, 163

logistic function, 163

LogisticRegression(), 163

loglog(), 139

long tail distributions, 149

loops, graphs, 122–123

Louvain method, 133

lower(), 10

lowercase
converting in normaliza-

tion, 41
converting strings, 10
stop words, 41

lstrip(), 10

lsuffix parameter, 103

lxml.parser, 31

lynx trapping project, 119, 
178

M
M flag, regular expressions,

21

machine learning, 157–171
about, 2, 157
dummy variables, 113
k-means clustering, 157, 

166–168
linear regression, 160–

165
predictive experiment

setup, 158
projects, 171, 182
random decision forests,

169, 171
resources, 174

many-to-many merging, 101

map(), 114

mapping, 111, 114
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markup
fragments and, 32
parser, 31

massive online social network-
ing (MOSN) project, 171, 
182

master plots, 137

match(), strings with regular
expressions, 24

matching, see pattern match-
ing

mathematics
cumulative products, 76, 

107
cumulative sums, 76, 

107
numpy, 71, 73
pandas, 85, 109
universal functions, 73

matplotlib
basic plotting, 136–138
ggplot style, 135
synthetic sine wave, 81
version, xv

matrices
identity, 65
multiplication, 65
rounding, 72
scatter, 143
transposing arrays, 68

max()
aggregating data, 110
numpy, 76
pandas, 106

MAX() (MySQL function), 53

maximal clique, 124, 132

maximum
cumulative, 107
universal functions, 73

maximum clique, 124

maxsplit, 23

McKinney, Wes, 173

mean()
aggregating data, 110
defined, 150
numpy, 76
pandas, 106
project, 156, 181
statistics module, 153

mechanistic data analysis, 3

median(), 106, 110

MediaWiki project, 44

membership, 108

merge(), 101–104

merging
frames, 83, 100–103
indexes, 102
series, 100–103

method parameter, 94

metrics, 165

min()
aggregating data, 110
numpy, 76
pandas, 106

MIN() (MySQL function), 53

minimum
cumulative, 107
universal functions, 73

Mining the Social Web, 173

missing data
about, 3
deleting, 98
imputation, 94, 99
pandas, 85, 98–100, 116

MIT, 134

model score, 160

modularity, 124, 133

modularity() function, 133

modules, versions table, xv

MongoClient, 57

MongoDB
about, xv, 47
compared to CouchDB,

60
using, 57–61

monolithic plotting, 135

most_common(), 17

multigraphs, 122

multiindexes, 94–97, 103

multiline mode, regular ex-
pressions, 21

multiplication
cumulative products, 76, 

107
matrices, 65
numpy, 71
pandas, 109
universal functions, 73

multiply(), 73

music genre classifier project,
44

mutation, 52

MySQL
about, xv, 47
command line, 51–54
connecting to databases,

55
data types, 49

grouping and aggregating
results, 53

inserting records, 51–52
joining tables, 54
mutation, 52
order of operations, 53
ordering, 53
projects, 61, 176
pymysql module, xv, 55
resources, 174
selection, 52
setup, 48–50

mysql client, 48–50

MySQL Crash Course, 174

N
\n, regular expressions, 21

n_clusters, 167

na_option, 106

na_position, 105

na_values, 116

naive Bayes classification,
157, 159

names
extracting in pandas, 116
frames, 88
globbing file, 26
names corpus, 38
reading tabular files with
pandas, 116

series values and index,
87

sorting by in pandas, 105

names corpus, 38

names parameter, 116

nan
about, 74, 98
counting values, 108
descriptive statistics, 106
imputation, 99
merging, 101
ranking data, 106

National Climatic Data Cen-
ter, 119

National Institute on Alcohol
Abuse and Alcoholism (NI-
AAA)

data set, 89
k-means clustering exam-

ple, 167
plotting examples, 136, 

140, 143
series and frames exam-

ple, 89, 94
statistics example, 153

natural joins, MySQL, 54
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natural language processing
(NLP), 1, 38–43, 173

Natural Language Processing
with Pythons, 173

Natural Language Toolkit,
see nltk

ndim, 65

negative(), 73

negative skewness, 150

negative, false, 158

negative, true, 158

neighborhoods, 124

neighbors, lists, 129

neighbors() function, 129

nested list comprehension, 15

network analysis, 121–134
about, 1
building a network, 127
centrality, 125, 131, 

134, 179
graphs, understanding,

122–125
input/output, 133
projects, 134, 156, 179
Really Large Networks,

130
resources, 174
sequence, 126
using networkx, 127–133

Network Analysis: Methodolog-
ical Foundations, 174

network data, defined, 121

NetworKit, 130

networkx
about, 121, 126
input/output, 133
projects, 134
using, 127–133
version, xv

neural networks, 157, 159

new lines
read/write functions, 18
removing, 10

newaxis object, 160

next tags, BeautifulSoup, 32

NIAAA, see National Institute
on Alcohol Abuse and Alco-
holism, National Institute
on Alcohol Abuse and Alco-
holism (NIAAA)

NLP, see natural language
processing (NLP)

nltk, 38–43
installing, 40

projects, 61, 176
using, 38–43
version, xv

node attribute, 129

nodes
attributes, 122, 132
centrality, 125, 131, 

134, 179
clearing, 128
cliques, 124, 132
community, 124, 133–

134, 179
degree, 122, 130
dictionaries, 132
lists, 129
local clustering coeffi-

cient, 124, 130
measuring distance, 123
modifying graphs, 127
neighborhoods, 124
neighbors, 129
projects, 134, 156
stars, 124
supernodes, 126
understanding graphs,

122

nodes() function, 129

noise
random, 71
synthetic sine wave, 80

non-capturing groups, regular
expressions, 25

nonzero(), 75

normal(), 152

normal distribution, 148–149

normalization
case conversion, 10, 41
performance, 56
using, 41–43

NoSQL, CouchDB, 57, 60, see
also MongoDB

NOT NULL keyword, 49

not operator (-), 69

not-a-number
about, 74, 98
counting values, 108
descriptive statistics, 106
imputation, 99
merging, 101
ranking data, 106

notes, plotting, 140

notnull(), 99

NOW(), 51

.npy extension, 79

numeric data analysis, de-
fined, 1, see also numerical
tabular data

Numeric Python, see numpy
numerical tabular data, 63–

82
about, 63
aggregating and ordering

arrays, 76
arrays, creating, 64–66
broadcasting, 71, 76
conditional functions, 75
indexing, 69
projects, 82, 178
reshaping, 67
saving and reading ar-

rays, 79
slicing, 69
synthetic sine wave, 80
transposing, 66–67
treating arrays as sets,

78
universal functions, 72–

73, 76, 109

numpy, 63–82
about, 63, 82, 178
aggregating and ordering

arrays, 76
arrays, creating, 64–66
broadcasting, 71, 76
conditional functions, 75
indexing, 69
.npy extension, 79
performance, 64
projects, 82, 178
random numbers, 152
reshaping, 67
resources, 173
saving and reading ar-

rays, 79
slicing, 69
slicing in linear regres-

sions, 160
statistics with random

module, 152
synthetic sine wave, 80
transposing, 66–67
treating arrays as sets,

78
universal functions, 72–

73, 76, 109
version, xv

numpy.newaxis object, 160

numpy.random module, 152

nutrients project, 156
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O
objects

chunking, 118
JSON, 36–37

observations, 34

Occam’s razor principle, 29

OLS (ordinary least square
regression), 160, 171

on parameter, 103

one-to-many merging, 101

one-to-one merging, 101

ones(), 65

open(), 18, 27

or operator (|), 69, 78

ORDER BY, 53

order of operations
bit-wise operators, 70
Boolean operators, 70
regular expressions, 22
selections in MySQL, 53

ordering
arrays, 76
data in pandas, 102, 105–

108
frames, 105–108
merging indexes, 102
series, 105–108

ordinary least square (OLS)
regression, 160, 171

orientation, arrays, 67

out_degree_centrality(), 131

outdegree, 122, 130

outdegree() function, 130

outer joins
indexes, 103
MySQL, 54

output
network analysis, 133
pandas, 116–118

P
p-value, 151, 154, 162

Pajek, 133

pandas, 83–119
about, 83
aggregation, 110–112
combining data, 101–104
cross-tabulation, 114
data structures, 85–91
deleting duplicates, 104
discretization, 112–114
file input/output, 116–

118

hierarchical indexing, 94–
97, 103

indexing, 85–86, 88, 92–
97, 116

mapping, 111, 114
merging in, 101–103
missing data, 85, 98–

100, 116
ordering and describing

data, 102, 105–108
plotting, 85, 143–145
projects, 119, 178
reading other formats,

118
reading tabular files, 116
reindexing, 93
reshaping data, 92–97
resources, 173
statistics, 106, 152–153
transforming data, 109–

115
treating series as sets,

108
version, xv

pandas.tools.plotting module, 143

parent tags, BeautifulSoup, 32

parentheses (())
generator expression, 16
order of operations, 70

Pareto distribution, 149

parse, 19, 23

parsing
datetime, 116
HTML and XML with
BeautifulSoup, 31

URLs, 19, 23

part-of-speech (POS) tagging,
42

partial differences, 82, 178

partial sums, 82, 178

partitioning, communities,
133

path_similarity(), 39

paths, graphs, 123

pattern matching
globbing, 23, 26
regular expressions, 21–

25

PCA (principal component
analysis), 43, 157

PDF (probability density
function), 148–149

Pearson correlation coeffi-
cient, 150, 154

pearsonr(), 154

performance
indexing, 50
network analysis, 130
normalization, 56
numpy, 64
set operations, 78

period (.), regular expressions,
21

Perl, regular expressions, 23

phone number extractor, 28

pickle module, 18, 27, 37

pickling data, 27, 37

pie(), 139

pie charts, 139, 143, 146, 
180

pie parameter value, 143

pipeline
automation, 6
data acquisition, 5

pivot(), 97

pivoting multiindexes, 96–97

plain text data
converting markup to, 32
format, 5

PlaintextCorpusReader, 40

plot(), 135, 139, 143

plot_dates(), 139

plotting, 135–146
about, 135
approaches, 135
bar plots, 139, 143
basic plotting, 136–138
box plots, 139, 143
contour plots, 137
date plots, 139
density plots, 143
embellishments, 140–143
ggplot(), 135
gnuplot, 135
hexagonal bin plots, 143
histograms, 139, 143
lag plots, 143
line plots, 139, 143
log plots, 139
with pandas, 85, 143–145
plot types, 139
polar plots, 139
projects, 146, 180
pyplot, 84, 135–146
scatter plots, 139, 143
step plots, 139
subplots, 137
Unicode, 141
xkcd plots, 141
xyplot(), 135
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plus sign (+), regular expres-
sions, 21

PMF (probability mass func-
tion), 148

polar(), 139

polar plots, 139

population plotting project,
146

Porter stemmer, 41

(POS) part-of-speech tagging,
42

pos_tag(), 42

positive infinity, 73–74

positive k, 65

positive, false, 158

positive, true, 158

postal addresses extractor, 28

power law distribution, 149

Practical Data Science with R,
173

precision of predictive experi-
ments, 159

predicate functions, 10

predict()
k-means clustering, 166
linear regressions, 160
logistic (logit) regression,

163
random decision forests,

169

predictive data analysis
binomial distribution of

random numbers, 152
defined, 3
modeling, 4
setup, 158

preprocessing, 166

prettify(), 32

pretty printing, 32

previous tags, BeautifulSoup, 32

principal component analysis
(PCA), 43, 157

probability
about, 147
distributions, 148–150, 

152
projects, 156, 181

probability density function
(PDF), 148–149

probability mass function
(PMF), 148

prod(), aggregating data, 110

products
aggregating data, 110
cumulative, 76, 107

project reports, structure, 7

projects
American Pie, 146, 180
arrays, 82, 178
broken link detector, 44, 

176
California population

plotting, 146
data extraction, 28, 44, 

175
databases, 61, 176
difficulty rankings, xvi
file indexer, 61, 176
GDP vs. alcohol consump-

tion, 119
HEI locator project, 82
Hello, World!, 8, 175
indexing, 28, 61, 176
lynx trapping, 119, 178
machine learning, 171, 

182
massive online social

networking, 171, 182
MediaWiki, 44
MongoDB, 61
music genre classifier, 44
network analysis, 134, 

156, 179
numpy, 82, 178
nutrients analysis, 156
pandas, 119, 178
phone number extractor,

28
plotting, 146, 180
postal addresses extrac-

tor, 28
probability, 156, 181
regular expressions, 28, 

175
S&P, 156, 171, 181
Shakespeare, 134
solutions, 175–182
state similarity calcula-

tor, 82
statistics, 156, 181
subway predictor, 171
text data, 44
weather vs. alcohol con-

sumption project, 119
word frequency counter,

28, 40, 175

pronunciation dictionary cor-
pus, 39

pseudo random seed, 152

pseudo-differentiation, 107

pseudo-integration, 107

Punch, John, 29

punctuation, 41

pymongo, xv, 57–61

pymysql, xv, 55

pyplot
as incremental plotting,

135
basic plotting, 136–138
embellishments, 140–142
pandas integration, 84, 

143–145
plot types, 139
resources, 139
using, 135–146

Python
complexity, xiii, 9
core overview, 9–28
module versions table, xv
resources, 173
versions, xv

Python for Data Analysis, 173

Q
qcuts(), 113

quality assurance, predictive
experiments, 158

quantifiers, regular expres-
sions, 21

quantities, discretization, 113

queries, MySQL, 50, 55

question mark (?)
globbing, 26
regular expressions, 21

quotes, xv, 34

R
R2, 160

\r, regular expressions, 21

R language, resources, 156, 
173, see also pandas, plot-
ting

"_r" suffix, 102

rand(), 152

randint(), 152

randn(), 152

random decision forests,
169, 171

random module, 152

random noise, 71

random numbers
generating, 152
probability distributions,

148–149
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random seed, 152

RandomForestRegressor(), 169

range(), 14, 66

rank(), 106

ranking, frames and series,
106

raw(), creating copora, 40

re module, 21–25

re.I flag, 21

re.M flag, 21

read(), 18–19

read(n), 18

read_adjlist(), 133

read_clipboard(), 118

read_csv(), 116, 118

read_edgelist(), 133

read_fwf(), 118

read_gml(), 133

read_graphml(), 133

read_json(), 118

read_pajek(), 133

read_table(), 117–118

reading
arrays, 79
CSV files, 34, 116, 118
data with pandas, 85, 116
files, 18–19, 27
fixed-width data, 118
JSON files, 36
JSON files with pandas,

118
network analysis, 133
with pandas, 118
tabular data, 116

readline(), 18–19

readlines(), 18–19

README file, 7

Really Large Networks, 130

recall of predictive experi-
ments, 159

records
deleting, 50, 52
inserting, 50–51

recursive web crawling, 33

regexp_tokenize(), 41

regression
linear, 160–165
logistic (logit), 163
ordinary least square,

160, 171
random decision forests,

169, 171
ridge, 163

regular expressions
defined, 21
examples, 23
finding substrings, 24–25
glob module, 23, 26
matching strings, 24
operators, list of, 21
order of operations, 22
Perl, 23
projects, 28, 175
reading tabular files with
pandas, 116

removing whitespaces, 11
replacing strings, 25
searching strings, 24–25
splitting strings, 23
tokenization, 41
using, 21–25

regularization, 163

regularization, inverse, 163

reindexing, 93

relational databases, 48, 56,
see also databases; MySQL

relational universal functions,
73

repl, 25

replace(), 100

replacing
strings with regular ex-

pressions, 25
values, 100

replication with asterisk (*),
71

reports, structure, 7

reproducible code, 6

request module, 19

reset_index(), 92

reshape(), 67, 92

reshaping
numpy, 67
pandas, 92–97

residuals, 160

resources
APIs, 173
for this book, xvi
data science, xvi, 173
databases, 174
further reading, 173
Gephi, 133
machine learning, 174
MySQL, 174
natural language process-

ing (NLP), 173
network analysis, 174
numpy, 173

pandas, 173
pyplot, 139
Python, 173
statistics, 156, 174

Ridge(), 163

ridge regression, 163

right joins
indexes, 103
MySQL, 54

"right" how parameter, 103

right_index=True, 102

round(), 72

rounding, matrices, 72

rows
aggregating data, 110
concatenating, 103
cross-tabulation, 114
CSV files, 34
data labeling, 83, 92–97
deleting duplicates, 104
dropping, 93
indexing, 93
merging frames and se-

ries, 101–103
skipping when reading

tabular files with pandas,
116

transposing arrays, 67

rstrip(), 10

rsuffix parameter, 103

S
\S, regular expressions, 21

\s, regular expressions, 21

s dot size option, 143

S&P
linear regression exam-

ple, 161
OLS (ordinary least

square regression)
project, 171

Twenty-First Century
project, 156, 181

s-curve, logistic (logit) regres-
sion, 163

sampling
about, 151
defined, 126
k-means clustering, 166–

168
network analysis, 126

save(), 79

savefig(), 138

savetxt(), 79
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saving
arrays, 79
plots, 138

scale(), 166

scaling
changing axes, 140
variables for k-means

clustering, 166

scatter(), 139

scatter matrices, 143

scatter parameter value, 143

scatter plots, 139, 143

scatter_matrix(), 143

schemas, database, 49

scientific discovery sequence,
3

SciKit-Learn, xv, 157–171

scipy, xv, 152, 154

scipy.stats module, 152, 154

score(), 160

search(), 24–25

searching, see finding

Secure Sockets Layer (SSL),
19

seed(), 152

segmentation, 43

SELECT, 52

selection, 52

semantic indexing, latent, 43

semantic similarity, 39, 44

semilogx(), 139

semilogy(), 139

sensitivity of predictive exper-
iments, 159

sent(), 41

sentence tokenization, 38, 41

sentences
creating copora, 40
tokenization, 38, 41

sentiment analysis, 38, 41, 
43

sents(), creating copora, 40

sep, 116

separators
CSV files, 34
reading tabular files with
pandas, 116

seq, 13

sequence of data analysis, 3

sequence of network analysis,
126

serializing
JSON, 36
pickle module, 27

series
about, 83
aggregating, 110–112
broadcasting, 91
centralities, 131
combining, 100–104
converting from dictionar-

ies, 117
creating, 85
defined, 85
deleting duplicates, 104
descriptive statistics, 107
dictionaries, 87
discretization, 112–114
hierarchical indexing, 94–

97, 103
indexing, 86, 92–97
merging, 100–103
missing data, 98–100
ordering, 105–108
plotting, 143–145
projects, 119, 178
ranking, 106
reindexing, 93
sorting, 105
statistical measures, 153
transforming data, 109–

115
treating as sets, 108
using, 85–88

SET, 52

set_index(), 92

sets
binomial distribution of

random numbers, 152
converting lists to, 13
defined, 13
performance and set oper-

ations, 78
treating arrays as, 78
treating series as, 108

Shakespeare works project,
134

Shakespeare, William, 134

shape option, generating ran-
dom numbers, 152

shape variable, arrays, 65

shapes
arrays, 65
generating random num-

bers, 152

show(), plots, 138

SHOW WARNINGS, 51

sigmoid, logistic (logit) regres-
sion, 163

similarity, 39, 44, 82

simple graphs, 122

sin(), 73

sine wave, generating, 80

single quotes ('), xv

singular value decomposition
(SVD), 43

size, generating random num-
bers, 152

skewness, 150, 156, 181

skipna, 106

skipping
descriptive statistics, 106
rows in reading tabular

files with pandas, 116
saving and reading ar-

rays, 79
unclean data, 116

skiprows, 116

sklearn.cluster, 166

sklearn.ensemble, 169

sklearn.linear_model module,
160, 163

sklearn.metrics, 165

sklearn.preprocessing, 166

slicing
arrays, 69
linear regressions, 160
smart, 70

SMALLINT data type, 49

smart indexing, 70, 75, 93

smart slicing, 70

snowballing, 124

social networks
massive online social

networking project,
171, 182

resources, 173

solutions to projects, 175–182

sort()
arrays, 77
MongoDB documents, 59

sort_index(), 105

sort_values(), 105

sorting
arrays, 76
frames, 105
indexes, 105
merging indexes, 102
MongoDB documents, 59
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selection in MySQL, 53
series, 105

soup, see BeautifulSoup
spaces, checking for, 10

specificity of predictive exper-
iments, 159

split(), 11, 23

splitting
aggregating data, 110
data for predictive experi-

ments, 158
for plotting, 136
strings, 11, 23

SQL, see MySQL

sqrt(), 73

square brackets ([]), JSON ar-
rays, 36

squared residuals (SSR), 160

SSL (Secure Sockets Layer),
19

SSR (squared residuals), 160

stack(), 96

stacking multiindexes, 96–97

standard deviation
aggregating data, 110
defined, 150
numpy, 76
pandas, 106
project, 156, 181
statistics module, 153

Stanford Large Network
Dataset Collection, 134, 
179

stars, graphs, 124

start(), pattern matching, 24

start variable, arrange(), 66

state similarity calculator
project, 82

statistical inference, 151

statistics, 147–156
CSV file example, 35
defined, 147
measures review, 150
modules, 152–155
pandas, 106, 152–153
projects, 156, 181
resources, 156, 174

Statistics Canada, 104

statistics module
CSV file example, 35
using, 152–153

std()
aggregating data, 110

numpy, 76
pandas, 106

stdev(), statistics module, 153

stem(), 41

stemming
normalization, 41
projects, 44, 134

step() function, plots, 139

step plots, 139

step variable, arrange(), 66

stop variable, arrange(), 66

stop words, 38, 41

stopwords corpus, 38, 41

storing
data with CSV files, 34
JSON files, 36
pickled files, 27

str, 10–12

straight joins, MySQL, 54

strings
binary arrays, 10
case conversion, 10
decoding, 10
defined, 10
defining raw strings in

regular expressions, 22
finding, 11
functions, 10–12
globbing, 26
graph edge and node at-

tributes, 122
joining, 11
JSON, 36
predicate functions, 10
quote notation, xv
regular expressions, 21–

25
removing whitespaces

and tabs, 10–11
splitting, 11, 23

strip(), 10

stripped_strings variable, 32

stripping, see also deleting
tags with BeautifulSoup, 32
whitespaces, 10, 34

strongly_connected_components(),
131

structured data
format, 5
processing HTML/XML

files, 30–33

Structured Query Language,
see MySQL

styling
CSS, 31
plotting, 137, 140–141, 

143

sub(), regular expressions, 25

subgraph(), 131

subgraphs, 131

sublinear O(log(N)) search
time and data structures,
13

subplot() function, 137

subplots, 137

substrings
finding, 24–25
splitting, 11, 23

subtraction, pandas, 109

subway predictor project, 171

suffixes, merging indexes,
102–103

suffixes parameter, 102

sum()
aggregating data, 110
numpy, 76
pandas, 106

SUM() (MySQL function), 53

sums
aggregating data, 53, 110
cumulative, 76, 107
numpy, 76
partial, 82, 178

supernodes, 126

supervised learning, 157

support vector machines
(SVN), 159

SVD (singular value decompo-
sition), 43

SVN (support vector ma-
chines), 159

swapaxes(), 68

symmetric distribution, 150

synonym sets, 39

synonyms, 39

synsets, 39

synthetic sine wave, generat-
ing, 80

T
\t, regular expressions, 21

T attribute, transposing ar-
rays, 67

T==data, 67

tables, see also frames
altering, 50
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creating in MySQL, 48
deleting records, 50, 52
dropping, 49
extracting from web

pages, 118
inserting records, 50–51
joining, 54

tabs, removing, 10

tabular data, see also CSV
files; numerical tabular da-
ta

format, 5
reading with pandas, 116

tabular numeric data,
see numerical tabular data

tagged data
file fragments, 32
finding tags, 32
format, 5
part-of-speech (POS) tag-

ging, 42
removing tags, 32

tags
file fragments, 32
finding, 32
HTML, 30–31
hyperlink tags, 32
part-of-speech (POS) tag-

ging, 42
processing HTML/XML

files, 30–33
removing in BeautifulSoup,

32
structure in BeautifulSoup,

32
XML, 31

tail(), 88, 90

testing data, 158, 170

text classification, 38, 43

text data, 29–45
about, 1, 29
formats, 5
handling CSV files, 34
HTML file processing, 30–

33
natural language process-

ing, 38–43
projects, 44
reading JSON files, 36
reading and saving ar-

rays, 79

TEXT data type, 49

TextFileReader, chunking, 118

thousands, 116

threshold, sampling, 126

tick_params(), 138

tight_layout(), 138

time
databases, 49, 51
datetime parsing, 116

TIME data type, 49

time series processing, 2

TIMESTAMP data type, 49

timestamps, MySQL databas-
es, 49

TINYINT data type, 49

TINYTEXT data type, 49

title(), 138

TN (true negative), 158

to_csv(), 117

tokenization, 38, 41

top na_option, 106

TP (true positive), 158

training data, 157–158, 170

transforming data, pandas,
109–115

transpose(), 68

transposing, numpy, 66–67

trigonometry, universal func-
tions, 73

triple double quotes ("""), xv

triple quotes ('''), xv

true negative (TN), 158

true positive (TP), 158

tuples
defined, 13
multiindexes, 95

Twitter, 36

type inference, 116

type narrowing, 66

U
U.S. Census Bureau

aggregating data by map-
ping, 111

merging data example,
101

plotting project, 146
state similarity calculator

project, 82

U.S. Higher Education
Dataset, 82

ufuncs, see universal func-
tions

undirected graphs, 122, 130

Unicode and plots, 141

uniform(), 152

uniform distribution, 148, 
152

Uniform Resource Identifiers
(URIs), MongoDB, 57

unimodal distribution, 150

union, 78

union1d(), 78

unique(), 78, 108

UNIQUE constraint, 50–51

United States Department of
Agriculture (USDA), 156

universal functions
pandas, 109
round(), 72
using, 72–73, 76, 109

unparsing, URLs, 19

unpickling data, 27

unstack(), 96

unstructured data, see natu-
ral language processing
(NLP)

unsupervised learning, 157

UPDATE, 52

upper(), 10

uppercase
converting in normaliza-

tion, 41
converting strings, 10
stop words, 41

URIs, MongoDB, 57

urllib.parse, 19, 23

urllib.request, 19

urlopen(), 19

urlparse(), 19

URLs
handle, 19
hyperlink tags, 32
opening, 19
parsing, 19, 23
regular expressions, 23

urlunparse(parts), 20

USDA (United States Depart-
ment of Agriculture), 156

V
value_counts(), 108

values
counting, 108
creating dictionaries, 14
dictionary data structure,

13
frames, 88
imputing, 100
JSON objects, 36
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replacing, 100
series, 86
sorting frames and series

by, 105

values attribute, series, 86

var(), aggregating data, 110

VARCHAR data type, 49

variables
aggregating data, 110
discretization, 112–114
dummy, 113
scaling for k-means clus-

tering, 166

variance
defined, 150
linear regression, 160–

165

vectorized operations,
see numpy, broadcasting

vectorized universal func-
tions, see universal func-
tions

versions, modules, xv

visualization, see graphs;
plotting

Voronoi cells, 168

vseq, 14

W
\W, regular expressions, 21

\w, regular expressions, 21

walks, graph, 123

weakly_connected_components(),
131

weather vs. alcohol consump-
tion project, 119

web crawling, recursive, 33

weighted graphs, 122–123

weights, graph edges, 122–
123

WHERE, 53

where() method, 75

whiskers, plots with, 139

whitespaces
regular expressions, 21
removing, 10–11, 34

widths parameter, reading
fixed-width data with pandas,
118

Wikimedia project, 44

Wikipedia
building network exam-

ple, 127
project, 44

wildcards, globbing, 26

William of Ockham, 29, 112

with statement, 18

word frequency counter, 28, 
40, 175

word tokenization, 38, 41

word_tokenize(), 41

WordNet, 39

wordnet corpus, 39

WordNetLemmatizer, 42

WordPunctTokenizer, 41, 61, 176

words
boundaries, 21
creating copora, 40
frequency, 28, 40, 43, 

175
lemmatization, 42
segmentation, 43
splitting strings with reg-

ular expressions, 23
stemming, 41
tokenization, 38, 41
words corpus, 38

words corpus, 38

words() method, creating copo-
ra, 40

WorldWideWebSize, 19

write(), 18

write(line), 18

write_adjlist(), 133

write_edgelist(), 133

write_gml(), 133

write_graphml(), 133

write_pajek(), 133

writelines(ines), 18

writerow(), 35

writerows(), 35

writing
CSV files, 34
CSV files with pandas, 117
data with pandas, 85
files, 18, 27
network analysis, 133

X
X axis

descriptive statistics, 106

plotting, 137, 140
swapping in arrays, 68

x value of sigmoid, 163

x*, regular expressions, 21

x+, regular expressions, 21

x?, regular expressions, 21

xkcd() function, 141

xkcd plots, 141

xlabel(), 138

xlim(), 140

XML
as data format, 5
compared to HTML, 31
defining tags, 31
parsing with BeautifulSoup,

31
processing files, 30–33

xml.parser, 31

xscale(), 140

XSLT (eXtensible Stylesheet
Language Transformation),
31

xticks(), 138

xyplot(), 135

x{2,5}, regular expressions, 21

x{2}, regular expressions, 21

x|y, regular expressions, 21

Y
\y, regular expressions, 21

Y axis
descriptive statistics, 106
plotting, 137, 140
swapping in arrays, 68

Yahoo! Finance, 156, 161, 
181

Yahoo! Weather, 36

ylabel(), 138

ylim(), 140

yscale(), 140

yticks(), 138

Z
zeros(), 65

zip(), 14

Zipf distribution, 149

zipping, saving arrays, 79

Index • 203



Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you’ll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes three brand-new
tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278. $29
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Secure and Better JavaScript
Secure your Node applications and make writing JavaScript easier and more productive.

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications,
database and web server to avoid these security holes.
Discover the primary attack vectors against web appli-
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’ll
protect your users.

Karl Düüna
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

CoffeeScript
Over the last five years, CoffeeScript has taken the web
development world by storm. With the humble motto
“It’s just JavaScript,” CoffeeScript provides all the
power of the JavaScript language in a friendly and ele-
gant package. This extensively revised and updated
new edition includes an all-new project to demonstrate
CoffeeScript in action, both in the browser and on a
Node.js server. There’s no faster way to learn to write
a modern web application.

Trevor Burnham
(124 pages) ISBN: 9781941222263. $29
https://pragprog.com/book/tbcoffee2
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The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.
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Pragmatic Programming
We’ll show you how to be more pragmatic and effective, for new code and old.

Your Code as a Crime Scene
Jack the Ripper and legacy codebases have more in
common than you’d think. Inspired by forensic psychol-
ogy methods, this book teaches you strategies to pre-
dict the future of your codebase, assess refactoring
direction, and understand how your team influences
the design. With its unique blend of forensic psychology
and code analysis, this book arms you with the
strategies you need, no matter what programming
language you use.

Adam Tornhill
(218 pages) ISBN: 9781680500387. $36
https://pragprog.com/book/atcrime

The Nature of Software Development
You need to get value from your software project. You
need it “free, now, and perfect.” We can’t get you there,
but we can help you get to “cheaper, sooner, and bet-
ter.” This book leads you from the desire for value down
to the specific activities that help good Agile projects
deliver better software sooner, and at a lower cost.
Using simple sketches and a few words, the author
invites you to follow his path of learning and under-
standing from a half century of software development
and from his engagement with Agile methods from their
very beginning.

Ron Jeffries
(178 pages) ISBN: 9781941222379. $24
https://pragprog.com/book/rjnsd
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rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.
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