A low-cost instrument which may be used to assist in teaching logic and Boolean algebra

by Brian Crank*

Although thes tratrument employs the same basie printiplos as the earlier Wheless World Logio Display Aid (May to Deewtber 1969) any resemblance ends there: The presient instrumeite is simpler and is very much cheaper The circuit has been roduced to past four integrated circuits, thres digan kad one Dears, and four transustors pias a few ressstors, eapicitors and drodes The oust need not exesed a few pounds.

Mand you, the preseas instrument is not eearly so sarsatile as the carliet design although the dipplay is more fleasing to the oye. The insiremert will produce, on the screen of an oscilicscops, the Kirnaugh gap of any combinational loge eircuit If you sre not completely famitur with Kaspaugh mapo a smple description will be found in the apposides to thes artecte.
The resson for dengruig an ingtrument whech wall prodbece a Kamaugh map for any curcust is quite sample. The studetit is oftua taught Boolean alperbras and logno through the use of the Karnaugh map. If oumpletes the circle for the suident to see a loge arewe producing the same map that was used to explime the opernion of the earcuit in the first plase. In other words the thecery and the penctice can be brought closer togesher.

You eay femember that in the earlier display the characiers nought tad one were displayed on the onclloseope sereen ith the form of a pattern of dots. Ia the present deajgn the charactets are drawn *5 contunows lines exaetly as you would draw them by hand. A sypucal display is shown in Fig 11(n). Another advnatage over the earher design is that only teolends are noeded between the instrumert and the oscullosoope. These are the kads for X and Y deflechong as intenaty modulabon lead is not required.

As already mentioned the cirount Is hybrid in that both linear and dugisil carcuts are etrployed. Broadly the characters are postionod using a eambination of boch linear and diginal techmques and the chnracters themselves are formed by hatar circuts. The ehowee of whether to display \& noughts or a one ar a paricular postion is talken by the loge carcuit the Karmugh mapof whichs to be displinged.

To use the instrument all oee does is
Fig. 1, A smpitfied black diogram of the inscrument. Practiculy any asellioscoge will be suifoble decause the dimosis made upon it are smatl athoight if must be cmpohtr of operaring from an exiental rimepase-

Einitament ra entertal in ratione

to connect is to the X and Y inguts of an csailloscoge, and eomnet any logic eireunt to the unstrumenti, the Karnuagh mup for that circus will thers appear on the screem

A bicek dayram of the minstrument is given in Fig 1. Is brief, a clock polse genetzator is used to drive a four-bis counder The counter is gplet inte rwo sod each hatf drives a ressative lidder wetwork. The ladder aetworks perform diental-wsanloghe cotrversions and the revolking four-siop starcase wavelorms are fed to operational smplifiers which are used to drwe the csecilosecpe's X and Y deflection inputs The oscallossope is switched for axtertal tumblaise apention. Thos produces sexteon dots on the screen arranged in a four by fout matrix.

A sine wave osellator, waih a froquency much higher than the clock zencrator, produces two outpuis whach hrve in 90° phase differenes. The sue wave cotri ipoeding to θ° is fed to the Y operational smplifiet and the 90° waveform is fed to the \tilde{X} opersoonal momphise va an atsenastor and a transistor switch. The result of the two sme wives on the serten of the aseiloscope is a vertical ellpse similar to the ' 9 ' prated here. The net result of both the sine and staircase wavefoents in io dis-
play on the c.SC. a four-by four matrix of Ow. II the switch it the sine wave load to the X opersanonal amplifier is opea there जilt be no hovinonial she wave component in the deflection wavelorm so on the streen will apper sixteen is. The 1 is focmed by the sine wave inpos to the Y amplfiet.

The cominter that dnves the ladder metworks abso dives a lojpc efreur whach produces outputs that comply with the rules of a Knmaugh map These outputs are used to dive the logie circuit you wish to despiay and the cetput of this loge arcuit is used to oonirol the Q9 swich st the input to the X operavonal amplitier. Each section of the savtrumet will now be dencenbedindetul.

Sine wave oscillater

The sine wave oscilator is usod to produce a Lisspous figare which represents 0 in the displity and to do this, as we have already seti, it most peoduet ouipus at 0^{*} and 90°. An early weruion of the unatinmont used a sune wave $R C$ oscillator followed by a 90° plase-shaft setwork. Although thas worked at was unsutisfactory becaust it was necessary to spectly close iolerance eomponenis for the frequency

Fig. 2. The four -secrion plose-sin/t asallarar used to prodice the characters with form fhe daydles. Oporaning frepuency is abowt $22 \mathrm{k} / \mathrm{fz}$.

Fig 3. Astadic malimbrator clock geometor which runs at aboul $1.4 \mathrm{k} / \mathrm{Fi}$.

Flg. 1 ithe Y lestar nutwork
Component roference numbery in brackets refer tortac X ladder. The cinwti converts tee ounfal of a counter tato a staircase waveforn by performidg a digitalto analoghe conversion.
to be right for the phase shutt required. An $L C$ oscillator could have been used with the utvantage that the frequency adfustment, to lene the escallator up with the phase shite nerwork, woild have been no problem. However, coils, as well as being fairly bulky at the frequency we are interested in, are not the mosat popelar tems in constructional afticies so it was decided to flind a soluano using $R C$ circuitry.

The circuit eaployed is shown in Fat. 2. Ai can be seen it is a single transistor phasestift oscillator. Normaily a phaseshife osellator cmploys three $R C$ sections, tach section phase shifting by 60°, vo obsam the 150° plase shif reccessiry to obtain positive foedsack and oscillatioct.

It the present desigh four $R C$ sections

Fig 3. The gulonlem circhits of the ladider nativark for the four fiflerent condithons of the counter driving it.
atc axployed, exch secuon shinting by 45° ($4 \times 45^{\circ}=180$) It is now an simptic natior to pick off the 90° signal after two 45° phase shifes af the cutput of the second $R C$ rectioni.

The poteritioneter $\boldsymbol{R}_{\alpha j}$, the only adjastment in the whale instrimert, is used to vary the Ac. grin of T_{t} whic mainsameng de. condinons. The gain must just be enough to overcome the losses in the phaseaift setwork. If the gan is too low oscillaton will not occur; it it is too high distorticon will result. Poterbometer $\mathbb{R}_{土 0}$ is adjusted for a zood sline wave cutput from T_{1}. The feequency of oscillation is about 22 kHz but thus is act it all crinical.

Clock generator and counter

The clock zenerntor 5 shown in Fig, 3. Luttlo need be saud about it as it is a conventional astabte owalivibetitor whoch runs at aboat L 4 kHz .
The four but ceusicer is formed by ore L. (eransistor-tmansistor logic) ittegrsiod circuit type $\$ \mathbf{N} 7493 \mathrm{~N}$. This ic. comes in the m.s.i. or medium scalo integration class, It eantaias four J-K thap-flope and is connected as shown is the mita crecut dragram (Fig. 10). The four fefoflogs afe cascaded to form a standard berary ooanter.

Loaking st anly the first two He-ficps, the outputs of which are calledi Q_{5} and Q_{2}, the following outpuss ser pridecest

Q_{2}	Q_{1}
0	0
0	1
1	0
1	1

The outputs of the steond pair of flup.
block

Qutat Q_{L}

Fig. 6. Shons how the output of the Li.1. binary consker is offected by the clock goncrater The stepy is the maveform are remoked by a clanping сіланा.

Fig. 7. The claniping circuit, The culpurs to the ladder nurworks are the voifage drops acrass three forwand-bated dilodes in series.

Fig. 5. The X derection amplyin complicte with she sagit-mandistor $1 / 0$ twitel. The Y dofthertion amphlfar archu is the stame but $T r_{4}$ and is assonated compowentry art amiferf

Fig 9. Karnaugh map edge couting. A graticule, the sante as beis oltaning. sinould be made so that rhe desplay on the C.F.L. can be wewed shrough it.

 only two are wsed hore.

Hops, Q_{3} and Q_{4}, produce exactly the same output but at one quarter of the froquency.

Ladder nctworks

The two lidder neturgers are connected to the benary counter. When the flp-flop Q_{1} is at 0 the Q_{1} output is ocannetud, vis * satumented transistor, to the 0V line, Whan the outpuat Q_{1} is at I it in cotnected vis a saturated transistor to +6 V .

The cancuit of one ladder tetwork is given in Fle 4. Tie inputs Q_{1} and Q_{2}, ant swithed aceardeng to the isblegivencarlier. So Fie, 4 cam be redrawn for csech of the four states of the counter, so for as the output voltage is concorned (Fig. 5) If you woill care to do the sums yau whll find that the outpot will rise from 0 V in squal steps to produce s stairesse.

Clamping network

Unfortionstily the cutput of the fip-flopes is net a good seguar wave Although the rise and fall times are far more than aderuate for the intstrumont the cutput of a paricular lip-ibop is affocted by its inpet condetions. Pig. 6 illastrate thes point.

The step in the waveform causes a corresporicheg step at the output of the ladder network whath in tum sausat certion characters on the clsplay to appes double The cure for this trouble is to add a clamp

Ine network wheh slaces the top of the ontput from the flyp-fops Thas netwark is showe in Fic. 7.

The dodes D_{1-1} itsolate the outpats of the tip-liops from ench other and resistors $\boldsymbol{R}_{\text {stw }}$ ar limit the courrent to a saft viluc The output to the ladider necyork is bow the voluge drop auross three dodes in senes

Operatioanl amplifiers
 and $1 / 0$ switch

The well known operahanal samplibicr type 709 is used in the astrument. The particulsf verivion employed (SN72709DN) is manu finctured by Texis Instruments and includes two 709 amplifiers in a single doast-in fine packags. The curcat of the X deflecion auplifer is showa in Fig . 8 . The Y deflection amplifies is adentical except thas the 1,0 suntching transistor, $T r_{4}$ and 3 le associated sompanents are omitred,

Resistors R_{j} and R_{f} combine to furm the foellosek resistor which stes the overall gain of the ampluiter. Addinoasily R_{p} protiocts the amplifier from nocidenal short elecuit of the outpot leads by fimitiag the output curreat $R_{4} C_{p}$ and C_{b} are frequetcy ocempencanom ecomponents which enowe stabdity.

The BCI08 $\left(T r_{4}\right)$ is the switch which is exatrolied by tece extarnal legec cireut it short-circsits the 90° oulput of the sine wave oscillater to ground when a L is
requared oo the $c a t$. R_{6} is of a sufficientily large value to prevent the guith fromsternfiesutly affecting the oscillator iself.

Logie circuit

lmagne that the Karnaugh map of Fig. 9 is supermposed on the c.7. face, Because of the action of the previously drecussed carcuitry the er.t spot first fests in the top kff-hand sogare, is then moves to the next square down, then to the square below thet until it veaches the botiom of the odlumn The spot thea flis bask to the tog but the fone so the second column. The process conunues ustil all 16 squarts havt been scanned. The spot then eocs back to the first square sgnin und the process is repented, sach is the effect of the two stiurcase wawforms. Each square on the map correspoeds to a particolar state of the sounter For instinge, the top left hand square is scamned when the counler ouipeuts are all 0 , than is at the top of both ecierense Wuveforms (both the X and Y smphfiecr unvert)

We abo know that cach square on a Kamaugh map corresponds to aparncular set of vanathes as deffined by the coding at the edefe of the map (see appendix of tetessary). We esust casure that when the spot 15 in a perticular spuare that the set of vanables represented by that sqeare are avalable at the curput of the instrument for

feoding to the exiernal liges circuit, We must tharefore compare the outpet of the courticr with the Karnaugh mep odye sodings and rectaly any diferences that occur.

Karnwaph map cdyc codme	comatier culyuts		
B	A	Q_{2}	Q_{1}
0	0	0	0
0	1	0	1
1	1	1	0
1	0	1	1

The above table compares the output of the Y counter wifh the map's $A B$ edge coding The list two torms are dffitient and therefore some loges is neseswisy io eorrist thas.

Firstly on cxamination we can say that Q, B to at drect oonnection from the counter output Q_{2} will form the output variose B :

Also, on ex mimation, it can be seen that:

$$
A=Q_{1} \bar{Q}_{1}+Q_{1} Q_{1}
$$

which is our oid frisend the exclusive-OR function. We Eive alserdy stated that the X couriter cutputs, $Q_{\text {, }}$, and Q, have the santic outputs is Q_{2} sod Q_{2} but at 2 slower rate and we can seo that the Karnomgh map coding for C and D is the same as for A and B. We muse thereforc conclude that ant idenical logie function is requied, zamely

$$
\begin{aligned}
& D=Q_{1} \\
& C=Q_{1}+\vec{Q}_{1} Q_{4}
\end{aligned}
$$

The circuit of the logic section of the instrumart can be seen on the lowar halth ind sile of the reain cifeat diserum, Fi. 10, and is can be seen that oully two imegrated circuits ace required. The outpat variablas, $1, B$ ete, are buffered by simple imerters to preverat exiern if connections from apsetting the opar ation af the coumier. These inverters also providotbe womplecrent of the variakies, A, B etc.

Complete circuit

Fig 10 combines all the circuits discussed so fir ind therefore litula necel besaid akout iv. The various waveformas present fiof a particular display are shom in Fiz. 11. becruse the sinc wive escillator and this elock are not synchronous flybualk between ehiracters takets i dilferent route every ligue sath ks sux visible on the serben st normal brighmess levels. Becmuse of this blanking (a Z eanncetion to the coctlloscope) is not requircd.

Construction

Making the umit 35 quire strughtiforward and no special peocnutions moed be taken. A photograph of the layout employed in the peptotype is gren in Fy 12; several cothponems will not be forind in thes peture becnase they are moanted on the reverse sode of the bourd.

It is important to eannect pins two and thres of the binary counier (SN7493N) to the OV line. These pins are utpots to an gite shach restes the cominter. If thes is not doue the evunter vill be held ar 0000 and the unit will nog flunction The only adjustment is R_{40} which must be set to grve a aiedy shaped O. If ycu wish to adjust the size of the characters changing the value of $R_{2 x}$

Plg. 12 A phaiggraph of the protorype shoning cumponext postrions it shavidi be mated that same paris have been mountod ott ate newrse alde of the baand and are thergfore not marked. Tho antegrand carcuity are phuggd tho duailn-tine sockets which makes for casy remoral.
will alter the heieln and R_{p} will alter the whith.

Appendix

Karnaugh maps: The Karnaogh mip is a meant of pictortily showing all possable combinstions of a number of two-stale vanubles. Becanse of the way it is constructed it bes other properuts whoch make it possabte io sumplify Boolean expressions with the mumum of cillort, although it meat be sadd thar for more than four vamables if is usually better to employ a more silvanged method.

We will cortstruet a Kamsugh map for foyer varisbles. The thap will be the sames as that dapiayed on a Crt using the instru mest described in the arivilo The bass of a Karnsugh map is a squate. Etch vansble (ovun'ly labelled A, B, C and D for con veniences) is allocested half the area of the square To monicate the swa occupned ivy a particaier variable a simple edje coding system is employid. Fig. 13(a) shows the aren occupisd by the vanable A and it is the aron adjucent to the $1 s$ wader A in the edfe codity. What is the ares adjucont to the 0 s under A in the edze codingt That is obviously the area represeating \bar{A} If the squase of Fige 13(a) is out out and rolled thito a cylutide? the arzas repressenteng A and A besome contimpou-but more sbeat that istor In Fug. 13(b) the areas representing B and $\sqrt{5}$ have bets added. The square is now divided in four sod eseh section represents one of tho four poashble oombulations of A and B. From top to bortom, reading the edge codine, tiec sections are $\bar{A}, \lambda E, A B, \lambda A$.

You mity have notucod that as you persgress down the map, of up for thas rowith,
only ohe of the varishles alters at a tuine and this still apples if the map is rolled unto a cylinder aksin becwase $A B$ betomes adpucenct to $A B$
In Figa, 13(c) and (d) the vanables C and D have boen addad If you cotasder ooly thuse two viriables and roll the mip titho a cylander the opposite woy each secton differs by only cow varable Readhe round the tolbe 80 formiod we pes $C \bar{D}, C \bar{D}, C D, C D, \bar{C} \bar{D}$ ets.
Looking as the map as a vhole it is plan

to sut that cati one of the sutam sgestel we have formed reperesents one of the possible combanitions of the four vanablas. For matance the top lefh-hand aquare, ss can be sees by the sdge coding, represeats A $\bar{B} C D$ and the bottom rybt hand square repetesents A \& $\subset D$.

But moce impartant still is that adjacent squarts, horzontally or wertacslly not disegonslly, differ onty in thenezanou of one of the variabics. We have also proved, by rolling the map into a cylinder, that the top of the map is adjacent to the bottom and the let hand sdge is adgacent to the nght hund edga.

Two simple examples will show how these properties can be used to simplify Bocien expresoans, Consider the expresson $A B C D+A B C D$ Draw a map as in F1. 13 (d) and put a 1 in the two squares represeating the tacms in the expressaon and an 0 in all the other squares Besause the is are adjucent to one another they are niged as shownin $\mathrm{F}_{\text {Ig }}$. $13(\mathrm{e})$ The sumplified expressicen is deaved by talung only van ables which are cormon in adjacenit terths So $A A C D+A \angle C D$ redares to $A B C$

Fy. $13(1)$ shows the Karnaugh map for the espression $\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+$ $A B C D+A B C D$ Allterms are adjacent and form a square of ther own so colly vanables commion to all foar tarms need be used Dierafore, from the map of Fig $13(0)$ e $A B C D+A B C D+A B C D+$ $\bar{A} B \bar{C} D=\bar{A} \bar{C}$
Thus hrief explanation will serve ta give the reader torme idea of whet \& Karnagh thap is all about

Nest month a manory unit will be described which cha be used with the Karnnugh map display unit, in plsce of the external logis cireus, to form sn 'elestrocte blackhoordt. Up to two Karnawgh maps ean be stored, displayad or amended at will

Shopping List
 Restitars

All resistors, except the poisntiometer, are $025 \mathrm{~W} 5 \%$

10kS	又	18	150	X
4702	x	1	150k	x
56 kO	X	1	33k	x
63 k 9	\times	2	3.3 k	x
1 la	\times	3	47	\times
$4.7 \mathrm{k}, 0$	\times	2	1.5k	\times
6 BO	\times	1		

Capacilors

500 p	\times	4	5000 p	\times	2
$100 \mu, 6 \mathrm{~V}$	\times	2	200 p	\times	2
0.1μ	\times	2	$100 \mu, 12 \mathrm{~V}$	\times	2
			$500 \mu, 12 \mathrm{~V}$	$\times 1$	

Semicondacters

SNT493N, 4-br braary counter, $\times 1$
SNT4E6iN, quad exclasive-OR gate, X "
SN7404N, hex inverter.
SN72709DN, dual op amp,
BC1OStransistors,
IN914diodes
5V, 400 mW zener diode
Miscellaneoss
dual-in-hins sockets,
Lektrokat bourd type LX141,
Lektrokit pins,
x
x
x

