
Last time we built a PC-based
stepper-motor controller, and
an automated parts-dispens­

ing system called the APT (Automated
Parts Tray). This time, we'll present the
format of the data file that specifies
the parts to use in populating a PC
board. Then we'll discuss the software
(including a complete listing), and
show how to use it to populate a sam­
ple PC board-the stepper-motor
controller presented last time. As a
bonus, we'll provide hardware and
software details for adding an optical
encoder that will allow your PC to
sense when bin 1 of the APT is in place.

Data File Format. The APT data file is
simply an ASCII text file that lists every
part that is to be mounted on a board.
The format of the file is shown in Listing
1. (Note: All listings contain line num­
bers for reference only. If you type a
file in, do not enter the line numbers.)
Line 1 of the data file provides a de­
scription of the board; the description
is displayed at the bottom of the
screen whenever the APT program is
running. Line 2 provides the board's
horizontal and vertical dimensions. All
dimensions are in inches. Values in the
data file should be separated by
commas.

Line 3, which contains only a
backslash ('\'1, says to begin a new
part. Following that is one line for
every part hole. Each line contains
three items: x and y coordinates, and
a third value (polarity), which is nor­
mally 0, and should be set to 1 for the

BUILD THIS

AUTOMATIC
PARTS TRAY
Here's the software that makes our
board-assembly system work,
and an optical encoder to make
sure it works perfectly.

key point of a polarized component.
For example, the cathode of a diode,
pin 1 of an IC, or the positive end of an
electrolytic capacitor could be used
to help ensure correct part orienta­
tion. Each part may have as many as
20 holes. For parts with more than 20
holes (such as a 40-pin IC), simply
identify the perimeter holes that de­
fine the location and orientation of
the part.

After the line of the last hole for the
current part comes a line containing
only an asterisk("*"). The following line
contains a comment about the part,
such as its name, its value, its place­
ment, etc. The next line contains the
bin number, and that completes the
first part. The next line contains a
backslash, which marks the begin­
ning of the next part.

To see how this works in practice,
lets examine a sample data file for the
stepper-motor PC board, presented
last time. Listing 2 shows an abbrevi-

LISTING 1

1. Board Description (79 characters max)
2. Board Dimensions (x, y)
3. Backslash (\)
4. x,y,p Part1 Hole1 (horizontal, vertical ,

polarized (1=yes))
5. x,y,p Part1 Hole2

n. x,y ,p Part 1 Holen
n+ 1. • (Asterisk)
n+2. Part Description {79 characters max)
n+3. Bin Number (1··12, or Oto skip)
n+4. Backslash (\)
n+S. x,y,p Part2 Hole1

JAMES J. BARBARELLO

ated version of the data file, and Fig. 1
shows the foil pattern. To help identify
the x and y coordinates of each hole,
we have overlaid a 0.1-inch x 0.1-
inch grid on the pattern. The positive x
direction may be opposite of what
you expect. The reason is that the APT
program displays things looking down
on the component side of the board,
but we have only the foil side to work
with. You could work with a compo­
nent side view, in which case x would
increase in the positive direction from
left to right.

The first set of hole coordinates
(lines 4-12) is followed by a comment
that indicates those are non-part
holes. Typical of that variety would be
mounting holes, or holes used for op­
tions that are not being installed. Here,
the first two sets of coordinates are for
the holes where J1 mounts. The last
three are for the holes indicated (in
the original article) as "Future Optical­
Encoder Input," along with holes for
ground and + 5 volts. None of those
holes will have a part inserted, so the
bin number (following the asterisk) is
zero. That tells the program to display
the holes for reference purposes, but
not to consider them as part holes, i.e.,
not to rotate the parts tray.

As shown in lines 13-27, the first part
to be installed is J1 . Note that 11 holes
are specified, and the last hole is
shown as the polarity indicator. That is
folllowed by the asterisk separator,
and a comment line. Since J1 is rela­
tively heavy, the comment indicates
that it should be obtained from sup-

-I
m
m
~
0
::,
ff
(/)

z
0
:E

63

64

LISTING 2

001. STEPPER CONTROLLER,

V95 1003 · JJB

002. 2.85,2 .8

003. \

004 .. 2,.5,0

005 .. 2,2.35,0

006 .. 7,.35,0

007. 2.6, 1,0

008. 2.6, 1.25,0
009 .•

010. Non-Part Holes. Bin 0 means

skip as a part to be placed.

011. 0

012. \
013 .. 6,.75,0

014 . . 5,.8,0

015 .. 6,.95,0

016 .. 6, 1.05,0

017. .5, 1.45,0

018 .. 6 , 1.6,0

019 .. 6, 1.73,0

020 .. 6, 1.84,0

021 .. 5,2,0

022 . . 6, 1.95,0

023 . . 6,2.07, 1

LISTING 3

024. •

025. J1 - DB25 Conn, Pin 1 Red.

026.

027. \

GET FROM SUPPLEMENTARY

BIN A.

100 . . 9,.8,0

101. 1.3,.8,0

102.
103. R7 - 2.2Kohm

104. 2

105. \

208. 2.6,.75,0
209. •

210. STEPPER MOTOR PHASE A

211 . 1

212. \

228. 2.6 , 1.3, 1

229. 2.65, 1.6,0

230.
231 . POWER · RED IS +5V,

WHITE ISGND

232. 1

232. \

1 REM" STEPPER.BAS (c) 1995 JJ Barbarello,

Manalapan , NJ (908) 536-5499
2 REM .. V951013

3 DEF SEG = 64
4 DEFINT A : DIM a(4), h(500, 1), p(20, 1), comment$(500) , bin(500)

5 abinold = 1: ainit = 12: OUT add, ainit

6 a(1) = 5: a(2) = 3: a(3) = 10: a(4) = 12

7 add= 888
8 OPEN "stepper.Iii'' FOR INPUT AS #1

9 LINE INPUT #1, file$: CLOSE 1

10 OPEN file$ FOR INPUT AS #1

11 LINE INPUT #1 , title$

12 LINE INPUT #1, boardsize$

13 h(0, 0) = VAL(boardsize$)

14 comma = INSTR(boardsize$, ",")

15 h(0, 1) = VAL(MID$(boardsize$, comma+ 1, 20))

16 REM"""·• READ SIZE OF PCB AND LOCATION OF HOLES

17 ctr1 = 1
18 WHILE NOT EOF(1)

19 LINE INPUT #1, a$: B$ = LEFT$(a$, 1)

20 SELECT CASE B$

21 CASE "0" TO "9" , "."

22 h(ctr1, 0) = VAL(a$)

23 comma1 = INSTR(a$, ",")
24 h(ctr1, 1) = VAL(MID$(a$, comma 1 + 1, 20))

25 ctr1 = ctr1 + 1

26CASE IS = ""'
27 LINE INPUT #1 , a$

28 comment$ = a$

29 LINE INPUT #1, a$

30 bin= VAL(a$)

31 CASE IS = "\"

32 CASE ELSE

33 END SELECT

34 WEND
35 REM" CLOSE & RE-OPEN FILE, DUMMY READ INITIAL DATA

36 CLOSE 1

37 OPEN file$ FOR INPUT AS #1

38 LINE INPUT #1, title$

39 LINE INPUT #1 , boardsize$

40 LINE INPUT # 1, backslash$
41 REM CALCULATE SCALE FACTORS FOR PCB DISPLAY

42 IF (h(0, 1) + 2) > h(0, 0) THEN

43 ystep = 28 / h(0, ·1)

....
X..,. 100)

r,
Fig. 1. Here's the foil-side view of the Stepper Motor
Controller presented last time. The superimposed grid helps
locate component positions accurately.

44 xstep = ystep • 7 / 5

45 adjust1 :
46 IF (xstep • h(0, 0) • 10 > 540) OR (ystep • h(0, 1) • 10 > 280) THEN

47 ystep = ystep - .1 : xstep = ystep • 7 / 5: GOTO adjust1

48 END IF

49 ELSE

50 xstep = 56 / h(0, 0)

51 ystep = xstep • .68
52 adjust2 :

53 IF (xstep • h(0, O) • 10 > 540) OR (ystep' h(0, 1) • 10 > 280) THEN

54 xstep = xstep - .1 : ystep = xstep • .68: GOTO adjust2

55 END IF

56 END IF
57 REM START-UP SCREEN

58 SCREEN 9: CLS

59 LINE (3 , 3)-(630, 335), 7, B: LINE (5, 5)-(627, 333), 7, B

60 LINE (230, 30)-(386, 65), 15, B

61 LOCATE 4 , 35: COLOR 15, 9: PRINT "APT SYSTEM"

62 PAINT (235, 35), 9, 15: LOCATE 6, 18: COLOR 7, 1

63 PRINT "(c) 1995, JJ Barbarella, Manalapan, NJ 07726"

64 LOCATE 7, 33: PRINT "(908) 536-5499": COLOR 15, 1

65 LOCATE 13, 20: PRINT'Position Tray at Bin 1,

then press Enter .. . ";

66 OUT add, ainit

67 a$ = INPUT$(1)

68 REM"'"" WORK SCREEN

69CLS
70 LINE (1 , 1)-(630, 293), 3, BF
71 LINE (1, 1)-(630, 293) , 7 , B

72 LINE (1, 322) -(630, 334) , 3, BF

73 LINE (1, 322)-(630, 334), 7 , B

74 titleoffset = (80 - LEN(title$)) / 2
75 LOCATE 25, titleoflset: COLOR 8, 0: PRINT title$; : COLOR 15, 0
76 REM CALCULATE WORKING VARIABLES & DISPLAY PCB

77 x = h(0, 0) • 10 • xstep: y = h(0, 1) • 10 • ystep
78 xoffset = (620 - x) / 2: yoffset = (292 - y) / 2

79 LINE (xoffset - 4, yoffset - 2)-(xoffset + x + 4 , yoffset + y + 8) , 8, BF

80 FOR i = xoffset TO xstep • h(0, 0) • 10 + xoffset STEP xstep

81 FOR j = yoffset TO ystep' h(0, 1) ' 10 + 2 + yoffset STEP ystep

82 PSET (i, j), 12

83 NEXT j
84 NEXTi

85 FOR i = 1 TO ctr1 - 1

86 CIRCLE (h(i, 0) • 10 • xstep + xoffset, h(i, 1) • 10 • ystep + yolfset), 1, 14

87 NEXTi
88 REM"" " .. READ PART LOCATION DATA FROM FILE AND DISPLAY

plementary bin A However, the bin
identifier is cited as 1. There's still no
need to move the tray.

Bin 1 contains the 100-ohm resistors.
When we need a new value (R7, 2.2K,
lines 100-105), note that the bin
number increases to "2." Parts identifi­
cation continues until ifs time to at­
tach the stepper-motor wires (lines
208-212). Here, only a single hole is
identified, and the tray stays "parked"
at bin 1. The file ends with the power
connections (lines 228-232).

The APT Software. Now lets see
how the software puts the data file to
use. The program, STEPPER.BAS, is
shown in Listing 3. (Line numbers are
included for reference only. They must
not be included in the run-time file).
Lines 8 and 9 open a one-line file
called STEPPER.FIL. That file contains
the name of the text file that contains

89 hole = 1 : partno = 1
90 WHILE NOT EOF(1)
91 LINE INPUT #1, a$: B$ = LEFT$(a$, 1)
92 SELECT CASE B$
93 CASE "O" TO "9", "."
94 x = VAL(a$)
95 comma1 = INSTR(a$, ",")
96 comma2 = INSTR(comma1 + 1, a$,",")

the PC-board data. You can create
the file using any text editor or from a
DOS command line as follows:

C:APT>copy con stepper.ti!
<Enter>

datafile.txt <Enter>
<Ctrl> <Z> <Enter>
C:APT>

In the above, replace "datafile.text''
with the name of the file with the PC­
board data that you created. The
term <Enter> means press the Enter
key. <Ctrl> <Z> means press and
hold the CTRL key while you press the Z
key.

The program then opens the PC­
board data file and reads all the
component location information
(lines 10--40). The program uses that
information to calculate the scale at
which the PC board will be displayed
(42-56). The next step is to display

134 abin = bin

basic program information (57-75).
Lines 77-87 then display the PC
board. Note that the program runs in
screen mode 9 (see line 58), which is a
screen resolution of 640 x 350. Nearly
all EGA VGA and SVGA adapters sup­
port that mode, but earlier adapters
do not, so don't plan on using that old
8088-based PC you have lying
around for this project unless it has an
appropriate video adapter.

Next, the program (lines 89-125)
displays the holes associated with
each part, calling subroutine HW­
CONTROL (from 113) to position the
APT tray at the designated bin.

HWCONTROL. The purpose of HW­
CONTROL is to find the shortest route
between the current and the next bin
positions, and then move the tray to
the new position.

HWCONTROL actually does three

135 IF abin < 1 OR abin > 12 THEN ERROR 5
136 abin2 = abin
137 IF abin2 < abinold THEN abin2 = abin2 + 12
138 asteps = abin2 - abinold
139 SELECT CASE asteps
140 CASE 1 TO 6

97 y = VAL(MID$(a$, comma1 + 1, comma2 • comma1 + 1}}
98 positive= VAL(MID$(a$, comma2 + 1, LEN(a$) · comma2))
99 x = x • 10 • xstep + xoffset: y = y • 10 • ystep + yoffset

141 lo= 1: hi= 4: steps= 1
142 CASE IS> 6
143 lo= 4: hi= 1: steps= -1 : asteps = 12 · asteps
144 CASE IS< 0

100 p(hole, 0) = x: p(hole, 1) = y: hole = hole + 1
101 IF positive = 1 THEN highlight = 12 ELSE highlight= 15
102 CIRCLE (x, y), 3, highlight
103 PAINT (x, y), highlight, highlight
104 CASE IS = •••
105 LINE INPUT #1, a$
106 comment$ = a$
107 LINE INPUT #1, a$
108 bin= VAL(a$)
109 LOCATE 22, 1: PRINT SPACE$(79);
110 LOCATE 23, 1: PRINT SPACE$(79);
111 LOCATE 22, 1: PRINT comment$
112 LOCATE 23, 1: COLOR 7, 0: PRINT "Part"; partno; "in BIN:"; bin:

COLOR 15, 0
113 IF bin> 0 THEN GOSUB hwcontrol: a$ = INPUT$(1)
114 FOR i = 1 TO hole • 1
115 CIRCLE (p(i, 0), p(i, 1)), 3, 10
116 PAINT (p(i, 0), p(i, 1}), 8, 10
117 CIRCLE (p(i, 0), p(i, 1)), 3, 8
118 CIRCLE (p(i, 0), p(i, 1)), 1, 14
119NEXTi
120 hole= 1
121 CASE IS='\"
122 IF bin> 0 THEN partno = partno + 1
123 CASE ELSE
124 END SELECT
125WEND
126 SOUND 600, 1: SOUND 875, 2: SOUND 800, 2
127 bin= 1: GOSUB hwcontrol
128 SCREEN 0: CLS : LOCATE 10, 38: PRINT "Done"
129 LOCATE 18, 1
130 END

131 ·••••••••••••••••• .. ••••••••••••••
132 REM•• SUBROUTINE HWCONTROL
133 hwcontrol:

145 lo = 4: hi = 1: steps = · 1: asteps = -asteps
146 CASE ELSE
147 SOUND 675, 1: SOUND 500, 1
148 RETURN
149 END SELECT
150 OUT add, ainit
151 binold = abinold
152 FOR i = 1 TO asteps
153 FOR j = lo TO hi STEP steps
154 OUT add, aU)
155 IF i > 1 AND i < asteps THEN delay = .075 ELSE delay = .125
156 START!= TIMER
157 WHILE (TIMER· START!)< delay: WEND
158 NEXT j
159 binold = binold + steps
160 SELECT CASE binold
161 CASE IS = 0
162binold= 12
163 CASE IS = 13
164 binold = 1
165 CASE ELSE
166 END SELECT
167 NEXT i
168 IF steps = ·1 THEN
169 OUT add, a(lo)
170 ainit = a(lo)
171 ELSE
172 ainit = a(hi)
173 END IF
174 START! = TIMER
175 WHILE (TIMER- START!) < 1: WEND
176 OUT add, 0
177 abinold = abin
178 SOUND 500, 1: SOUND 675, 1
179 RETURN

65

Ji

J
~
0 z
ff)
{)

·c:
e u
Ql

w

66

TABLE 1-MOTION CONTROL SEQUENCE

~ A(5)

1 1
2 0
3 0
4 1

I
I

I LED1' I

L--------.J
'SEE TEXT

8*(4)

0
0
1
1

CONTROL
BOARD

+5V

Fig. 2. The optical encoder consists of
little more than an IR emitter and
detector.

8(3)

1
1
0
0

A*(2)

0
1
1
0

Decimal

10
3
5
12

Line 134 saves the bin number to a
temporary variable (abin). Line 135
ensures that a valid bin number is
being processed. Line 136 creates an­
other copy (abin2) of the current bin
number. Then, if the value of the new
bin is less than the value of the last bin
(i.e., the current tray position), line 137
adds 12 to abin2. To understand why,
lefs look at an example.

If we are at bin 6 (abinold = 6) and
we want to go to bin 4 (abin2 = 4) we
want to go backward two positions.
So, adding 12 to abin2 gives 16. The

TO
J1-11

Fig. 3. Mount all components for the optical encoder board as shown here. Note that
though shown off board, LED] and QI are mounted as discussed in the text .

LONGER
LEAD

Fig. 4. Bend the leads of LEDJ and QI
to keep the bodies of those devices about
a half-inch above the PC board.

things: It decides whether to move the
tray, decides how to move the tray,
and actually moves the tray. Table 1
shows the motion-control sequence.
By performing steps 1-4 sequentially,
the tray rotates clockwise (CW). By
performing the sequence backward
(4-1), the tray rotates counterclock­
wise (CCW).

number of steps is thus 16 - 6 = 10.
Now look at the SELECT CASE rou­

tine (139-149). If the number of steps
we need to take is between one and
six, we simply set up to rotate clock­
wise (CW) the specified number of
steps. If we need to go more than six
steps, we set up to go counterclock­
wise (CCW). Likewise, if the number of
steps is less than zero, we also set up to
goCCW

In our example, line 143 does three
things. First, it sets variable lo to 4 and
hi to 1. Second, it sets the stepping
value t9 -1, so the For-Next loop will
count backward. The result of the first
two steps is CCW rotation. Third, it sub­
tracts the current astep value (which is
10) from 12 to arrive at 2. As a result, the
tray will move two steps CCW, from bin
6to bin 4.

To continue the example, assume

we now want to move to bin 7. Line
137 does not come into play, since 7 is
greater than 4. Line 138 calculates the
difference as 3, which is handled in
lines 140-141. The result is CW rotation,
so the tray moves CW three positions
to bin 7.

Ifs also worth pointing out that if the
number of steps needed to change
bins is zero, the CASE ELSE statement
takes effect, so the routine returns
without performing any action. Thafs
important to remember when build­
ing the data file, since sequencing
parts with identical values speeds up
the assembly process.

All thafs left now is to perform the
actual motion. Line 150 outputs a
decimal 12, which is always the start of
the movement sequence. Then the
For-Next loop (153-158) cycles
through the four steps. Lines 155-157
provide a variable delay that allows
the motor time to spin up the first time
through the loop. Subsequently, a
shorter delay suffices, thus speeding
movement.

Lines 174-175 provide a one-sec­
ond delay, after which line 176 sends
a value of zero. The delay keeps the
stepper energized to ensure that it

PARTS LIST FOR THE
OPTICAL ENCODER

Ql-lnfrared detector, 940nm, Tl
case (Jameco 112176 or equivalent)

LEDi-Infrared LED diode , Tl case
(Jameco 112150 or equivalent)

Rl-220 ohms, ¼-watt, 5% resistor
R2-2200 ohms, ¼-watt, 5% resistor
Poster board , PC board , wire,

mounting hardware , etc.
NOTE: The following are available

from James J. Barbarello, 817
Tennent Road, Manalapan, NJ
07726. PC Board: APT-PC
($12.00). Software including
source and executable code for all
software in the series , sample data
files, and an enhanced version of
the APT software (including the
optical encoder application):
APT-S ($12.00). All prices include
shipping. International orders add
$5 .00 (U.S. funds only). NJ
residents must add sales tax. The
author will accept phone calls
6-8:00 PM EST, Monday through
Friday ONLY (Tel: 908-536-5499).
The author will gladly answer
written questions if accompanied
by a self-addressed stamped
envelope.

brakes properly. The zero then de-en­
ergizes the stepper. We could leave it
energized, but if no further motion is

LISTING 4

1 REM .. STEPFDBK.BAS
2 REM' " V951014
3 CLS : DEF SEG = 64: add = 888
4 DIM a(4): a(1) = 5: a(2) = 3: a(3} = 10:

a(4) = 12: ainit = 12
5 LOCATE 1, 25: PRINT "ALIGN

OPTICAL ENCODER DISK"
6 LOCATE 3, 1: PRINT "Searching ... ";
7 startloop:
8 FORj = 1 TO 4
90UTadd, aU)
10 IF (INP(add + 1) AND 128) / 128 = 1

THEN GOTO foundbin1
11 start! = TIMER
12 WHILE (TIMER - start!) < .075: WEND
13 NEXT j
14 GOTO startloop
15 foundbin 1:
16 OUT add, ainit
17 LOCATE 3, 1
18 PRINT "Rotate Disk So Aperture is

Directly Under IR Diode."
19 PRINT "When Done, press Enter to

Turn Off Stepper Motor .. . ";
21 a$ = INPUT$(1)
22 OUT add, 0

needed in the near future, continuing
to apply current will simply cause un­
necessary heating of the coil. The last
act of the subroutine is to record the
current bin position (abin) as the pre­
vious bin position (abinold), in prepa­
ration for the next time through the
loop.

Running the Software. To run the
software, you need three things: STEP­
PER.BAS (an ASCII file containing the
QBasic program), STEPPER.FIL (a file
that contains the name of the data
file), and a data file (e.g., STEPPER.DAT).
You can create the files yourself, as
shown in Listings 1, 2, and 3, or you can
obtain them directly from the author,
as discussed in the Parts List.

Next, connect the APT hardware to
a power supply and parallel port. Run
QBasic, load STEPPER.BAS, and run it.
The program asks you to move the
tray to bin position 1. Remove the APT's
cover, and position the tray so bin 1 is
accessible through the cutout. Re­
install the cover and press <Enter>.

SLIGHTLY LESS THAN
1/4-INCH DIAMETER

1I4-INCH

1116-INCH =:::j=== 1
1-7 /8-INCHES

J
1/16-INCH

APERTURE

Fig. 5 . The encoder disc must press-fit on the motor shaft, so be careful creating the
center hole .

PC
BOARD

APERTURE

MOUNTING
BLOCK

Fig. 6. Position the PC board so that the IR devices line up with the disc aperture
between them.

The program then displays your PC
board, highlighting each part in turn,
and rotating the bin as necessary to
provide access to the specified part.
After the last part, the program de­
energizes the stepper motor.

Now you're ready to create a data
file for your own PC board. Go to it!

Optical Encoding. The current APT
system is open-loop: We must assume
that the tray moved to where we sent
it, because the system provides no
feedback to verify whether it did. A
closed-loop system would provide
such feedback. We're going to pro­
vide that feedback using optical en­
coding. Optical encoding is simply a
way to sense rotational position using
light.

The circuit is quite simple, as shown
in Fig. 2. The collector of Q1 is normally
high. When infrared (IR) energy hits
the detector, it begins to conduct, so
its collector goes low. By monitoring
the state of Q1's collector, we can, un­
der software control, say whether light
is passing through or being blocked
by a device. The device in this case
happens to be a disc with a slit in it.
The disc mounts concentric with the
motor shaft, and the IR detector/emit­
ter pair mount in such a way that the
slit in the disc will pass between them
as the motor rotates.

Parts alignment is somewhat crit­
ical, so we recommend the use of a
PC board; a foil pattern accom­
panies this article. The parts-place­
ment guide for that board appears in
Fig. 3. The IR LED has a bluish lens, and
the cathode is identified by a longer
lead. You can verify that configuration
by connecting the longer lead to + 5-
volts DC through a 220-ohm resistor,
and connecting the shorter lead to
ground. There should be about 1.2
volts across the diode. The detector
has a clear lens, and the emitter is
identified by a longer lead. Each de­
vice comes in a T1 package, which is
just the right size for this application. A
T1½ package would be too large.

Bend the IR devices as shown in Fig.
4, and install them on the PC board.
Keep the component bodies about
½-inch above the plane of the PC
board. Then install the two resistors
and three wires for + 5V, ground, and
the output. The output wire connects
to pin 11 of J1 on the original APT cir­
cuit. 67

68

You can make an encoder disc
from poster paper or other stiff, thin
material, as shown in Fig. 5. The diam­
eter of the center hole should be
slightly smaller than the shaft of the
stepper motor. To mount the disc, re­
move the coupler on the stepper
motor and loop a small rubber band
around the shaft several times.

Referring to Fig. 6, push the encoder
disc onto the shaft. The disc should
have a firm press-fit, without bending
or distorting. Reinstall the coupler and
adjust the disc and the rubber band
so that the disc rests directly against

0

routine. Line 10 senses when pin 11 of
J1 goes low (input = 1), indicating that
IR energy from the diode is passing
through the aperture and pulling the
detector's output low. Since the aper­
ture could be detected during any of
the four motion steps, line 16 reposi­
tions the stepper motor at the start of
the sequence (ainit) . The program
then lets you align the aperture be­
neath the diode. Last, line 22 de-ener­
gizes the motor.

What's Next? There are several di­
rections you could take if you wanted

0

.... , •------2 7/8-INCHES--------1 .. .il
Since parts alignment is fairly critical , use this PC board when building the optical
encoder.

the bottom of the coupler and is held
tight by the rubber band. Position the
encoder PC board against the short
ends of the blocks holding the step­
per motor (shown last time), and ad­
just the positions of the IR emitter and
detector so that they are close to the
encoder disc and centered along the
aperture in the disc. Secure the en­
coder PC board to the short ends of
the blocks.

To test the circuit and align the disc,
use the program shown in Listing 4.
Connect the APT to your power supply
and parallel port, but leave the tray
off for now. Run the program and note
that the encoder disc rotates. The disc
should stop with the aperture directly
between, or at least near, the IR de­
vices. If ifs directly under, you're done.
Otherwise, rotate the disc slightly, as
instructed by the program. In either
case, press < Enter> to end the pro­
gram. Move the shaft (not the disc) so
the · aperture is not under the diode
and run the program again.Now, the
disc should stop with its aperture di­
rectly under the diode. After complet­
ing the alignment, reinstall the tray.

Lefs take a quick look at the align­
ment program. Lines 7-16 form a loop
that continually looks for the aperture.
Within that loop, lines 8-13 constitute
our old stepper-motor movement

to continue experimenting with step­
per motors. For example, you could
modify the program to include en­
coder-disc sensing. You could also
modify the encoder disc to incorpo­
rate twelve apertures, one for each
bin position.

A more ambitious project would be
to use stepper motors to provide
accurate X-Y positioning. In that way
you could create an automated sys­
tem for drilling PC boards with ease
and precision. That will be our next
project; look for it soon! n

REFLECTION TESTER
(Continued from page 62)

ment. You have positively found an
impedance mismatch in the cable.
You also know exactly where it is, and
how long it is.

The TV-antenna-cable problem
worked out great. Can the C.R.T. help
you figure out why your LAN isn't work­
ing? L~rs imagine a really bad sce­
nario. You have just installed a LAN for
a small business. You are using Eth­
ernettechnology in a 10Base2 config­
uration. You have_ finished hooking up
all of the hardware and · installed all
the necessary software, but nothing
works. What do you do?

After you sit and stare for a while
thinking how nice it would be camp­
ing in the middle of a stand of eastern
white pine, a thought crosses your
mind. Could the problem be in the
cabling? You take out your C.R.T. and
put it in-line with one of the worksta­
tions. The waveform on the scope
looks like the display in Fig. 11. The
measurement of the initial step up ac­
counts for the 25 foot length of cable
between the C.R.T. and the worksta­
tion, but at the end there is a strange
step down.

A step down in the display, as we just
learned in the TV antenna cable ex­
ample before, indicates an imped­
ance mismatch. But where is that step
down coming from? The workstation is
properly terminated with a 50-ohm
terminator. But then you notice that
you have wired the system with RG-59/
U instead of RG-58/U. The cable is not
properly matched to the Ethernet
cards and terminators. The Ethernet is
interpreting that mismatch as data
collisions. Obviously, new cable will
have to be ordered, but hopefully the
cable has not yet been run under the
floor tiles or through the ceiling joists.

Now that we've seen several cases
of impedance mismatches, what
does a healthy cable look like? Figure
12 shows a cable that is in good con­
dition and is properly terminated with
a resistor that is equal to the charac­
teristic impedance of the line. It is a
length of RG-58/U terminated with a
50-ohm resistor. If the proper cable
was chosen for the LAN problem, the
scope display would have looked like
Fig. 12 instead of Fig. 11.

If the world were an ideal place, Fig.
12 would show a straight line after the
initial ringing, but you can see that it
doesn't. There is still a slight hump
where the terminator connects to the
cable, but it is very small and there are
no multiple reflections. Also notice
one other curious thing: the waveform
is slowly curving down over time. That
is due to the capacitive component
of the line.

There you have it-a poor man's
TDR. Suprising accuracy is practicable
with even a crude setup. If you find the
C.R.T. very useful, lay it out on printed­
circuit board and mount it either in a
box or in your oscilloscope. If you have
any questions or problems, you can
reach the author via e-mail at
75104.3104@compuserve.com. n

