Circuit and Terminal Board Laminates ## Printed Circuit Reliability Starts With Design In the final analysis, no matter how well a printed circuit is manufactured, it will be reliable in direct proportion to the care exercised during the design stage in matching materials specification with required physical and electrical characteristics. Hints for selecting dielectric base materials appropriate to your requirements are found in Table 1. Table 11 provides specific data on the function of various plated coatings on printed circuits. ## TABLE 1 TYPICAL PROPERTIES OF INDUSTRIAL LAMINATES | | <u> </u> | | | | DD C DED | TIES OF BASE MA | TERMA | | | A | | : | |-------------------|---------------|--|------------------------------------|---|--|-------------------------------------|--|-----------------------------------|---|---|---------------------|---| | Base
Material | Nema
Grade | Military
Designation
(Laminate only) | Military Designation (Copper Clad) | Dielectric
Constant
10 ⁰
Cycles | Dissipation Factor 24 hrs. in H20 10 ⁶ Cycles | Moisture Absorption 1/16" % 24 hrs. | Flexural Strength Face- Lengthwise P51 | Maximum Oper, Temp 0°C Continuous | COPPER Copper Bond Strength Ibs. to pull 1" Strip I oz 2 oz | CLAD PROPERTIES Hat Solder Resistance Secs. to Blister 1" Sq. Greater than | Punching
Quality | CHARACTERISTICS AND
APPLICATIONS | | Phenolic
Paper | xx | MIL-P-311 <i>5</i> C
PBG | | 5.4 | 0.040 | 1.30 | 18,000 | 120 | 6 8 | 10@450°F | Excellent | General purpose, low cost, high mechanical strength for panels, contactors, and terminal blocks. | | | XXP | | | 4.9 | 0.034 | 0.5 | 20,000 | 120 | 8 17 - | 10@475°F | Excellent | Hot punching grade, a good mechanical
strength, not recommended for severe hu-
midity conditions. | | | xxx | MIL-P-3115C
PBE | | 4.8 | 0.038 | 8,0 | 18,000 | 120 | 6 8 | 10@475°F | Poor | High resin content, excellent moisture re-
sistance, superior electrical properties,—
used for high voltage and high fre quency
applications. | | | XXXP | MIL-P-3115C
PBE-P | MIL-P-13944
PP | 4.0 | 0,030 | 0.4 | 20,000 | · 120 | 8 11 | 10@475°F | Excellent | Best quality paper base-most widely used,
Excellent cold punching Especially suited
for printed circuits requiring close registra-
tion of circuits and punched holes. Several
modifications available. | | Phenolic
Nylon | N-1 | MIL-P-15047
NPG | | 3.7 | 0.030* | 0.3 | 15,000 | 120 | 8 11 | 10@450°F | Excellent | Highest insulation resistance under humid
conditions. High impact strength with ex-
cellent electrical properties. | | Melamine
Glass | G-5 | M1L-P-15037C | | 6.8 | 0.018 | 0.2 | 55,000 | 120 | 8 11 | 10@450°F | Fair . | Highest mechanical strength, superior arc
and fire resistance. Difficult to machine. | | Silicona
Glass | G-7 | MIL-P-997
GSG | | 4,1 | 0.013 | 0.1 | 40,000 | 160 | 3 4 | 10@450°F | Fair | Best heat resistance, excellent electrical properties. Difficult to machine. Used in high temperatures and for arc resistance. | | Epoxy
Paper | FR3 | MIL-P-22324
FR3 | | 3.8 | 0.032 | 0.40 | 27,000 | 120 | 8 11 | 10@450°F | Excellent | Easy machining, self extinquishing, sur-
passes any XXXP grade. Best cold punch-
ing and machining properties, high insula-
tion resistance and superior electrical char-
acteristics. | | Epoxy
Glass | G-10 | MIL-P-181 <i>77</i> B
GEE | MIL-P-13949
GE | 4.6 | 0.025 | 0.15 | 65,000 | 130 | 10 15 | 30 @ 500°F | Good | Excellent electrical grade-best surface ra-
sistivity, high mechanical strength, low
dimensional change, cold punching. Stands
up under cyanide plating and at very high
temperatures. Excellent for missiles and
computers. | | | G-I1 | MIL-P-181 <i>7</i> 7B
GEB | MIL-P-13949
G8 | 4.4 | 0,015 | 0.09 | 60,000 | 150 | 10 15 | 30 @ 500°F | Good | Exceptional around surface resistivity, el-
ectrical properties, heat resistance, dim-
ensional stability and mechanical strength,
self-extitiquishing grade. Ideal for com-
puter circuits and military electronicuses. | | | FR4 | | MIL-P-13949
GF | 4.5 | 0.024 | 0,08 | 60,000 | 130 | 10 15 | 30 @ 500°F | Good | Flame resistance G10 | | | NC8175 | | | 5.1 | 0.029 | 0.35 | 48,000 | 130 | 7 9 | 20 @ 500°F | Good | Commercial Grade G10 | ## WHY PLATE? At LAKE, we consider the electroplating of printed circuits to be sufficiently vital to high reliability to have installed the most modern plating facilities available. Although it is becoming increasingly less common, many well designed and produced circuits still fail in use because of oxidation of the copper conductor pattern. More common is the additional work necessary to prepare a circuit, which has oxidized for subsequent manufacturing operations. Failure in-use, and increased manufacturing costs to remove oxidation products, can be almost entirely eliminated if an electroplate of a precious metal is specified at the outset. Of course there are many different types of metals which can be plated onto the conductor pattern of the printed circuit, and each has its own particular advantage to recommend it. The most common types of plating include silver, gold, lead-tin solder, nickel-gold, rhodium and nickel rhodium. Table 11 shows typical applications of the plated circuits. | APPLICATIONS OF PLATED COATINGS ON PRINTED CIRCUITS | | | | | | | | | |---|--|---|--|--|--|--|--|--| | COATING | THICKNESS | PROPERTIES AND APPLICATIONS | | | | | | | | Copper . | D.0005 — .002" | Used to build up circuitry in thru hole
Plating. | | | | | | | | Gold — Immersion | .005010 mit. | Fair corrosion resistance; improves sol-
derability after long storage. | | | | | | | | Gold — Electroplated | 0.0001 — .0002~ | Corrosion and wear resistance, low con-
tact resistance, used on plug-in contacts,
switches and connectors. | | | | | | | | Nickel-Gold | 0.0002 — .001" Ni
0.00001 — .0001" Au | Hard, wear-resistant, low contact resis-
tance; used on plug-in boards, switches
and connectors. | | | | | | | | Nickel-Rhodium | 0.0003 — .001" Ni
0.00001 — .0001" Rh | Very hard, wear resistant, wiping con-
tact surface, non-corrosive; recom-
mended for continuous and intermittent
operation on switches and plug-in con-
tacts. | | | | | | | | Silver Electroplated | 0.0003002~ | Long term protection against oxidation, used mainly in contact switches. | | | | | | | | Silver — Immersion | .005010 mil. | Short term protection against oxidation,
improves solderability if soldered shortly
after coating is applied. | | | | | | | | Silver Rhodium | 0.0005 — .002" Ag
0.00001 — .0001" Rh | Non-corrosive, wear resistant. Used where nickel cannot because of its magnetic properties. | | | | | | | | Solder — Electroplated | 0.0005 — .002* | Extends shelf life, permits use of mild
fluxes, and improves solderability. Used
widely in plated thru holes where two
sided soldering is accomplished by his-
ing, or solder dipping one side. | | | | | | |