THE SIX THINGS YOU WANT TO HAVE IN YOUR DESKTOP PCB DESIGN LIBRARY

DANIT ATAR, MENTOR GRAPHICS

0 0 G \geq LIBRARY Е Ν Т Μ А G Е Μ Ν Δ

www.mentor.com

<u>с</u>

INTRODUCTION

Accurate and up-to-date library data are the foundation for a successful and high-quality PCB design project. Discovering that your prototype can't be manufactured because of an incorrect footprint, or that the prototype does not work because of outdated part definitions in your PCB design, can increase costs and cause unexpected delays.

When choosing PCB design software, libraries are most likely one of the top criteria you consider, as creating and setting up your library for the first time can be extremely time-consuming and error prone.

Before choosing a design tool, you will most likely ask yourself several questions: How do I get started? Can I trust that the library content that comes with my tool is accurate and reliable? Is it easy and quick, or exhausting and time consuming, to create new parts? Can I quickly search component suppliers' websites, and then download the component information directly to my design tool?

This paper addresses each of these questions, describing the key elements you'll want to have in your PCB design library.

#1 - A SINGLE LIBRARY FOR ALL DESIGN TASKS

Historically, schematic and layout libraries existed as independent entities, as they were describing different aspects of a physical part installed on the PCB. This approach introduced a dependency between schematic symbols and physical decals, creating a complicated design task of making sure the two libraries are constantly kept in-sync. This is why having a centralized location for all library items, a central library, for both schematic and layout parts, throughout the entire design cycle is so helpful.

According to an independent study by the Aberdeen Group, 86% of best-in-class PCB design companies use a centralized PCB parts library to support their PCB design process.

These companies state that using a centralized database helps them improve efficiency, lower product cost, and add features to competitively differentiate their products.

Source: Aberdeen Group, February 2010

To provide an integrated library some design tools require manual compilation of source libraries. This means source libraries need to be manually extracted every time a change is required, and then recompiled with the integrated library. Very few tools provide a central library that automates this process without requiring compilation of source libraries.

#2 - A PROVEN STARTER LIBRARY

One of the most time-consuming tasks for the designer is setting up a library for new PCB design projects. Although many design tools provide a standard, or starter library to their customers, the quality of these libraries is often questionable. Therefore most users do not use these libraries in their designs, and are often forced to build their own libraries in a time-consuming and tedious process. Having a proven starter library that meets industry standards and is ready for use can be a big time-saver and a significant advantage over other PCB design tools.

Figure 2: Save time preparing a library for your new project and reduce design costs by choosing a PCB design tool that comes with a highquality and reliable starter library.

#3 - COMPONENT DATA INTEGRATED FROM THE WEB

With today's easy access to the Internet, every designer can quickly access large amounts of suppliers' part data on the web. It only makes sense to use this information for your library, but the problem is that most PCB design tools require that you copy component data from PDF format datasheets into your part creation tool manually. This manual process is not only time consuming, but also error prone. Having a tool that can automate this process for you is a huge advantage.

Part#	Resolution (Bits)	# of Channels	FPBW (typ)	Throughput Rate	US Price 1000 to 4999	
AQ7958A-1	16	6	4.5 MHz	250 kSPS	\$12.45	
AQ9993					\$148.70	
AQ9580	14	2	2 GHz	1 GSPS	\$272.00	
AD9552	16	2	485 MHz	310 MSPS	\$231.25	
AR9525	12	1	2 GHz	2 GSPS	\$625.00	
AR7992	16	2	10 MHz	1 MSPS	\$15.00	
AR7392	16	1	-		\$3.35	
AD9556	16	4	650 MHz	125 MSPS	\$258.27	
407989-5	18	1	10 MHz	500 kSPS	\$11.95	
AD7989-1	18	1	10 MHz	100 kSPS	\$8.55	
AQ7993	16	2	10 MHz	1 MSPS	\$15.00	
AD7656A	16	6	12 MHz	250 kSPS	\$12.45	
AD7091B-8	12	8	1.5 MHz	1 MSPS	\$3.36	
AD7091R-4	12	4	1.5 MHz	1 MSP8	\$2.67	

Figure 3: Being able to make use of supplier part data that are available on-line in an accurate and automated fashion can dramatically reduce part creation time and increase productivity.

#4 - A METHOD FOR MAINTAINING AN UP-TO-DATE PART LIBRARY

One of the greatest challenges in design creation is figuring out a way to maintain an up-to-date library from start to finish. The problem is that library changes often occur after the design process starts, which can make synchronizing designs with the updated library definitions a challenging task. Having a built-in synchronization mechanism alert you whenever there is a database mismatch is tremendously helpful. Having it make the necessary updates is even better and eliminates detection of library issues late in the design cycle.

ak									* 0 ×	RADS Decal Freshers	7 - 0
broy. ICs						Query Builder Driteria	Ski ABABA10A12, *	8			
PART_NUMBER	DEVICE	PKG_TYPE /	VALUE	TOLERANCE	COST	DESCRIPTION	DATASHEET	4			
=	=	=	-	=	=	=	-	20			
\$17-50V_IC	BG4_MA	F032 8GA169_	40 InPEGA	.0	4.50	2048GA Ball Grid Array, 50 mil Space		81			
508_3.3V_JC	74AC74	Dip1 8ga264	10 74.	0%	0.25	Dip Package, 14 pin, 3.3V, 100mil, Std.	COPADSDamonstrationfilm)	8			
X_VE.E. 600	74HC00	Dipl Dipl6	200	0%	0.15	Dip, 14 pin, 3.3V, 100mil, Std Width	CVPADSDemonstrationfiles)		and the second delay and the Real Property lies and the		
506_SV_JC	74HC174	Dip16 FF1152	174	0%	0.50	Dip Package, 16 pin, 5V, 100mil, 5td	Co.PADSDamonstrationfilm)		**************************************	100	
917_5V_JC	74A5100	Diple POPPLIZ	100	0%	0.35	Dip Package, 16 pin, 5V, 100mil, 5td	COPADSDemonstration/files	9	H H		
Sto-Vinteo-FPGA	2:3000	FF11S413	2	0	2.50	1152 PIN VIRTEX2 FPGA	C:PADSDamonstrationfilm)	1%			
10-Viter-FPGA	2+3000	FFIL: Se24L	12	D	2.50	1152 PIN VIRTEX2 FPGA	CNPADSDemonstrationFiles	140	1 1		
Sto-Vister-FPGA	2:3000	FF11: So34L FF11: SO32ME	2	0	2.50	1152 PIN VIRTEX2 FPGA	C-PADSDamonstrationfilm)			111	
500_5.5V/JC	M056302	PQFESOP48	2	0%	5.10	132pin, 5.5V, 68302	CNPADSDemonstrationfiles)		1		
3LVE.10	MC68302	PQFP132	68302	0%	6.10	132pin, 3.3V, 68302	COPADSDamonstrationfilm)		1		
12-DiffRev	FINL028M	SCEME	FINI028M	0	.85	Differential Reciever			1 1		
511-DiffDrv	FINE027M	SCIENT	FINI027M	0	.75	Differential Driver			I I		
313-3.3×_IC	XC18V00	5020	XCL8V00	0	1.2	20pm, 3.3v, XCL8V00	CVPADSDemonstrationfiles\		Constitution of the balance		
31, VEE, 209	FLASH, 128K	5032ML	128K,RASH	0%	0.45	32pin, 3.3v, Flash_128k				111	
504_5.5V_IC	FLASH_128K	SO32ML	128K_FLASH	0%	0.45	32pin, 5.5v, Flash_128k				222	
502_5.5V_XC	FCT16244	50948	16244	0%	0.15	48pin, 5.5v, 16244	COPADSDemonstrationfilm)			*************	
OF STATE	FCT16244	SOP48	16244	0%	0.15	48pin, 3.3v, 16244	CNPADSDemonstrationfiles			*********	
506-5.0V_JC	74HC192	Saló	74HC192	0%	1.50	16pin,5%74HC192	C:PADSDemonstrationfiles)				
S10_SV_JC	145421	5024L	145421	0%	0.32	5MD, 24 pin, 5V, 100mil, 5td Width					
10	0.000	4	0.01 69 40.0	1000	1.0034				Symbol Economediemonthas 354.1 •		
Patri	CorporateDatabas	edo: Fi	ber Nore				Hattas 2	6			
Syntols), Search					_			_		Sector (1997) - (1998)	
t DoDataBook										Pin #'s 1.2	21

Figure 4: Making sure your library is updated with the correct part properties will help avoid costly redesigns and quality problems.

#5 - EASY LAND PATTERN CREATION

Land Pattern (footprint) creation is not only the most time-consuming library task, it's also among the most critical as errors in footprint geometries can cause costly manufacturability issues. Using an automated tool that follows manufacturing standards can provide a great advantage and dramatically reduce the time spent on creating high-quality footprints.

Figure 5 – Footprint errors can cause costly manufacturing issues. Having a high-quality land pattern creator at your fingertips can reduce time dramatically and help you avoid costly errors.

#6- TOOLS FOR THIRD-PARTY MIGRATION

When switching design tools it is important to preserve previous libraries and design IP for use in your new design tool. But just having a translator to import library parts isn't enough, as the import process often results in errors and inconsistencies between schematic parts and layout. A good migration path will make sure imported library data are consistent and accurate.

Figure 6: Minimize effort and loss of data on library migration when switching to PADS.

DID YOU KNOW?

PADS[®], Mentor Graphics' Personal Automated Design System for desktop PCB design, includes all six of the things you need in your design tool in order to create a good and efficient library. PADS provides a highly integrated library and component management environment that meets designers' and engineers' needs in creating and maintaining PCB design libraries.

PADS library management combines:

- A starter library containing more than 10,000 ready-to-use, IPC-compliant, proven parts provided by Optimum Design Associates for a quick start of new design projects.
- Web access to component supplier data with an ability to load contents into PADS (now in Beta)
- A central library for maintaining up-to-date design data. The central library contains all library elements in the same location, and is available at all design stages. PADS makes it possible to maintain an up-to-date library in real time, without any compilation, and includes all library elements (e.g., symbols, part data, footprints, simulation models, drawing items, and part common property definitions).
- A component management system, integrated with schematic design and library management environments.
- A built-in consistency check of library data to make sure your library is constantly in-sync.
- Live verification of symbols placed in your schematic against the latest component and library data to
 eliminate costly redesigns and quality problems that might otherwise go undetected until late in the
 design cycle.
- A land pattern creator for quick creation of IPC-standard footprints.
- A migration path for 3rd-party libraries and component databases.

SUMMARY

Managing your part library is critical, yet challenging. It starts with making sure all designers and engineers are using the most up-to-date library to avoid manufacturability and consistency issues. Then, you set up a library for each of your projects, which could be time-consuming and tedious. And the big challenge is getting your design done on time, with high quality.

To manage all these library tasks with high efficiency you need a PCB design tool that provides a powerful and intuitive library management solution. Look for one that supports the concept of an integrated central library. One that provides you with a proven starter library for quick design starts. One that enables you to pull component data directly from the web. One that reduces design time by reducing inconsistencies between schematic symbol and layout footprint data. One that makes it easy to build land patterns. One that can help you preserve previous libraries and design IP.

PADS can do all that. It includes all six things you want to have in your desktop PCB design library, and much more. For more information about library management and to try PADS for yourself, go to PADS.com.

Case Study: S8	P 500 Electronics	Company
Challenges		
Looking for an easy-to-us	e PCB design tool.	
Use Case		
Uses the PADS ES suite	for schematic capture and PCB la	yout.
Results		
Became productive in P/	ADS in 1-2 weeks.	
· Consistently releases pro	ducts on time using PADS.	
 Describes PADS routing 	as being easier to use than compe	atitive tools
Would recommend PAD:	S to a friend.	
Testimonials		
"Library structure in	PADS is easy to use and	doesn't create loads
	s like Altium and Orcad. I	
between units mils with Orcad."	to mm without the inaccu	racies I have seen
Source: TechValidate Su	vey of a S&P 500 Electronics	Company
www.techvalidate.com/product-res	arch/mentor-osochics-oads	TVID: 32D-0F4-A05

For the latest product information, call us or visit: www.mentor.com

©2014 Mentor Graphics Corporation, all rights reserved. This document contains information that is proprietary to Mentor Graphics Corporation and may be duplicated in whole or in part by the original recipient for internal business purposes only, provided that this entire notice appears in all copies. In accepting this document, the recipient agrees to make every reasonable effort to prevent unauthorized use of this information. All trademarks mentioned in this document are the trademarks of their respective owners.

Corporate Headquarters Mentor Graphics Corporation 8005 SW Boeckman Road Wilsonville, OR 97070-7777	Silicon Valley Mentor Graphics Corporation 46871 Bayside Parkway Fremont, CA 94538 USA	Europe Mentor Graphics Deutschland GmbH Arnulfstrasse 201	Pacific Rim Mentor Graphics (Taiwan) 11F, No. 120, Section 2, Gongdao 5th Road	Japan Mentor Graphics Japan Co., Ltd. Gotenyama Garden 7-35, Kita-Shinaqawa 4-chome	GM	entor phics
Phone: 503.685.7000 Fax: 503.685.1204	Phone: 510.354.7400 Fax: 510.354.7467	80634 Munich Germany	HsinChu City 300, Taiwan, ROC	Shinagawa-Ku, Tokyo 140-0001 Japan		
Sales and Product Information Phone: 800.547.3000 sales_info@mentor.com	North American Support Center Phone: 800.547.4303	Phone: +49.89.57096.0 Fax: +49.89.57096.400	Phone: 886.3.513.1000 Fax: 886.3.573.4734	Phone: +81.3.5488.3033 Fax: +81.3.5488.3004	LVG 10_14	TECH 12370-W